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Abstract: The epididymis, a key reproductive organ, is crucial for sperm concentration, maturation,
and storage. Despite a comprehensive understanding of many of its functions, several aspects of the
complex processes within the epididymis remain obscure. Dysfunction in this organ is intricately
connected to the formation of the microenvironment, disruptions in sperm maturation, and the
progression of male infertility. Thus, elucidating the functional mechanisms of the epididymal
epithelium is imperative. Given the variety of cell types present within the epididymal epithelium,
utilizing a three-dimensional (3D) in vitro model provides a holistic and practical framework for
exploring the multifaceted roles of the epididymis. Organoid cell culture, involving the co-cultivation
of pluripotent or adult stem cells with growth factors on artificial matrix scaffolds, effectively recreates
the in vivo cell growth microenvironment, thereby offering a promising avenue for studying the
epididymis. The field of epididymal organoids is relatively new, with few studies focusing on their
formation and even fewer detailing the generation of organoids that exhibit epididymis-specific
structures and functions. Ongoing challenges in both clinical applications and mechanistic studies
underscore the importance of this research. This review summarizes the established methodologies
for inducing the in vitro cultivation of epididymal cells, outlines the various approaches for the
development of epididymal organoids, and explores their potential applications in the field of male
reproductive biology.
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1. Introduction

The epididymis is characterized by an intricately coiled and convoluted tubular
architecture, primarily segmented into caput, corpus, and cauda [1–4]. In rodents, an
initial segment (IS) is located between the efferent ducts and the caput [5]. The caput, the
initial segment, interfaces with the testicular efferent ducts, while the cauda connects to
the vas deferens [6]. The length of the epididymis varies among species, exemplified by
a human unfolded length of approximately 6 m, where sperm migrate from the caput
to the cauda within a period of 1–2 weeks [6,7]. Each of these distinct regions possesses
unique anatomical and physiological characteristics. The epithelial cells comprising the
epididymal duct wall are its primary cellular component, forming a pseudostratified
epithelium composed of multiple cell types (see Figure 1) [8–10]. These cell types include
principal cells, basal cells, clear cells, apical cells, and narrow cells [6,11]. Principal cells are
the predominant type, constituting 60–80% of the epithelium throughout the tubule [6,12],
while basal cells make up 6–30% [13,14]. Narrow and apical cells are predominantly found
in the initial segment of the epididymis, whereas other cell types are distributed throughout
the entire epididymal tissue [8,11,15–17]. The detailed functions and protein markers of
the epithelial cells are listed in Table 1. In addition, a small number of non-epithelial
cells, such as macrophages/monocytes, mononuclear phagocytes, and T lymphocytes, are
shown [18–23].
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such as macrophages/monocytes, mononuclear phagocytes, and T lymphocytes, are 
shown [18–23]. 

 
Figure 1. Schematic diagram of the cellular organization in a representative cross-section of the ep-
ididymis. Modified and reprinted with permission of the author (Chen et al., 2022) [24]. 

Table 1. Characteristics, functions, and markers of the epididymal epithelial cell. 

Cell Type Characteristic Function Marker References 

Principal cell 

Tall, columnar shape in the proximal regions with 
a squared-off appearance in the distal regions, 

with microvilli 500 nm–1.0 mm in length and 100 
nm in width forming the epididymal brush 

border 

Secretion/Reabsorb, 
Merocrine, Apocrine 

secretions 

AQP-9, 
CFTR, 

NHER1 
[11,25,26] 

Clear cell 

An apical pole enriched with mitochondria which 
displays a complete and functional endocytic 

apparatus 

Endocytic cells, proton 
secretion 

V-ATPase, 
CIC-5 [27,28] 

Apical cell 

Present in the initial segment of the epididymis 
displaying a spherical nucleus at the apical pole of 

the epithelium 

Control of inflammatory 
responses in the epididymis 

V-ATPase, 
GSTM3 

[11,29,30] 

Basal cell 

Pyramidal-shaped cells located at the base of the 
epithelium which directly interact with 

neighboring principal and clear cells through gap 
junctions 

“Stem cell” character and 
“lumen-reaching” property KRT5 [11,23] 

Narrow cell 
Elongated and narrow shape, present in the initial 

segment of the epididymis 

Proton secretion and 
acidification of the 
epididymal fluid 

V-ATPase, 
CIC-5 [27,28] 

Figure 1. Schematic diagram of the cellular organization in a representative cross-section of the
epididymis. Modified and reprinted with permission of the author (Chen et al., 2022) [24].

