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Abstract: Combination therapy aims to synergistically enhance efficacy or reduce toxic side effects
and has widely been used in clinical practice. However, with the rapid increase in the types of drug
combinations, identifying the synergistic relationships between drugs remains a highly challenging
task. This paper proposes a novel deep learning model MMFSyn based on multimodal drug data
combined with cell line features. Firstly, to ensure the full expression of drug molecular features,
multiple modalities of drugs, including Morgan fingerprints, atom sequences, molecular diagrams,
and atomic point cloud data, are extracted using SMILES. Secondly, for different modal data, a Bi-
LSTM, gMLP, multi-head attention mechanism, and multi-scale GCNs are comprehensively applied
to extract the drug feature. Then, it selects appropriate omics features from gene expression and
mutation omics data of cancer cell lines to construct cancer cell line features. Finally, these features
are combined to predict the synergistic anti-cancer drug combination effect. The experimental results
verify that MMFSyn has significant advantages in performance compared to other popular methods,
with a root mean square error of 13.33 and a Pearson correlation coefficient of 0.81, which indicates
that MMFSyn can better capture the complex relationship between multimodal drug combinations
and omics data, thereby improving the synergistic drug combination prediction.

Keywords: synergistic drug combination; multimodal data; SMILES; deep learning

1. Introduction

Cancer, cardiovascular disease, and many other diseases exhibit heterogeneity with
different pathological features and epigenetic variations, resulting in different responses
and resistances to drugs. Additionally, due to their biological complexity involving multiple
target genes, single-drug therapy often cannot fully perform well [1-4]. Therefore, both
traditional medicine and modern medicine have recently utilized the advantages of using
multiple drugs in combination to treat diseases. Combination therapy can act on different
molecular targets of tissue cells, thereby improving efficacy, reducing side effects [5], and
overcoming drug resistance [6]. The comprehensive effect brought by this combination of
drugs, which is called drug synergy, often exceeds the total effect of using each drug alone.
Drug combination therapy has increasingly been used to treat various complex diseases,
such as hypertension, infectious diseases, and cancer, by simultaneously acting on different
targets or biological processes [7]. Therefore, it is crucial to accurately identify synergistic
drug combinations targeting specific diseases.

At present, the main methods for predicting drug combination effects include biologi-
cal experiment-based methods, machine learning-based methods, and deep learning-based
methods. Traditional discovery of drug combinations is mainly based on clinical biolog-
ical trials, limited to a small number of drugs [8], which is far from meeting the urgent
demand for anti-cancer drugs. With the development of high-throughput drug screening
technology, researchers can simultaneously conduct large-scale drug combination screen-
ing on hundreds of cancer cell lines. For example, Torres et al. [9] used yeast to screen a
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large number of drug combinations and provided a method for identifying preferred drug
combinations for further testing in human cells. In order to screen effective antimicrobial
drug combinations for in vivo disease treatment, technologies such as microcalorimetry
screening and genetically encoded fluorescent biosensors have been developed [10]. How-
ever, these technologies require proficient operation and complex experimental procedures,
which have extremely high requirements for relevant practitioners. Given the high cost
and unsatisfactory efficiency of pharmaceutical research and clinical trials due to the large
number of drug combinations, identifying synergistic effects between drugs remains a
challenging task [11].

With the development of computer science and biomedical fields, it has become possi-
ble to use computational methods to predict the effectiveness of drug combinations, as well
as drug—drug interactions, which is another way to identify drug synergy [3,4,12-16]. These
computational methods can help researchers quickly and accurately evaluate the potential
effects of different drug combinations, thereby accelerating the process of drug develop-
ment. Researchers can also apply machine learning methods to explore drug combination
associations for determining synergistic therapeutic effects. For example, Li et al. [17]
applied support vector regression (SVR) to successfully predict that a new derivative of
dihydrofuran-2-one (LPP1) combined with pregabalin would have the greatest analgesic
effect in a streptozotocin-induced neuropathic pain model in mice. Liu et al. [18] trained a
gradient-enhanced tree classifier by running random walks with restart (RWR) on a drug—
protein heterogeneous network and used these features to predict new drug combinations.

