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Abstract: Decidualization denotes the morphological and biological differentiating process of human
endometrial stromal cells (HESCs). Fatty acid pathways are critical for endometrial decidualization.
However, the participation of fatty acids as an energy source and their role in endometrial decidualiza-
tion have received little attention. To identify fatty acids and clarify their role in decidualization, we
comprehensively evaluated free fatty acid profiles using liquid chromatography /Fourier transform
mass spectrometry (LC/FT-MS). LC/FT-MS analysis detected 26 kinds of fatty acids in the culture
medium of decidualized or un-decidualized HESCs. Only the production of octanoic acid, which is
an essential energy source for embryonic development, was increased upon decidualization. The
expressions of genes related to octanoic acid metabolism including ACADL, ACADM, and ACADS;
genes encoding proteins catalyzing the first step of mitochondrial fatty acid beta-oxidation; and
ACSL5 and ACSMS5; genes encoding fatty acid synthesis proteins were significantly altered upon
decidualization. These results suggest that decidualization promotes lipid metabolism, implying that
decidualized HESCs require energy metabolism of the mitochondria in embryo implantation.

Keywords: decidualization; octanoic acid; mitochondrial beta-oxidation; embryo implantation

1. Introduction

Pregnancy requires the coordination of three interdependent processes, including em-
bryo development, endometrial decidualization, and placenta formation. The interaction
between invasive trophoblasts and the maternal uterine decidua is critical for successful
implantation and pregnancy [1]. Decidualization denotes the morphological and biolog-
ical differentiating process of human endometrial stromal cells (HESCs), initiated in the
middle-to-late secretory phase of the cycle. Impaired decidualization causes a spectrum
of pregnancy complication, including implantation failure, recurrent miscarriage, and
preeclampsia [2]. Decidualization is characterized by the transformation of endometrial
stromal cells into epithelioid-like decidual cells, a process that is further characterized by
the influx of specialized immune cells and macrophages with intense vascular remodel-
ing [3,4]. Previously, we demonstrated that decidualized HESCs caused ultrastructural
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morphological alternations, including expanded endoplasmic reticulum, and increased
numbers of mitochondria and lipid droplets [5].

The initial contact of the implanting blastocyst with the lumen epithelium of the
endometrial lining occurs during the steps of apposition and attachment at 6-7 days fol-
lowing conception. As soon as the epithelium is breached, the interface emerges between
trophoblasts and decidual cells. Upon breaching of the luminal endometrial epithelium, the
implantation embryo is rapidly surrounded and encapsulated by migrating decidualizing
endometrial stromal cells. Thus, decidual-trophoblast crosstalk is essential for successful
pregnancy. Gerllersen et al. [6] showed that when cultured on decidualized HESCs, tro-
phoblast spheroids expand to a greater extent than un-differentiated HESCs. Decidualized
HESCs are highly secretory cells, suggesting that they create the microenvironment and
provide the nutrients that enable the conceptus to thrive [7].

Several studies have revealed that glucose metabolism plays a significant role in en-
dometrial decidualization [8-10]. In addition to glucose metabolism, several cell types
depend on fatty acids as an energy source. Lipids play a crucial role in the physical
properties and biological functions of membranes as well as providing the cell a source
of nutrients [11]. Lipid metabolism is involved in the luteal phase endometrial function-
ality [12,13]. Lipid metabolism activation is a well-represented process in the secretory
phase of the human endometrium [14]. Furthermore, fatty acid beta-oxidation pathways
are critical for endometrial decidualization [15]. However, the participation of fatty acids
as an energy source and their roles in endometrial decidualization have received little
attention. Our understanding of the expression, regulation, and function of fatty acids in
differentiating HESCs is limited.

In previous studies, Yamada et al. [16] suggested that medium-chain fatty acid is an
alternative energy source in mouse preimplantation development. Although it was found
that medium-chain fatty acids are necessary for embryo development, there were still
some unknowns, such as where they are supplied from and whether they play a role in
decidualization and implantation. Our previous study demonstrated that decidualized
HESCs had an increased number of lipid droplets, suggesting that they may be a potential
source of medium-chain fatty acids [5]. Therefore, to clarify the relationship between
medium-chain fatty acids and endometrial decidualization or embryo implantation, we
created a free fatty acid profile using liquid chromatography/Fourier transform mass
spectrometry (LC/FT-MS) and analyzed the expression levels of related genes and invasion.