Table 1. Characteristics, functions, and markers of the epididymal epithelial cell.

Cell Type Characteristic Function Marker References

Principal cell

Tall, columnar shape in the
proximal regions with a

squared-off appearance in the
distal regions, with microvilli 500
nm–1.0 mm in length and 100 nm
in width forming the epididymal

brush border

Secretion/Reabsorb,
Merocrine, Apocrine

secretions

AQP-9, CFTR,
NHER1 [11,25,26]

Clear cell

An apical pole enriched with
mitochondria which displays a

complete and functional endocytic
apparatus

Endocytic cells, proton
secretion V-ATPase, CIC-5 [27,28]

Apical cell

Present in the initial segment of
the epididymis displaying a

spherical nucleus at the apical pole
of the epithelium

Control of
inflammatory

responses in the
epididymis

V-ATPase,
GSTM3 [11,29,30]

Basal cell

Pyramidal-shaped cells located at
the base of the epithelium which
directly interact with neighboring
principal and clear cells through

gap junctions

“Stem cell” character
and “lumen-reaching”

property
KRT5 [11,23]

Narrow cell
Elongated and narrow shape,

present in the initial segment of
the epididymis

Proton secretion and
acidification of the
epididymal fluid

V-ATPase, CIC-5 [27,28]

The in vitro culture of the epididymal epithelium is frequently employed to study
the role of the epididymis in sperm maturation and the associated molecular mecha-
nisms. In 1986, studies reported that epididymal epithelial cells were successfully isolated
from adult rats and exhibited polarized characteristics only when plated at high densities
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(>1 × 106 cell/cm2) [31]. By 1990, a methodology was introduced that allowed for the
sustained culture of human epididymal cells over a period of 42 days, marking a significant
advancement [32]. Epididymal epithelial cells from various species can be isolated and cul-
tivated successfully in vitro, with some demonstrating functional capacities, particularly in
promoting sperm maturation and enhancing sperm motility [33–39]. Despite extensive re-
search into the relationship between epididymal epithelial cells and sperm maturation, the
underlying molecular mechanisms remain poorly understood. This gap may be attributed
to the inability of monolayer cultures or in vitro-passaged cells to faithfully replicate the
complex biology of epididymal epithelial cells acquired in vivo, thus limiting our under-
standing of these intricate biological processes. Epithelial principal cell lines derived from
humans [40,41], rats [42], and mice [43,44] have been employed to investigate the role of
cellular communication in the epididymis [45–47], and to assess reproductive toxicity [47].
However, these cell lines originate from a singular source and do not fully represent the
comprehensive biological functions of epididymal tissue.

Tissue culture models have successfully elucidated aspects of epididymal biology and
supported drug toxicity testing [48–52]. Although the in vitro culture model of epididymal
tissue provides a powerful platform for studying the function of the epididymis in various
species [48,53], it remains operationally challenging. Previous research has demonstrated
that the isolation and cultivation of primary human epididymal epithelial cells are relatively
well established [54,55]. However, the in vitro culture of rodent epididymal monolayer
epithelial cells has rarely been reported. Although there are a few reports, normal morphol-
ogy in the culture conditions has proved difficult to maintain [56,57]. Given the diverse
cellular composition of the epididymal epithelium, a 3D in vitro model provides a more
comprehensive and realistic approach to investigating and understanding the intricate
facets of epididymal function.