Recently, deep learning has increasingly been applied in the development and discov-
ery of multiple drugs. For example, the DeepSynergy model combines chemical information
of drugs with the genomic data of cancer cells to predict drug combinations with synergistic
effects [19]. TranSynergy [20] is a self-attention mechanism-based deep learning model
that integrates information from gene-gene interaction networks, gene dependencies, and
drug target associations to predict synergistic drug combinations, aiming to reveal the
synergistic mechanisms and pathways of drug combinations. The MatchMaker model [21]
chooses the chemical structure information of drugs and gene expression data of cell lines as
inputs to predict synergistic drug combinations and preliminarily explain their molecular
mechanisms. The DTSyn model [22] is based on a multi-head attention mechanism to
identify new drug combinations. It designs a fine-grained transformer to capture chemical
substructure-gene and gene-gene associations, as well as a coarse granularity transformer
to extract chemical-chemical and chemical—cell line interactions, integrate drug and cell line
information, and, finally, achieve the prediction of synergistic effects. On the other hand,
some studies have applied simplified molecular input line entry system (SMILES) encoding
to characterize the chemical properties of drugs. For example, Sun et al. [23] proposed a
deep tensor factorization model that combines the tensor factorization with a feedforward
neural network (FNN) for predicting drug synergistic effects. In addition, researchers also
used graph neural networks to learn feature representations of drug chemical structures.
For example, Wang et al. [24] proposed a deep learning model called DeepDDS based on
graph neural networks and attention mechanisms, which embeds drug molecular structure
and gene expression data features as inputs into FNN to identify drug combinations, which
can effectively inhibit specific cancer cell viability.

At present, there are still challenges in predicting the combined effects of anti-cancer
drugs. Firstly, most existing methods rely on manually extracted features from professional
wet experiments, which limits the scope of application of these methods. Secondly, existing
methods mainly focus on feature processing of drugs based on their chemical substructures,
drug target correlation information, etc. Compared to these data, drug SMILES encoding is
easier to obtain and contains multiple modal data. How to deeply mine information from
SMILES and construct a multimodal feature training network for predicting still remains a
challenge. This is the main content that will be addressed by our proposed MMFSyn.
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2. Materials and Methods
2.1. Synergy Dataset
2.1.1. Benchmark Dataset

To objectively compare our model with existing methods, we use the common dataset,
namely, the large-scale collaborative dataset published by O’Neil et al. [25], as the bench-
mark dataset for the prediction model training and evaluation. This dataset covers a total
of 23,062 pieces of data from 39 cancer cell lines in seven tissues with 583 different drug
combinations.

There are 38 drugs in this dataset, consisting of 24 FDA-approved drugs and
14 experimental drugs. In order to evaluate the synergistic effect of these drugs on spe-
cific cancer cell lines, we adopt the method of Preuer et al. [19] and integrate the dataset
into the synergistic effect score between two drugs and a certain cancer cell line by cal-
culating the Loewe additivity value [26]. In terms of data format, this dataset contains
23,062 quadruples, each including two drugs, a cancer cell line, and corresponding syner-
gistic effect scores. For the model training and evaluation, we divide them into the training
set and the test set at a ratio of 9:1. A 5-fold cross-validation is performed based on these
data, which includes the training and validation process.

2.1.2. Independent Test Dataset

In order to validate the performance of our model on a completely new test set
and evaluate the synergistic interaction of drug combinations, this study collects drug
combination data from the AstraZeneca—Sanger Drug Combination Prediction DREAM
Challenge [27]. This challenge compiles a combination drug sensitivity screening dataset,
encompassing 11,576 experimental data. We compare the AstraZeneca-DREAM (AZ-
DREAM) challenge dataset with prior drug combination data, discovering overlaps in
10 cancer cell lines, seven related targets, and four drugs, but no drug combination—cell pair
repetitions. After the removal of duplicate data, the drugs and cancer cell lines are screened,
excluding drug molecules not found in Drugbank and cancer cell line expression data not
found in the CCLE database. Ultimately, an independent test set is constructed, which
includes 668 drug pair—cell line combinations, covering 57 drugs and 24 cancer cell lines.

2.2. MMFSyn Model

The main framework of our MMFSyn model is shown in Figure 1, which utilizes
four drug features: Morgan fingerprint, representing a one-dimensional structure [28];
an atom sequence and molecular diagram, representing two-dimensional information;
and an atomic 3D point cloud data to construct modules for feature extraction of drug
combinations in different modalities. The atom sequence is usually used to represent
the structure and composition of molecules; the molecular diagram provides a more detailed
description of molecular connection and topological structure, while the 3D point cloud of atoms
provides information about the atomic position and molecular conformation. The utilization of
these data can provide a more comprehensive understanding of the drug characteristics.

Specifically, we first utilize RDKit to extract the one-dimensional Morgan fingerprint
features of drugs. Secondly, the BILSTM-gMLP network is used to extract single-drug se-
quence features, and then the multi-head attention mechanism is applied to fuse and reduce
the dimensionality of two drug sequence features to obtain drug combination sequence
features. Thirdly, in the feature extraction of molecular diagram, for individual drug and
drug combinations, feature extraction and fusion are performed using graph convolutional
neural network modules at three scales: the first-order power graph, the second-order
power graph, and the third-order power graph, respectively, to obtain molecular diagram
features of drug combinations. These features are then integrated with drug sequence
features to obtain two-dimensional drug combination features. Fourthly, another feature
extraction is performed on drug atomic point cloud information through one-dimensional
convolution and residual neural networks to obtain the three-dimensional features of drug
combinations. Fifthly, we use the feedforward neural network (FNN) to combine these
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modules for fusing and learning the multimodal features of drug combinations. Addition-
ally, our model applies FNN for dimensionality reduction and fusion of gene expression
and mutation data to obtain the characteristics of cancer cell lines. Finally, these multimodal
features and multi-omics cancer cell line features of drug combinations are input into a
predictor for predicting the synergistic anti-cancer drug combination.
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Figure 1. Framework of our anticancer collaborative drug combination prediction model based on
multimodal deep learning.