2. Materials and Methods
2.1. Tissue Collection and Primary Culture of HESCs

This study conducted following ethical approval from the Institutional Review Board
of Saitama Medical University Hospital (IRB code no.16001, 11017). Human endometrial
tissues were collected from four women, who underwent hysterectomy for myoma uteri at
Saitama Medical University Hospital. Subjects were not on hormonal treatment at least 6
months prior to the procedure. All patients gave written informed consent to the study
before the operation and the study protocol was approved by the local ethical committee
of Saitama Medical University Hospital. For primary culture, HESCs were isolated from
the uterus following hysterectomy as previously described [17-19]. The isolated HESCs
were cultured in DMEM/F-12 (Thermo Fisher Scientific, Waltham, MA, USA) containing
10% dextran-coated charcoal (DCC)-treated Fetal bovine serum; FBS (Nichirei Biosciences,
Tokyo, Japan) with 1% antibiotic—antimycotic solution (Thermo Fisher Scientific, Waltham,
MA, USA) and 2 mM L-Glutamine (Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Decidualization of HESCs

HESCs were decidualized by 0.5 mM Adenosine 3’,5'-cyclic Monophosphate, 8-Bromo-,
Sodium Salt (8-br-cAMP B7880; Merck, Sigma-Aldrich, Darmstadt, Germany) and 10—6 M
medroxyprogesterone 17-acetate (MPA M1629; Merck, Sigma-Aldrich, Darmstadt, Ger-
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many) in DMEM/F-12 containing 2% DCC-treated FBS. All experiments were conducted
before the third passage of the cultures.

2.3. LC/FT-MS

LC/FT-MS analysis of fatty acids was outsourced to the Chemicals Evaluation and
Research Institute (CERI, Tokyo, Japan) and performed as previously reported [20]. LC
detection was performed using UFLC XR (Shimadzu, Kyoto, Japan). Chromatographic
separation was performed on a one-column 2 ODS column (2.1 x 150 mm; particle size,
2 um) (CERI, Tokyo, Japan). MS was performed using LTQ Orbitrap XL (Thermo Fisher
Scientific, Waltham, MA, USA). MS detection was performed in a negative scan mode at a
resolution of 30,000 and a range of m/z 140-600.

2.4. Beta-Oxidation Assay

Beta-oxidation activity was measured using Radioisotope (RI)-labeled substrate as
previously reported [21]. Mitochondrial fatty acid oxidation activity was measured with
RI-labeled fatty acids following [1-14C]-labeled capric acids (C10:0) (PerkinElmer, Shel-
ton, CT, USA) or [1-14C]-labeled palmitic acid (C16:0) (PerkinElmer, Shelton, CT, USA).
Briefly, mitochondrial fatty acid oxidation activity was measured using decidualized or
un-decidualized HESCs. HESCs were dissociated with trypsin, centrifuged to remove the
medium, and then resuspended in a reaction solution containing Rl-labeled fatty acids and
incubated at 37 °C for 1 h. To extract the 14C-labeled metabolites after the beta oxidation
reaction, heated at 60 °C with 1/5 volume of 1IN KOH and acidified in 6% perchloric
acid for 1 h on ice. After centrifugation at 7700 x g for 10 min, chloroform; methanol (2:1)
extraction was performed. 14C-labeled metabolites were analyzed in a liquid scintillation
counter LS 6500 (Beckman Coulter, Brea, CA, USA).

2.5. RNA Extraction and Expression

The total RNA was extracted from decidualized or un-decidualized primary cultures
of HESCs using miRNeasy mini prep kit (Qiagen, Hilden, Germany). Reverse transcription
was performed using BioScript Reverse Transcriptase (Bioline, Memphis, TN, USA). Each
gene expression was analyzed by the PikoReal 96 Real time PCR system (Thermo Fisher
Scientific, Waltham, MA, USA) using PowerUp SYBR Green Master Mix (Thermo Fisher
Scientific, Waltham, MA, USA).