Organoids are three-dimensional structures composed of multiple cells that closely
mimic the cellular structure and function of organs [58]. This similarity in structure and
function facilitates the investigation of complex cell interactions and tissue development
processes [59]. The emergence of organoid research has opened new avenues for both
fundamental and translational research over the past decade [60]. Organoids, such as testis
organoids, hold significant promise in reproductive biology and toxicology, whether in
animal or human models [61–63]. Similarly, epididymal organoids also exhibit considerable
potential. Recent in vitro studies have successfully demonstrated the formation of epididy-
mal organoids from single-cell suspensions in different species. This review highlights
recent advances in the generation of epididymal organoids and their potential applications.

2. The Main Function of the Epididymal Epithelium

The distribution and characteristics of the epididymal epithelium are crucial for sperm
maturation, with epithelial cells exhibiting varied morphologies and functions across
different regions. Sperm are generated in the seminiferous tubules of the testis. Initially
devoid of motility and fertilization capabilities, spermatozoa acquire these functions during
transit in the epididymal lumen—a process known as sperm maturation [9,64,65]. The
components of the epididymal luminal fluid are mainly synthesized and secreted by various
types of epithelial cells lining the duct [66]. The luminal fluid in the caput and corpus of
the epididymis can assist sperm in acquiring motility and fertilization ability, while the
luminal fluid in the cauda is beneficial for sperm storage [67]. Epididymal epithelial cells
play a crucial role in establishing a highly specialized luminal microenvironment. This
microenvironment is specifically tailored to promote a gradient that enhances the fertility
of the sperm population contained within [68]. Despite the fact that the complexity of
this process presents challenges and it lacks full comprehension, specific facets of sperm
maturation have been firmly established [6,69,70].

Multiple factors are responsible for sperm maturation in the epididymal lumen. These
include proteins secreted by the principal cells in the epididymis that bind to maturing
spermatozoa; exosomes released by the apical plasma, called epididymal exosomes, which
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transport cargo to the sperm; and pH fluctuations throughout the epididymis [67,71–73].
The blood–epididymal barrier (BEB) is formed by apical tight junctions between the prin-
cipal cells, enabling the selective transportation of molecules through the epithelium.
These tight junctions consist of integral proteins that play a central role in determining the
barrier’s selective permeability, thereby creating the luminal environment conducive to
facilitating sperm maturation [6,74]. The maintenance of a normal epididymal epithelium
is indispensable for proper sperm maturation, and epididymal dysfunction is intricately
linked to infertility [40,41,75,76].

The formation of organoids in the epididymis holds great promise for revealing the
underlying molecular mechanisms that regulate epididymal function. However, a crucial
prerequisite for the development of epididymal organoids is the presence of stem cells or
progenitor cells within the epididymis [77,78]. Are there stem cells or progenitor cells in
the epididymis that can give rise to these organoids?

3. Basal Cell—The Prerequisite for Organoid Formation?

As early as 1925, researchers using a rat model first suggested the existence of stem
cells within the epididymal epithelium [79]. Subsequent hypotheses proposed basal cells as
potential stem cells in the epididymis [80,81]. Observations in unilaterally orchiectomized
adult male rats revealed that basal cells exhibited a transition from an oval to a triangular
and elongated shape, evolving into expanded columnar cells [79]. In vitro studies demon-
strated that basal cells, identified by keratin 5 (KRT5) positivity, could differentiate into
cells expressing KRT8 and connexin 26, markers typical of columnar cells [13]. These basal
cells showed self-renewal and differentiation capabilities, forming organoids capable of
expressing aquaporin 9 and CFTR, indicative of principal cell markers [82,83]. Furthermore,
these cells secreted clusterin, a protein crucial for spermatozoa maturation [84]. Basal-cell-
derived organoids exhibited self-renewal potential, maintaining newly formed organoids
for at least 13 passages [84]. This evidence strongly supports the characterization of basal
cells as possessing stem cell-like properties with significant self-renewal capacity [85]. Pre-
vious research has documented segment-specific gene expression and regulation within
the epididymis [86,87]. Moreover, gene expression profiles of the principal cells varied
between the proximal and distal segments. Interestingly, no significant differences were
observed in the organoids derived from basal cells isolated from either proximal or distal
epididymal regions [84]. This suggests that regional differences in gene expression may
not originate solely from the specific segmental origin of basal cells.