2.3. Drug Features
2.3.1. One-Dimensional Feature Processing of Drugs

In order to represent the one-dimensional structural features of drugs, we use the
Morgan fingerprint to construct the feature vector for each drug. The SMILES expression
of each drug contained in the O’Neil dataset forms a specification for drugs to clearly
describe their molecular structure using ASCII strings. Here, we apply RDKit to calculate
the Morgan fingerprint of each drug based on the drug SMILES expression. The Morgan
fingerprint algorithm is a commonly used molecular fingerprint representation method [28],
which can be used to describe the structural information of molecules. Morgan fingerprints
are based on the connectivity of molecules, recording the environmental information
around each atom in the molecule. Here, we generate Morgan fingerprints with a radius of
2 for each drug and represent them as 256-dimensional binary value vectors, i.e.,:

Morgan; = fingerprint(SMILES;)

where Morgan; is the Morgan fingerprint feature of the i-th drug, and fingerprint(-) is
the operation using RDKit to process the Morgan fingerprint. For the drug combination,
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its Morgan fingerprint feature is represented as H,, = Morgan; || Morgan,. Here, “||”
represents the splicing operation.

2.3.2. Sequence Feature Processing of Drugs

For the extraction of two-dimensional sequence information of drugs, we first extract
the atomic features in the drug sequence from SMILES. Here, a set of atomic features
adapted from DeepChem is used for this purpose [29]. We process the extracted raw
features to obtain drug sequence encoding data X € RN*C (where N is the number of
atoms and C is the number of features per atom), then, we input X into a BILSTM layer
that captures the interdependence between drug sequence atoms and obtain an output
representation /iy € R24i , where d; represents the number of output units used in each LSTM

unit, namely, iy = LSTM(X;, By 1) |[LSTM(XG, fy_1 ).

Secondly, considering that BILSTM extracts features from both forward and backward
directions, we use the gMLP module to capture the features extracted from the forward
direction and perform the dimensionality reduction and quadratic encoding to obtain the
features of a single drug. The calculation formula for a single gMLP module is:

Z=oc(U),Y =s(2)V,s(Z) = Z1(WZ;, + b)

where ¢ is the activation function, U and V represent the trainable linear mapping parameter
matrix, W is the spatial interaction mapping parameter matrix, s(.) is the spatial gating
unit (SGU), and Z; and Z, are divided into two parts by Z from the channel dimension for
the gate operation. Here, the feature H; of a single drug is obtained by repassing h; from
BiLSTM to multiple layers of gMLP.

Finally, two drug sequence features Hs; and H;, are concatenated element-by-element
to obtain a vector, which is then fed into an encoder with a multi-head self-attention
mechanism for feature dimensionality reduction and fusion. Namely, we first define the
input representation as X, = [Hy @ Hyp] € RN*4, where N is the sequence length of Hyy;
Hsy, dy is the input dimension representing the output features through the BiLSTM-gMLP
network; and @ represents the point-by-point addition operation. Then, X, is passed
through  different linear mappings to obtain Q; = X.-Wg;, K; = X.Wg; and V; = X Wy;,
where the dimensions of W, Wk;, and Wy; ared x d;, d x di and d x dy, respectively. We
calculate the attention scores for each head:

QK
Vi

where Q;, K;, and V; are the query, key, and value of the i-th head. Then, we concatenate
the attention values of all heads:

Attention(Qj;, K;, V;) = Softmax( ) Vi

H, = Concat(Attention;, Attention,, ..., Attention;,)W°

where W° € R(#*M)*? js the output linear mapping matrix, which is used for obtaining
the two-dimensional sequence features of drug combinations.

2.3.3. Molecular Diagram Feature Processing of Drugs

We first apply SMILES to convert each drug into a molecular diagram, whose vertices
are atoms, edges are chemical bonds, and vertex features in the molecular diagram are con-
sistent with atom sequence features. Usually, the adjacency representation of any diagram
maintains the connectivity relationship between its nodes. Therefore, we understand that
the interaction between each atom node and its neighboring nodes is crucial in a molecular
diagram. In order to characterize the two-dimensional molecular diagram information
of drugs, it is necessary to deeply mine the connectivity relationship between nodes in
a graph. Here, we use graph convolutional networks (GCN) to extract the feature from
different scales of node connectivity in the molecular diagram.
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For a given molecular graph A, each atom node v can be connected to each node u
belonging to its neighborhood I'(v) through an edge, and we define their distance as 1 jump.
For the node w, which is in I'(1) but not in I'(v), we define the distance between v and w as
2 jumps. In other words, they are two jumps apart. If a node is connected to all such nodes
with two jumps, we can obtain a new second-order power graph A2. Similarly, in order to
further express the local adjacency, a third-order power graph A2 can also be constructed.