2.6. Invasion Assay

Invasion assay was performed using extravillous trophoblast cells (HTR8/SVneo)
cultured within a Boyden chamber with 8-mm pores (Chemotaxicell; Kurabo, Osaka, Japan).
An immortalised first trimester EVT cell line (HTR-8/SVneo cells) was used for invasion
assay. HTR-8/SVneo cell lines were kindly provided by Dr. Charles H. Graham (Queen’s
University, Kingston, ON, Canada) and Dr. Eiko Yamamoto (Nagoya University Graduate
School of Medicine, Nagoya, Japan) [22]. HTR8/SVneo cells (1.0 x 10° cells suspended
in DMEM/F-12 containing 10% FBS) were added into a chemotaxis—cell chamber placed
on a 24-well plate. Octanoic acid (200 ng/mL) was added in a 1 mL culture medium
(DMEM/F-12 containing 10% FBS) per well and incubated with HTR8/SVneo cells in the
chamber for 2 days. HTR8/SVneo cells invading toward the outer surface of the membrane
through pores were fixed and stained with the Diff-Quik stain (Sysmex, Hyogo, Japan). The
HTR8/SVneo cells on the outer surface of the membrane were counted, and the average
number of invaded cells was calculated from five fields under 100x objectives per chamber.
Quantification of invaded HTR-8/SVneo cells was performed by counting the number of
invaded cells per pixel in micrographs and calculating the average. Statistical analysis was
performed using the Mann-Whitney U test.
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3. Results
3.1. Effects of Decidualizing Stimuli Using 8-br-cAMP and MPA in HESCs

Primary HESCs upon decidualization by 8-br-cAMP and MPA showed a typical
morphology of decidualized cells (Figure 1a). IGFBP1 and PRL mRNA expressions were
significantly increased by decidualization (Figure 1b).
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Figure 1. Effects of decidualizing stimuli using 8-br-cAMP and MPA in HESCs. (a) Morphological
changes in HESCs. Undifferentiated primary HESCs exhibit a fibroblastic spindle-shaped morphology
(CTL). Primary HESCs, upon decidualization by 8-br-cAMP and MPA, show abundant cytoplasm
and larger nuclei, which are the typical morphology of decidualized cells. (b) Primary HESCs
are stimulated in the absence (CTL) or presence of 8-br-cAMP and MPA. IGFBP1 and PRL mRNA
expressions are measured using RT-qPCR. Results were normalized to GAPDH and compaired with
CTL was set as 1. Statistical analysis performed by two-tailed Student’s t-tests. Data are shown as the
mean + SEM (standard error of the mean, n = 3). ** p < 0.01, *** p < 0.001.

3.2. Promoted Production of Octanoic Acid in the Culture Medium of Decidualized HESCs
Revealed by Free Fatty Acid Profile Analysis

Free fatty acid profiles were comprehensively evaluated in the culture medium of de-
cidualized and un-decidualized HESCs with or without 8-br-cAMP and MPA, respectively,
using LC/FT-MS. A total of 66 kinds of medium-chain fatty acids and long chain fatty acids
were assessed. Thirty-two kinds of medium-chain fatty acid and long chain fatty acids were
detected using LC/FT-MS in a 3-day culture medium of un-decidualized or decidualized
HESCs. Only octanoic acid, which is one of the medium-chain fatty acid s, was increased
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in the culture medium of decidualized HESCs compared with un-decidualized HESCs
(Figure 2). In contrast, the concentration of the other 25 kinds of medium-chain fatty acid
and long-chain fatty acids was not increased upon decidualization (Figure 2). Unsaturated
fatty acids were also not increased but rather decreased upon decidualization. Therefore,

we subsequently focused on octanoic acid metabolism in decidualized HESCs.
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Figure 2. Evaluation of 26 kinds of medium-chain fatty acids and long-chain fatty acids in the culture
medium of decidualized HESCs analyzed using LC/FI-MS. All kinds of fatty acids but octanoic acid
did not increase upon decidualization in the culture medium. Statistical analysis of un-decidualized
(CTL) and decidualized (cAMP+MPA) are performed by two-tailed Student’s ¢-tests. Data are shown
as the mean + SEM (standard error of the mean, n = 3-4). * p < 0.05, ** p < 0.01, *** p < 0.001. NS; No
significant difference. “Medium” refers to the culture medium before use.