In the epididymis, GJB2 serves as a marker for columnar cells, with its expression lev-
els decreasing significantly as these cells differentiate into principal and other cell types [88].
GJB2 was not detected in basal cells cultured in vitro for 3 days; however, its expression
became evident in cells within the acini after 7, 10, and 14 days of culture [13]. This suggests
that basal cells possess the capacity to differentiate into cells resembling columnar cells.
A similar mechanism has been observed in the trachea, where exposure to SO2 depletes
ciliated cells, prompting basal cells to differentiate initially into undifferentiated progen-
itors. These progenitors then progress through differentiation stages to become ciliated
and secretory cells, indicating a sequential two-step differentiation process [89]. Therefore,
this implies the feasibility of regenerating the epididymal epithelium, potentially shedding
light on the adaptability of this crucial organ in male fertility. Upon single-cell analysis,
three distinct clusters of basal cells were identified, demonstrating the common expression
of marker genes such as Itga6 and Krt14. These clusters exhibited an enrichment of genes
mainly involved in cell adhesion, membrane transport, and lipid metabolism [86]. The
precise nature of these basal cell clusters—whether they represent distinct cell types, differ-
ent stages of differentiation, or separate adult stem cell populations—remains ambiguous.
Accordingly, the selection of KRT5-positive or ITGA6-positive cells may have biased the
enrichment towards specific basal cell subpopulations [90].

On the contrary, other studies have indicated age-related characteristics in basal cells,
which challenge their classification as stem cells [91]. In contrast, organs like the liver
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and amniotic membrane have exhibited epithelia containing expanding stem cells [92,93].
Additionally, quiescent adult stem cells with active regenerative properties have been
identified in many tissues [94], such as the salivary gland [95], liver [96], intestine [97], and
pituitary [98]. Therefore, although the low proliferation or expansion index of epididymal
epithelial cells does not conclusively prove the existence of stem cells in the epididymis [79],
ongoing debate persists regarding whether basal cells in the epididymis fulfill the criteria
of adult stem cells [99]. Even without confirmation as true stem cells, basal cells likely
retain differentiation potential and contribute to organoid formation [84]. Thus, despite
ongoing controversy, researchers can continue to employ basal cells from the epididymis
for in vitro culture and organoid studies.

4. Development History of Epididymal Organoids

A well-designed microenvironment in tissue and cell engineering can promote prolif-
eration, migration, matrix production, and stem cell differentiation. Significant differences
exist regarding cell–cell interactions, cellular mechanics, and nutrient access between 3D
and standard 2D cell cultures, as noted by reference [100]. Nevertheless, 2D monolayer cell
culture systems may not accurately simulate the observed cell development process in the
in vivo physiological environment due to their inherent simplicity. This discrepancy stems
from the lack of a complex, biologically rich environment. The advent of 3D cell culture
approaches, which model in vivo tissue and organ interactions, has opened new avenues
for studying underlying biochemical and biomechanical signals [101,102]. Given their
ability to more closely mimic the in vivo environment, 3D culture systems are gaining pop-
ularity. The term “organoids” was coined in 1947 within the field of oncology [103]. With
advancements in stem cell biotechnology, particularly the refinement of three-dimensional
(3D) cell culture techniques, the definition of organoids has evolved to encompass 3D
in vitro structures derived from pluripotent stem cells (PSCs) or adult stem cells (ASCs),
exhibiting near-native microanatomy [78,104].

The first reported case of organoids used intestinal cells, which was published in
Nature in 2007, and marked a significant breakthrough in biological research. These studies
identified leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) as a specific
marker gene for intestinal stem cells, enabling their characterization and purification [105].
Subsequent research revealed the capacity of adult intestinal stem cells to proliferate and
differentiate both in vivo and in vitro [106,107]. These findings underscored the potential
of 3D culture techniques to support ASC self-renewal and the formation of organ-like
structures, thus offering promising avenues for tissue regeneration research. Since then,
organoids have been successfully developed from various tissues including the stom-
ach [108], liver [109,110], brain [111], prostate [112], mammary gland [113], testis [114–116],
endometrium [117], fallopian tube [118,119], ovary [120], and epididymis [84,121–123],
among others [60,124,125].