In the feature processing network of two-dimensional molecular diagrams, we first
introduce the power graph module composed of GCN, which is divided into three parts:
the first part stacks three GCN layers, the second part stacks two GCN layers, and the last
section uses a GCN layer. For each drug, the adjacency matrix A€ RN*N and node feature
matrix X € RN*C are used as inputs for the first block, and GCN is used for message
passing in the drug molecular diagram, as shown in Figure 2a.
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Figure 2. Molecular graph feature fusion embedding process. (a) is the GCN power graph block, and
its detailed structure is shown on the right side of the figure.

For the first part of the power graph module by GCN, in order to overcome the degree
normalization problem of adjacency representation, we calculate the normalized adjacency
representation as:

Anorm = Dil/zADil/z

RNXN

where D € is the degree matrix of A. Then, we use the following process

H = 0(ApormHI VW)

to obtain the feature of the drug compound produced in the i-th layer regarding A, where
W(=1) is a trainable parameter, and H? = X is the output by the i-th layer.

In the second part of the GCN power graph module, a second-order power graph
A? € RN*N and the same node features X are used as inputs. Similar to the calculation
method of the first-order power graph, the normalized adjacency representation is first
calculated by A2, = D'~1/2A2D'~1/2  then, we obtain the feature of drug produced in

the i-th layer regarding A2 by H', = a(A%wrmH’E,i*l)W’(i*l)), where W' (1) s a trainable
parameter and H’ 8 = X is the output by the i-th layer.

Similarly, we operate A3,,,, = D"~1/2A3D"-1/2 and H"l = O'(A%m,mH” ff‘”w”@‘*l))
to obtain the feature of drug produced in the i-th layer regarding A%. Finally, we concatenate
these output representations of three parts and use a global max pooling (GMP) function
suitable for the graph structure for fusion and dimensionality reduction to obtain the final
two-dimensional molecular diagram representation of each drug.

o' ; )

H, = GMP (H;' H!
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Considering that the problem addressed in the prediction model is the synergistic effect
of two drugs, for drug one and drug two, their adjacency matrix A;1, A and node feature
matrix X1, X;jp are obtained, respectively, and their corresponding concatenation is used
to obtain the adjacency matrix A;. and node feature matrix X;. of the drug combination.
Then, the corresponding data of drug one, drug two, and drug combination are fused
and embedded through the molecular diagram feature fusion module for information
transmission, which is characterized separately by H,1, He» and H,,, respectively, and finally
concatenated to obtain the overall two-dimensional molecular diagram representation of
two drug combinations, as shown in Figure 2; namely:

H= Hel||Hec‘ |He2

2.3.4. Three-Dimensional Atomic Point Cloud Feature Processing of Drugs

When using RDKit to process drug SMILES, relevant information including atomic
coordinates is also collected. We construct a point cloud feature embedding network after
obtaining the 3D atomic coordinates of drugs, as shown in Figure 3.

Firstly, the 3D atomic point coordinates of each drug in the drug pair are processed
as Pp = {pa1, pa2, - - ., Pam} based on SMILES, where p;; represents a 3D atomic point in
the drug molecule and m is the total number of atomic points. Considering the different
lengths of each drug sequence, we perform the data completion to obtain the coordinates of
each drug with the standard length, whose shape is 11 x 3 (1 is the processed standard drug
sequence length). Therefore, the 3D atomic point features of each drug are represented as
Pp =1pa1, paz, - - - Pan}-

Secondly, two drugs in the drug combination are embedded into the network through
atomic point cloud features, and after multi-layer one-dimensional convolution, Batch-
Norm1ld and ReLU activation function with residual connection, the atomic point cloud
features of each drug become Hp, which is represented as:

Hp = Residual(. . .ConvlD(Residual(...Conv1D(Pp)...))...)

where Conv1D( ) represents one-dimensional convolution operation and Residual( ) denotes
the residual connection (BatchNorm1d and activation function are omitted in the formula).

Specifically, for the atomic point cloud data input of each drug with n x 3, the em-
bedding network maps it to a high-dimensional 32-dimensional space by combining one-
dimensional convolution and residual structure, then aligns it in a 64-dimensional space
and a 128-dimensional space, respectively, and finally maps it to a 160-dimensional space
to form the feature vector.

Conv1ld,32 x3  Convld,64 x3 Conv1d,128 Conv1d,160

2
Drug—» BNId ——>  BNId —»  BNId —»  BNld —x—
RELU RELU RELU RELU

Figure 3. Embedding network for atomic point cloud feature of each drug.