3.3. Fatty Acid Beta-Oxidation Activity Increased in Decidualized HESCs

We evaluated the fatty acid beta-oxidation activity using straight-chain fatty acids
with the radiolabel at position C-1. As *C-labeled capric acids (C10:0) medium-chain fatty
acid was oxidized via the beta-oxidation process to generate acetyl-CoA; the fatty acid
oxidation rate was measured by the incomplete oxidation of capric acids to octanoic acids
(C8:0). The medium-chain fatty oxidation rate increased upon HESC decidualization by
8-br-cAMP and MPA (Figure 3a). Furthermore, the fatty acid beta-oxidation activity using
14C-labeled palmitic acids (C16:0) was increased upon HESC decidualization (Figure 3b).
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Figure 3. Evaluation of the fatty acid beta-oxidation activity by palmitate with the radiolabel at
position C-1. Primary HESCs are stimulated in the absence (CTL) or presence of 8-br-cAMP and
MPA, and the incomplete oxidation of [1-14C]-labeled capric acids (C10:0) (a) or [1-14C]-labeled
palmitic acid (C16:0) (b) is measured as the fatty acid oxidation rate. Statistical analysis performed by
two-tailed Student’s t-tests. Data are shown as the mean + SEM (standard error of the mean, n = 6).
*p <0.05, *** p < 0.001.

3.4. Expression of Genes Related to Fatty Acid Metabolism in Decidualized HESCs

We evaluated the expression profiles of genes associated with synthesis and decompo-
sition of long-chain fatty acids, medium-chain fatty acids, and short chain fatty acids. The
beta-oxidation process is composed of a repeated sequence of several reactions, including
catalyzation by acyl-CoA dehydrogenases such as ACADL, ACADM, and ACADS; these
were evaluated for the expression changes (Figure 4). Upon HESC decidualization by
8-br-cAMP and MPA, only the ACADM mRNA expression was downregulated (Figure 4).
ACADM is one of the acyl-CoA dehydrogenases with the substrate specificity ranging from
C12 to C4 medium-chain fatty acids; ACADM promotes octanoic acid decomposition [23].
Upon HESC decidualization, the gene expression of ACADS, an acyl-CoA dehydroge-
nase short chain, was upregulated in contrast to that of ACADM (Figure 4). The gene
expression of ACADL, an acyl-CoA dehydrogenase long chain, showed no significant
difference between decidualized and un-decidualized HESCs (Figure 4). A gene encoding
CPT1B, Carnitine O-Palmitoyltransferase 1B, which is one of the rate-controlling enzymes
CPT1 in long-chain fatty acid beta-oxidation pathway, was downregulated (Figure 4). The
process of fatty acid activation by CoA to produce an acyl-CoA is composed of several
acyl-CoA synthetases, such as ACSLs and ACSMs. ACSMS5 catalyzes fatty acid activation,
the first step in fatty acid metabolism that induces octanoic acid production. Upon HESC
decidualization by 8-br-cAMP and MPA, the ACSM5 mRNA expression was upregulated
(Figure 4).