The development of 3D culture technologies has enabled the use of in vitro models to
study epididymal function mechanisms [39,99,126]. Early epididymal structures have been
observed to form epididymal spheroids under both 2D and 3D conditions [13,34,127,128].
This review provides an overview of the developmental history of epididymal spheroids
or organoids cultivated in various species (see Figure 2). The formation process of epi-
didymal organoids involves digesting epididymal tissue into single cells, after which the
epithelial cells or basal cells within the epididymal tissue can spontaneously re-aggregate
to form spheres and organoid structures, resembling the arrangement of epithelial cells
in vitro [8,121]. More detailed information is summarized in Table 2.

Mou et al. first reported epididymal organoids in mice in 2016, isolating KRT5-positive
basal cells to construct organoids consisting of basal and clear cells in vitro. When these
basal cells were subcutaneously injected into nude mice, they differentiated and formed
spherical structures comprising basal and principal cells [99]. The matrix is typically
composed of the ECM (extracellular matrix), and the cell density can be set at 2 × 104 cells.
The basic culture medium utilizes DMEM/F12 supplemented with 25 ng/mL of EGF, and
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the culture cycle can extend up to 10 days. Pinel and Cyr isolated basal cells from rats
and cultured epididymis-like organoids in vitro, highlighting the stem cell characteristics
of basal cells. The organoids were cultured by depositing homogeneous cell suspensions
as 50 µL drops onto Matrigel-coated, 24-well plates and incubating them upside down
at 37 ◦C for 30 min to solidify the Matrigel [84]. Dufresne et al., from the same research
group, utilized rat epididymis organoids to simulate epididymal development and analyze
gene expression profiles through transcriptomic analysis across different stages of organoid
growth [123]. These studies predominantly focused on epididymal organoids derived
from caput, proximal, or distal epididymal regions, demonstrating their self-assembly and
differentiation capabilities.
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Table 2. Timeline for the development of epididymal organoids in different species.

Year Species Results References

1992 Human Epididymal fragments formed everted epithelial spheres that maintained
cell integrity for 5–7 days. [34]

2010 Human Epididymal cells formed spheres for at least 20 days. [128]

2015 Rat Basal cells may represent an epididymal stem cell population. [13]

2016 Mouse Expanded epididymis basal cells efficiently generated organoids in
Matrigel. [99]

2020 Human Epididymal cells generated organoid and provided the tool for studying
cystic fibrosis (CF) in infertile men. [121]

2021–2022 Rat Basal cells generated organoids capable of secreting function and columnar
cells represent an epididymal stem/progenitor cell population. [84,123]

Based on the aforementioned studies, we extended our research to construct epi-
didymal organoids from different regions, specifically the caput, corpus, and cauda, and
analyzed their respective gene expression profiles. In our laboratory, and based on the meth-
ods used for generating human [121] and rat [84] organoids, we successfully optimized a
protocol for the formation of mouse epididymis organoids, as illustrated in Figure 3. We
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obtained epithelial cells derived from different regions of the mouse epididymis and suc-
cessfully generated organoids resembling the caput, corpus, and cauda of the epididymis
in vitro. We mixed the appropriate concentration of basement membrane extract (BME)
with a sufficient quantity of epididymal epithelial cells and supplemented this with EGF,
testosterone, dihydrotestosterone, retinoic acid, and other additive factors. We took 10 µL
of the mixed cell suspension at a low temperature and created a small droplet in a 96-well
cell culture plate. Once the droplet solidified, and with the plate the right way up, we
added an appropriate volume of organoid culture medium until the organoid formed. This
method is much simpler than those previously reported [84].
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laboratory. Epididymis from an adult mouse was sampled and enzymatically digested to obtain
single-cell suspensions. The cells were cultured in extracellular matrix (basement membrane extract—
BME) under 3D conditions and subsequently incubated at a temperature of 34 ◦C.