2.4. Cell Line Features

For the feature extraction from cancer cell lines, we integrate two types of cell line data,
namely gene expression data and gene mutation data, accompanying tissue information, to
construct the features of cell lines.
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Gene expression data are downloaded from the ArrayExpress database (login number:
E-MTAB-3610) [30]. A total of 3384 informative genes are first summarized using factor
analysis for robust microarray summarization (FARMS) [31]. FARMS is a factor analysis
method used for microarray data, aimed at extracting signals from noisy microarray data. It
achieves this goal by representing gene expression data as a linear combination of potential
factors. Compared with general microarray data analysis methods, FARMS is more robust,
capable of handling noise and outliers and providing more accurate and robust gene
expression estimates. After using FARMS to reduce the dimensionality of gene expression
data, the final result is described as a gene load matrix G with a size of p x k, where p is the
number of cell lines and k is the specified number of potential factors. This matrix contains
the weights of each gene on each potential factor, reflecting the expression patterns of genes
in different biological processes. Then, the normalization operation is performed through
the z-score, and the standardized gene load matrix is expressed as G'.

The gene mutation data of cell lines come from the COSMIC cell line project [32]. We
remove those data with coding silent or unknown mutation types and retain mutation
data for 10,707 genes from 39 cell lines, namely, the gene mutation data for each cell line is
represented as a 10,707-dimensional binary value vector. According to whether the cell line
undergoes genetic mutations, the corresponding element of the vector is either 0 or 1. The
final gene mutation data matrix is obtained and denoted by M.

For two omics cell line data, we combine them and use the feedforward neural network
(FEN) for the dimensionality reduction to obtain the fusion features of multiple omics cell
lines, which can be used in the subsequent prediction task along with extracted drug features.

Feen = FNN(G/‘ |M)

2.5. Predicting Module

After constructing multimodal features and multi-omics cancer cell line features of
drug combinations, we design a predicting module to predict the synergistic score of drug
combinations with cell lines. This module receives fusion features Hy, | | H, | | Hg | | Hp of
drug combinations and cell line feature F.; as inputs, which is set by three fully connected
layers. Among them, the first two fully connected layers use the ReLU activation function,
followed closely by the batch normalization layer. In addition, the number of neurons in
the second fully connected layer is set to half of that in the first fully connected layer, and
the last fully connected layer only contains one neuron, which represents the collaborative
score predicted by the model.

Considering that predicting the combination of anticancer drugs is a regression task
whose prediction result is the synergistic score of the combination of drugs against cancer.
In our model, the loss function chosen for training is set by the mean square error loss:

1 2
Loss = 1T Y (Paae — Taac)
(ddc)eT

where T is the training set of drug—drug—cell line (d, d, c), T4 represents the true quantita-
tive collaborative score, and P, represents the model prediction result.

3. Experimental Setup
3.1. Evaluating Indicator

For the collaborative prediction task of anti-cancer drugs, we select four main indica-
tors to evaluate the performance of the model, namely, mean square error (MSE), root mean
square error (RMSE), the Pearson correlation coefficient (PCC), and the Spearman correlation
coefficient (SCC). These indicators comprehensively consider the performance of the model in
data fitting, linear correlation, prediction accuracy, and interpretability ability.
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3.2. Model Settings

During our model training, the batch size in our network training is set to 256, AdamW
is used as the optimizer of the model, and the learning rate change strategy is StepLR. The
main process of StepLR is as follows: firstly, we initialize the learning rate and attenuation
factor; secondly, at the end of each epoch with specified step_size, we update the learning
rate and set it to be the current learning rate multiplied by the decay factor; finally, we
repeat the previous step until the set training round is reached. The StepLR strategy is
simple and easy to use, which can effectively control changes in the learning rate, accelerate
the model convergence, and improve the predicting performance. In our model, we set the
initial learning rate to 0.001, the gamma parameter to 0.9, and the step_size to 20, which
means that for every 20 epochs, the learning rate will decay at a ratio of 0.9.

Our proposed multimodal deep learning architecture requires substantial compu-
tational resources for implementation in training. To expedite the training process, we
can preconfigure the dataset, allowing us to maximize the computational efficiency. The
detailed implementation can be observed in our GitHub repository, demonstrating how we
explore the full potential of computing resources.

4. Results
4.1. Detailed Prediction Result Analysis

For the large-scale collaborative dataset based on O’Neil et al. [25], we train and
predict the collaborative drug combination effect using our MMFSyn model and present
a density plot of the predicted coordination score and the actual coordination score, as
shown in Figure 4a. Through the presentation of density maps, it can be visually observed
that the data distribution between the predicted results of the model and the true values
is similar. Figure 4b shows the correlation between collaborative scores predicted by the
MMFSyn model and the actual score, and the red line fitted by the least square method
shows the functional relationship between the predicted score and the actual situation. By
computation, we find its slope is 0.907 and its bias is 0.584, indicating a significant linear
correlation between the model’s predicted results and the actual situation. Namely, the
overall prediction deviation of the model is small, and the predicted results have high
accuracy and credibility. Figure 4c shows the experimental results of 5-fold cross-validation
based on the MMFSyn model using a box plot, with an MSE of 178.13 and a PCC of 0.81.
This indicates a strong linear correlation between the predicted results of the model and
the actual observed values, further verifying the reliability and effectiveness of the model.