3.5. Tendency to Promote Invasion by Octanoic Acid in a Trophoblast Cell Line

To explore the functional role of octanoic acid in implantation, we investigated the
effect on invasion in an extravillous trophoblast cell line, HTR-8/SVneo. Using a transwell
cell invasion assay, we revealed that octanoic acid showed a tendency to promote HTR-
8/SVneo cell invasion; however, it was not significantly different, suggesting a positive
role of octanoic acid in trophoblast invasion (Figure 5).
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Figure 4. Expression profiles of the genes associated with the beta-oxidation process. Primary HESCs
are stimulated in the absence (CTL) or presence of 8-br-cAMP and MPA. The expression of each gene
mRNA are measured using RT-qPCR and normalized to GAPDH. The diagram in the middle shows
the metabolic pathways of fatty acids. Expressions of long chain (green), medium-chain (red), and
short chain (blue) fatty acid metabolism-related genes are analyzed using RT-PCR. Statistical analysis
performed by two-tailed Student’s t-tests. Data are shown as the mean + SEM (standard error of the
mean, n = 3-6). * p < 0.05, ** p < 0.01, ** p < 0.001, NS; No significant difference.
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Figure 5. Effects of octanoic acid addition in culture medium for HTR-8/SVneo cell invasion. (a) HTR-
8/5Vneo cells invaded by incubation with control (10% FBS) or octanoic acid (200 ng/mL in 10%
FBS). (b) Quantification of the average number of invaded HTR-8/SVneo cells (mean + SEM, n = 3,
p = 0.1, Mann-Whitney U test). Each experiment is performed in triplicate (1 = 3). The black dots
represent the average of five fields for each experiment.
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4. Discussion

We here demonstrated that decidualized processes (Figure 1) promoted the mitochon-
drial lipid metabolism in HESCs. Moreover, the production of octanoic acid, which is one
of the medium-chain fatty acids, was only increased (Figure 2).

Octanoic acid is a protein stabilizer generally added to the preparations of human
serum albumin used for culture of human embryos in clinical assisted reproductive tech-
nology. However, octanoic acid at high concentrations in the culture medium of embryos
causes disruptions in mitochondrial bioenergetics, which reduces intracellular pH to induce
oxidative damage in peripheral tissues, and finally inhibits embryonic development [24].
Additionally, Fredrickson et al. [25] reported that octanoic acid could produce long-term
negative effects on embryonic and fetal development in a murine model. Conversely,
Yamada et al. [16] revealed that octanoic acid is an energy source throughout the preim-
plantation development in mice, as mice embryos did not survive in the culture medium
that lacked fatty acids, pyruvate, and glucose, whereas octanoic acid supplementation
rescues the embryonic development. In the present study, octanoic acid concentration
increased in the culture medium of decidualized HESCs (Figure 2), and the metabolism
was regulated by an increase in synthesis by higher ACSM5 expression and a decrease
in decomposition by lower ACADM expression (Figure 4). These results suggest that
increased octanoic acid production changes in the expression of ACSM5 and ACADM in
decidualized HESCs would play important roles in modulating the energy metabolism
during implantation period.

The expression of genes encoding beta-oxidation enzymes including ACADL, ACADM,
and ACADS that catalyze acyl-CoA dehydrogenases suggests interesting possibilities from
the point of view of fatty acid metabolism and energy source for preimplantation embryos.
Our results showed that only the ACADM gene expression was downregulated, whereas
those of ACADL and ACADS were not (Figure 4). These results indicate that medium-
chain fatty acids are regulated to reduce their intracellular consumption by suppressing
the ACADM expression. Moreover, medium-chain fatty acids especially octanoic acids
may be secreted from decidualized HESCs to play a biological role in the reproductive
system. The expression of genes related to octanoic acid metabolism such as ACADM
and ACSM5 was altered in the culture medium of decidualized HESCs in comparison
with un-decidualized HESCs. Octanoic acid directly enters the mitochondrial matrix [23]
and would be used as an alternative energy source throughout preimplantation processes,
including trophoblast invasion and placental development. Therefore, mitochondrial fatty
acid beta-oxidation, a catabolic process of fatty acid breakdown, showed a large increase of
2.4-fold in the oxidation rate of medium-chain fatty acids (C10:0) due to decidualization of
HESCs (Figure 3a). In contrast, beta-oxidation of long-chain fatty acids (C16:0) increased
by approximately 1.3-fold, although there was a significant difference (Figure 3b).