5. Potential Application of Epididymal Organoids

Organoid models derived from the cells of mouse, rat, and human epididymis have
been established [121,122,128]. These novel in vitro cell culture systems represent a sig-
nificant advancement complementing existing epididymal cell lines and animal models.
Organoids are pivotal for advancing the precision of male infertility treatment [127,129].
Similar to testicular organoids in male reproduction, epididymal organoids offer a valuable
platform for the high-throughput screening of drugs and toxicity [130], although research in
this area is still in its developmental stage. Limited knowledge suggests a paucity of infor-
mation regarding the drug screening and clinical applications of epididymal organoids. The
majority of research efforts have been directed towards establishing culture systems and
studying the simulation of epididymal development. Drawing from research on organoids
derived from other tissues [59,131–133], potential applications of epididymal organoids
could include the following:

(1) Disease modeling: Epididymal organoids offer a promising avenue for disease
modeling and studying various epididymal conditions such as infertility and congenital
abnormalities. In males with cystic fibrosis, defects in the epididymis or vas deferens
often lead to obstructive azoospermia [134]. Leir et al. utilized a human epididymal
epithelial cell organoid model to elucidate the molecular mechanisms underlying male
infertility mediated by CFTR in cystic fibrosis patients [121]. Thus, epididymal organoids
demonstrate significant potential for studying male infertility and for screening therapeutic
drugs. (2) Drug testing: Organoids cultured from prostate cancer patients have demon-
strated resistance to cell growth arrest and apoptosis induced by BET inhibitors, revealing
a new molecular mechanism for BET inhibitor resistance in these patients [135,136]. Recent
epidemics, such as the COVID-19 pandemic, have been associated with impaired sperm
in males with moderate SARS-CoV-2 infection [137,138]. The development of testis and
epididymis-like organs can offer a more suitable ex vivo model for studying such acute
events. Testis organoids have emerged as effective tools for organ-level reproductive toxic-
ity screening [63,114,139], yet the role of epididymal organoids in drug screening and virus
infection treatment remains unexplored. Thus, establishing epididymal models for drug
screening is crucial to advance research on viral resistance in reproductive organs. (3) Re-
productive biology research: Organoids can partly replicate the structural and functional
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characteristics of in vivo organs, facilitating the study of cell interactions and signaling
pathways through organoid cultures [8,58]. Early studies indicated that epididymal epithe-
lial cells play a role in promoting sperm maturation, offering a platform for investigating
this process in vitro [34,35,37]. However, the limitations of 2D culture conditions hinder a
comprehensive exploration of how the epididymal epithelium impacts sperm maturation
and its underlying mechanisms [36,140,141]. Organoid technology allows researchers to
manipulate cell types and observe their re-aggregation dynamics, a capability not feasible
in traditional organotypic cultures [142]. At present, there is no report on whether epi-
didymal organoids promote sperm maturation, which could be one of the directions of
future research.

6. Conclusions

Until now, only a limited number of 3D epididymal organoids have been devel-
oped [84]. Several challenges are associated with creating 3D organoids of the epididymis.
An accurate simulation of the diverse segments of the epididymis would be advantageous
for studying sperm transport, maturation, acquisition of motility, and their underlying
molecular mechanisms. Researchers have encountered difficulties due to the scarcity of
epididymal tissue samples and the challenges involved in obtaining tissue from younger
patients who do not have epididymal cancer. The advent of the male reproductive system
organoids, encompassing prostatic, testicular, epididymal, and potentially seminal vesicle
organoids, suggests a promising trajectory towards their integration into a cohesive, multi-
organ-on-a-chip platform. Moreover, epididymal organoids serve as a valuable tool for
elucidating infertility mechanisms, studying treatment efficacy, and evaluating drug toxic-
ity. Future investigations should focus on refining them, with a critical need to elucidate
the physiological and pathological contexts related to these changes. This understanding is
pivotal for elucidating their implications in both clinical and physiological studies.
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