In addition, in order to further explore the predictive results of the model in different
tissue types, we use a double-sided violin plot to display the distribution of true collabora-
tive scores of cell lines derived from each tissue and the distribution of predicted collaborative
scores by the model, which is shown in Figure 5a. This study finds that in skin, ovarian, lung,
colon, and breast tissue, the distribution of true collaborative scores and predicted collaborative
scores is relatively stable, concentrated in the range of [-50, 75]. However, in contrast, in
pleura, the median, mean, quartile, and other predicted collaborative scores are higher than
the true collaborative scores. In pleura, the difference between the predicted collaboration
score and the actual collaboration score is relatively significant. This difference may be
related to the small number of cell lines belonging to the given organization in the dataset
and the dispersed distribution of collaborative scores.
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Figure 4. Comparison between our model’s prediction results and actual values. (a) shows the density
plot of predicted and actual scores. (b) shows the correlation graph between the predicted and actual
scores. (c) shows the experimental results of five-fold cross-validation based on the MMFSyn model

using a box plot.

Furthermore, we provide the predicted visualization results of different organizational
types. A box plot of PCC values classified by organization is shown in Figure 5b and a box
plot of MSE values classified by organization is shown in Figure 5c. In these graphs, the
middle line of each box represents the median. On the 5-fold cross-validation test set, it is
found that the average PCC values of different tissue types show a certain difference; for
example, pleura is 0.68, prostate is 0.79, ovarian is 0.80, colon is 0.81, and skin is 0.82, while
breast and lung are 0.83. The box plot of MSE values in Figure 5c reflects the prediction
error of different organizational types, and there exists also a certain difference in the
average MSE values of different organizational types. Specifically, the colon is 110.72, the
ovary is 159.89, the skin is 154.05, the lung is 197.53, the breast is 165.16, the prostate is
380.96, and the pleura is 651.03.
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Figure 5. Comparison between our predicted results and actual values differentiated by organiza-
tional category. (a) shows a double-sided violin plot displaying the distribution of true collaborative
scores of cell lines derived from each tissue and the distribution of predicted collaborative scores by
the model. (b) shows a box plot of PCC values classified by organizational type. (c) shows a box plot
of MSE values classified by organizational type.

We also conducted an analysis of the results according to different cell lines. Figure 6
shows the average PCC value and average MSE value in the 5-fold cross-validation of
each cell line, and the color of the bar graph represents the tissue to which the cell line
belongs. Among thirty-nine cell lines, only one cell line has a PCC value below 0.6, while
twenty-seven cell lines have a PCC value above 0.8. The cell lines with the highest and
lowest PCC values belong to the ovarian tissue. Among them, the PCC value of A2780 cell
line is the highest, with 0.89; the PCC value of UWB1289BRCAL1 cell line is the smallest,
with 0.58. In addition, we find only three cell lines have MSE values above 500, and eleven
cell lines have MSE values below 100. The MDAMB436 cell line belonging to breast tissue
has the lowest MSE value, with 46.75. The MSTO cell line belonging to pleura has the
highest MSE value, with 643.28.
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Figure 6. Predictive results by cell lines in different tissues.

4.2. Ablation Study
4.2.1. Ablation Study for Drug Features

We use the ablation experiment to analyze the impact of each component in MMFSyn
based on the 5-fold cross-validation results. Figure 7 shows the performance of different
variants of MMFSyn on the dataset. Firstly, we set the baseline model MMFSyn_base,
which includes drug Morgan fingerprint features and 3D atomic point cloud features.
Secondly, we introduce the drug sequence feature and fuse drug features based on whether
a multi-head attention mechanism encoder is used or not, and the models are named Seq_A
and Seq_B, respectively. Here, Seq_A uses a multi-head attention mechanism encoder, and
Seq_B does not use it. Thirdly, we introduce drug molecular graph features, which are
divided into Graph-A and Graph-B based on whether the molecular graph feature fusion
embedding module is used or not. Here, Graph-A means that the molecular graph feature
is used and Graph-B is not used. In addition, an MMFSyn-add model is also set up, which
uses all feature processing modules in MMFSyn and applies the self-attention mechanism
to fuse multimodal features.
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Figure 7. The 5-fold cross-validation results of different variants of MMFSyn on the dataset.