When there is sufficient long-chain fatty acid (C16:0) as a substrate, beta-oxidation
activity of fatty acids increases with decidualization (Figure 3b). However, CPT1B is
decreased by decidualization (Figure 4), and the gene expression level of ACSL5, which
synthesizes long-chain fatty acids, is also decreased (Figure 4). These results suggest
that the uptake of long-chain fatty acids into mitochondria is regulated in two steps in
decidualized HESCs: the decrease in synthesis of long-chain fatty acids in the cytoplasm
and the uptake of long-chain fatty acids into mitochondria by CPT1. As a result, only the
mild increase of long-chain fatty acids beta-oxidation activity in decidualized HESCs which
is thought to be due to the effect of the decrease in CPT1 (Figures 3 and 4).

Beta-oxidation is a process by which fatty acid molecules are disrupted in the mi-
tochondria to generate acetyl-CoA, which enters the citric acid cycle, and NADH and
FADH2, which are co-enzymes used in the electron transport chain to generate the energy.
Tsai et al. [15] showed that CPT1, the rate-controlling enzyme of the long-chain fatty acid
beta-oxidation pathway, is significant for human and murine ESC decidualization. When
the CPT1 activity was reduced, the expression of decidualized markers was inhibited
in decidualized ESCs [15]. To date, this is the only study describing the significance of
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the beta-oxidation pathway in HESC decidualization. Our study demonstrated that the
beta-oxidation activity of medium-chain fatty acids significantly increased upon HESC
decidualization (Figure 3a), indicating that the beta-oxidation activity of medium-chain
fatty acids is increased owing to the production from capric acid (C10:0) to octanoic acid
(C8:0). Although two phenomena including fatty acid beta-oxidation activity induction
and ACADM gene expression reduction simultaneously occurred, both “disruption” and
“production” pathways produce octanoic acids in a coordinated manner during decidu-
alization. Furthermore, even when the beta-oxidation activity of long-chain fatty acids is
increased, this also implies that the activation of beta-oxidation promotes the use of fatty
acids as a source of energy substrate.

Decidual-trophoblast dialogue is critical for a successful pregnancy. The decidua is
believed to regulate trophoblast invasion and placental development by the secretion of
locally produced factors, including cytokines, hormones, metabolites, and dietary com-
pounds [26]. Several lines of evidence suggest that fatty acids play a significant role in
the embryo implantation process [27-29]. The maternal supply of short chain fatty acids
and midium chain fatty acids during early pregnancy potentiates uterine phospholipid
metabolism, thereby leading to improved embryo survival [30]. In prostate cancer cells, oc-
tanoic acid promotes invasion [31]. Therefore, we hypothesized that octanoic acid secreted
by decidualized HESCs promotes invasion capacity of trophoblast cells. We employed
invasion assay using by HTR-8/SVneo trophoblast cells. Our observation implied that
octanoic acid tended to promote invasion in HTR-8/SVneo trophoblast cells. This finding
suggests that octanoic acid secreted by decidualized HESCs can act to facilitate trophoblast
invasion processes. However, to clarify the precise role of octanoic acid derived from
decidualized HESCs in implantation processes, further studies are needed.

Large efforts have been invested to identify the best biomarker that characterizes
a receptive endometrium. In the last decade, different “omics” technologies including
genomics, proteomics, and lipidomics were employed and revealed large number of candi-
dates of biomarkers for a receptive endometrium. Vilella et al. [32] reported that lipidomics
is an emerging tool for predicting endometrial receptivity. Our study provides a possibility
that octanoic acid is a new potential biomarker for predictive endometrial receptivity. How-
ever, further studies are needed for octanoic acid as clinical applications of a biomarker
to predict endometrial receptivity. In addition, this study revealed that many types of
long-chain fatty acids and unsaturated fatty acids in the culture medium were reduced
by decidualization, indicating that endometrial cells require a large of fatty acids for the
decidualization. In the future, investigating how the presence of various fatty acids affects
endometrial decidualization may be beneficial for the development.

5. Conclusions

This study shows, for the first time, that HESCs decidualization promotes octanoic
acid production that modulates by cytosol fatty acid production and mitochondrial lipid
metabolisms. These changes suggest the requirement of fatty acid metabolism with mito-
chondrial role in HESCs decidualization and embryo implantation.
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