From the results of the 5-fold cross-validation, it can be observed that the model
with adding drug sequence features (Seq_A) and the model with adding drug molecular
map features (Graph_A) are both better than the baseline method using only the Morgan
fingerprint and 3D atomic point cloud (MMFSyn_base), where MSE values are reduced by
17.17 and 18.98, respectively. Within the model for processing drug sequence features, the
prediction result of Seq-A using a multi-head attention mechanism encoder is decreased
by 4.55 compared to Seq-B not using it; Within the model that processes molecular graph
features, Graph_A using the fusion embedding module has an MSE value that is 1.77 lower
than Graph_B, which is not used.

Moreover, considering that the PERCEIVER IO method proposed by Jaegle et al. [33]
extended the cross attention to multimodality and achieved good results in related tasks,
we also analyze the use of cross attention mechanism and self-attention mechanism to fuse
multimodal drug combination features and cancer cell line multi-omics features as variants
MMESyn-CA and MMFSyn-SA. Compared to the MMFESyn method, the MSE values of
MMFSyn-CA and MMFSyn-SA are higher, with 7.65 and 10.89, respectively, indicating that
the effect of MMFSyn-CA and MMFSyn-SA is worse than that of MMFSyn. Therefore, the
cross-attention mechanism or self-attention mechanism is not used for fusion. Based on the
comparison and analysis of the above results, it can be concluded that the various feature
extraction modules and predictor settings used by MMFSyn have indeed improved the
performance for predicting the combination of anticancer synergistic drugs, namely, all
model parts are indispensable.

4.2.2. Ablation Study for Cell Lines

We also conduct the ablation experiment on cell lines, analyzing the experimental
effect of using gene expression profiles and mutation data separately. Firstly, we establish
a baseline model Cell_base, which neither uses gene expression data nor mutation data
but instead employs one-hot encoding to differentiate cancer cell lines. Secondly, we set
up the model Cell_gen, which only uses gene expression data, keeping the drug feature
processing part unchanged. Thirdly, we introduce mutation data features only by setting
up the model Cell_mut, again keeping the drug feature processing part unchanged. We
compare these three models to the overall MMFSyn, and the results are listed in Table 1.

As shown in Table 1, MMFSyn outperforms other models in terms of MSE. Specifically,
the average MSE of the Cell_base model is 214.36, while the average MSEs of Cell_gen and
Cell_mut are 185.27 and 189.69, respectively. This indicates that the use of gene expression
data alone yields superior results compared to using mutation data alone. Moreover, the
MMFSyn model, which integrates both types of data, demonstrates the best performance
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(the average MSE is 178.13), highlighting the synergistic effect of combining gene expression
and mutation data.

Table 1. Comparison results of the ablation study for cell lines.

Type Method MSE
DL Cell_base 214.36 £ 44.83
DL Cell_mut 189.69 & 44.15
DL Cell-gen 185.27 £ 42.93
DL MMEFSyn 178.13 £ 41.58

4.3. Different Prediction Method Comparison

To evaluate the effectiveness of the proposed MMFSyn, we conduct comparative
experiments with various existing methods, including machine learning methods (RF [34],
XGBoost [35], Linear Regression, and Elastic Net [36]), as well as the deep learning methods
(PRODeepSyn [37], TranSynergy [20], AudnnSynergy [38], DeepSynergy [19]). All these
methods are specifically designed for drug combination synergy prediction and have been
tested with their optimal parameters as described in their respective papers. PRODeepSyn
integrates protein—protein interaction network information into omics data and utilizes
GCN to construct cell line characterization, providing an efficient computational model
for discovering new synergistic anticancer drug combinations. The design of TranSynergy
enables clear modeling of the cellular effects of drug action through cell line gene depen-
dence, gene—gene interactions, and genome-wide drug target interactions. AuDNNsynergy
trains three autoencoders using gene expression, copy number, and gene mutation data
from tumor samples from the Cancer Genome Atlas (TCGA) [39], integrating multiple
omics data to predict the synergistic effects of paired drug combinations. For a more
effective comparison, we implement the 5-fold cross-validation on the dataset. The detailed
comparison results between MMFSyn and these advanced methods are shown in Table 2.

Table 2. Comparison results of different prediction methods.

Type Method MSE RMSE PCC SCC
DL PRODeepSyn 208.49 £+ 42.53 14.54 + 1.38 0.75 £ 0.02 0.74 £+ 0.03
DL TranSynergy 221.21 £41.15 14.88 £ 1.41 0.75 £ 0.02 0.73 £0.02
DL AudnnSynergy 239.12 +-45.55 15.46 £1.42 0.74 £ 0.03 0.72 £0.02
DL DeepSynergy 245.49 £ 43.85 15.65 + 1.56 0.71 £ 0.02 0.69 £ 0.02
ML Linear Regression 480.46 + 53.37 21.68 £ 1.36 0.47 £ 0.01 0.46 £ 0.02
ML Elastic Net 415.36 = 51.59 20.38 £ 1.35 0.46 £ 0.02 0.45 £ 0.03
ML Random Forest 280.72 £ 42.37 16.65 + 1.14 0.64 + 0.03 0.63 £ 0.02
ML XGBoost 296.34 £ 46.37 17.05 £ 1.32 0.66 £ 0.02 0.65 £ 0.03
DL MMFSyn 178.13 4 41.58 13.33 = 1.15 0.81 £ 0.02 0.80 £ 0.02

As shown in Table 2, bold values indicate the highest performance in each category.
MMEFSyn performs better than other methods in MSE, RMSE, PCC, and SCC. Specifically,
the values of these four indicators are 178.13, 13.33, 0.81, and 0.80, respectively. Compared
with these popular methods, the MMFSyn method has improved by 30.36 on the MSE
indicator, 1.21 on the RMSE indicator, 0.06 on the PCC indicator, and 0.06 on the SCC
indicator.

4.4. Evaluate the Model in an Independent Test Set

In order to better verify the generalization ability of our model, the benchmark dataset
(i.e., the original training set) is used to train the model, and then an independent test
set released by AstraZeneca is used to evaluate the performance of our prediction model
MMESyn and other competitive methods. This independent test set includes 668 drug
pair—cancer cell line combinations, covering 57 drugs and 24 cell lines. The prediction
results of MMFSyn and comparative methods on this independent test set are shown in
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Table 3. It can be seen that the performance of MMFSyn is superior to all other comparative
methods in the main performance indicator of MSE.

Table 3. Comparison results of different prediction methods on an independent test set.

Type Method MSE
DL PRODeepSyn 276.79 + 49.94
DL TranSynergy 289.69 + 45.36
ML XGBoost 396.54 + 65.37
DL MMFSyn 248.74 + 46.93

4.5. Case Study

We conduct the case study analysis using the prediction results of MMFSyn and find
that many cases are consistent with previous studies. For example, Gil-Martin et al. [40]
tested the therapeutic effect of BEZ-235 and Paclitaxel on breast cancer patients. The ex-
periment did not obtain any evidence that this drug combination had a synergistic effect,
and the subjects suffered from various adverse reactions. The prediction result given
by MMFSyn is consistent with this experiment. On breast cancer cell lines OCUBM and
EFM192B, the synergy scores predicted by MMFSyn are —5.39 and —16.69, respectively.
In addition, Wisinski et al. [41] confirmed that the combination of MK-2206 and Lapa-
tinib could be tolerated with a higher dose than monotherapy. They conducted in vitro
experiments on HCT-15 to evaluate the mechanism of this drug interaction. MMFSyn
gives higher predicted synergy scores on DLD1, HT29, and LOVO cell lines, which are
used to study the same types of cancer as the HCT-15 cell line, with 49.69, 35.29, and
4243, respectively. Furthermore, Lara et al. [42] argued that the therapeutic effect of the
combination of MK-2206 and Erlotinib on patients with non-small cell lung cancer (NSCLC)
is worthy of further exploration. We check the prediction results of MMFSyn for three
NSCLC cell lines included in the dataset, namely SKMES1, NCIH460, and NCIH520, which
are 42.36, 18.96, and 21.37, respectively. These results also indicate that the combination of
MK-2206 and Erlotinib may show a synergistic effect in the treatment of NSCLC.

5. Discussion and Conclusions

This paper proposes an end-to-end deep learning model, MMFSyn, which extracts and
fuses features from multimodal drug data and multi-omics data of cancer cell lines. Firstly,
it uses the commonly used representation of drugs, SMILES, to comprehensively extract
corresponding drug features from different modalities. Next, for different modalities of
data, this model uses deep learning modules such as gated multilayer perceptron, graph
convolutional neural network, and multi-head attention mechanism to deeply extract
features and explore potential information in data. Furthermore, it analyzes the different
omics information of cancer cell lines, screens suitable omics features, and fuses them to obtain
the fusion feature of cancer cell lines. Finally, these features are combined as multimodal drug
features and used to achieve the accurate prediction of synergistic anti-cancer drug combinations.
Various experiment analyses and comparisons verify that our MMFSyn obtains satisfactory
performance and outperforms other popular prediction methods.

Of course, there is still some work to be conducted to improve the existing methods
in the future. Although MMFSyn has integrated various drug data with one-dimensional
structure, atom sequence information, molecular diagrams, and three-dimensional atomic
point clouds of drugs, there are still other types of drug feature information in practical
applications, such as physical properties and biological activities of drugs. We will fur-
ther explore these features and attempt to integrate them into the model to improve the
prediction accuracy and reliability. In addition, we find MMFSyn provides a relatively
conservative prediction result for drug combinations that should have high synergistic
scores, which may be due to the concentration of synergistic scores near 0 in the training set.
With the release of more experimental data, this issue is expected to be further explored and
resolved. Finally, we will collaborate with the medicine school or hospital to further perform
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the web-lab experiment (test on primary patient samples or in vivo models) and incorporate
the pathway or gene regulatory network analysis to enhance the biological interpretability.
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