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Abstract: In recent decades, immunotherapy has been considered a promising treatment approach.
The modulatable enhancement or attenuation of the body’s immune response can effectively suppress
tumors. However, challenges persist in clinical applications due to the lack of precision in antigen pre-
sentation to immune cells, immune escape mechanisms, and immunotherapy-mediated side effects.
As a potential delivery system for drugs and immunomodulators, mesoporous silica has attracted
extensive attention recently. Mesoporous silica nanoparticles (MSNs) possess high porosity, a large
specific surface area, excellent biocompatibility, and facile surface modifiability, making them suitable
as multifunctional carriers in immunotherapy. This article summarizes the latest advancements in the
application of MSNs as carriers in cancer immunotherapy, aiming to stimulate further exploration of
the immunomodulatory mechanisms and the development of immunotherapeutics based on MSNs.

Keywords: nanoparticles; cancer; immunotherapy; MSN; combined anti-tumor therapy

1. Introduction

Curing cancer is an important goal of healthcare research, as cancer seriously affects
human longevity and quality of life [1]. As one of the most important means of treating
cancer, immunotherapy has revolutionized cancer treatment, particularly for metastatic
cancer, where some patients who were previously considered incurable have had long-term
remissions and survival [2]. In recent years, immunotherapy has evolved, and despite
improving some of its shortcomings, it still has limitations. Complex immune cell–tumor
cell interactions and the failure of immune checkpoint inhibition render immunotherapy
ineffective in some patients. Therefore, alternative regimens are needed to overcome the
shortcomings of existing immunotherapies.

In order to overcome immunotherapy’s limitations, efforts are being made. The use of
nanoparticle-based drug delivery systems appears to be a promising direction. In addition
to improving pharmacokinetics and efficacy, nanoparticles can improve drug biodistribu-
tion. Delivery of immunomodulatory molecules via nanoparticles protects them from rapid
degradation and clearance in vivo, and the nanoparticles can be selectively delivered to the
target site to enhance therapeutic efficacy. Nanocarriers have included a variety of nanopar-
ticles, including polymeric nanoparticles [3,4], dendritic polymers [5,6], liposomes [7,8],
metallic nanoparticles [9,10], and other inorganic nanoparticles [11]. Recently, mesoporous
silica nanoparticles (MSNs) have emerged as a promising candidate for material-based
immunotherapy. Among their characteristics are its tunable size and pore size, high surface
area, and ease of surface functionalization. MSNs have a wide range of therapeutic appli-
cations, including cancer therapy, immunotherapy, tumor microenvironment modulation,
tissue engineering, anti-infectious therapy, and diabetes therapy.

The physicochemical properties and drug assembly strategies of MSN are crucial
for immunotherapy of cancer. Therefore, the purpose of this review is to summarize the
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different assembly strategies of MSNs with unique properties in immunotherapy, which in
turn provides new ideas for refining drug delivery and developing new strategies.

2. Immunotherapy

The immune system is comprised of two main parts: innate immunity and adap-
tive immunity. The body’s innate immunity serves as the first line of defense against
invading pathogens, primarily through macrophages, dendritic cells, natural killer cells,
neutrophils, and eosinophils [12–16]. In contrast, adaptive immunity requires a longer pe-
riod to establish a specific, systematic, and sustained immune response, mainly comprising
T lymphocytes, B cells, and memory lymphocytes [17]. The innate immune system can
rapidly initiate an immune response, eliminate most pathogens, and recruit and activate
adaptive immune cells during inflammatory responses. The adaptive immune system
combats specific pathogens, develops highly specific immune responses, and maintains
long-term memory of specific immune responses. This immunological memory ensures
that subsequent encounters with the same pathogen elicit a swifter and more effective
immune response [18–20]. Immunotherapy aims to combat diseases through the immune
system, either by bolstering immunocompetence or by reestablishing immune tolerance
against self-antigens.

Cancer immunotherapy can be categorized into several main types: immune check-
point inhibitors, vaccines, adoptive cell transfer (ACT), oncolytic virus therapies, and
cytokine therapies. Immune checkpoint inhibitors are the most extensively studied class
of immunotherapy to date. The most common checkpoint inhibition strategies involve
PD-1/PD-L1 blockade and CTLA-4 inhibition [21–23]. Vaccine types include tumor cell
lysates, dendritic cells, nucleic acids (such as mRNA), or neoantigens [24]. Vaccines against
cancer are used for patients whose immune systems have become tolerant to cancer and
who may develop an immunosuppressive tumor microenvironment (TME) that inhibits
anti-cancer immunity. Conversely, infectious disease vaccines target exogenous antigens to
which the host has not yet developed resistance [25,26]. ACT therapies utilize autologous
immune cells, particularly T cells, which are isolated or genetically modified, expanded
in vitro, and then re-injected into the patient to eliminate cancer cells [27,28]. Two types
have been invented: chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) engi-
neered T cells. Lysoviral therapies mainly use genetically modified viruses to infect tumor
cells, thereby stimulating a pro-inflammatory environment to enhance systemic anti-tumor
immunity [29,30]. Among them, talimogene laherparepvec (T-Vec), also known as Imlygic,
a genetically modified herpes simplex virus, has demonstrated significant clinical benefit in
patients with advanced melanoma and has been approved for the treatment of unresectable
metastatic melanoma [31]. Cytokines were the first class of immunotherapies introduced
into the clinic [32] and act as messengers that coordinate cellular interactions and immune
system communication [33]. Secreted cytokines are able to rapidly propagate immune
signals in a complex and efficient manner, which allows for a potent and coordinated
immune response to target antigens. Among them, interleukin 2 (IL-2) [34,35], interferon
(IFN) [36,37], and granulocyte-macrophage colony-stimulating factor (GM-CSF) [38,39] are
the classical therapeutic cytokines used in cancer therapy.

3. Cancer Immunotherapy

Cancer immunotherapy involves activating the immune system to target and kill
cancer cells, which may prevent metastasis and recurrence of cancer. The Cancer Immunity
Cycle (CI cycle) is a critical mechanism of action in cancer immunotherapy (Figure 1).
Initially, neoantigens released from tumors are captured and processed by dendritic cells.
Subsequently, antigens presented on Major Histocompatibility Complex I (MHCI) and
MHCII molecules by dendritic cells are recognized by T cells, thereby provoking an anti-
tumor T cell response, initiating and activating effector T cells for a specific response against
the neoantigens. Activated effector T cells recognize and bind to cancer cells through the
interaction between their T cell receptors (TCRs) and the corresponding antigen presented
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by MHC-I, causing them to die [40,41]. By killing cancer cells, tumor-associated antigens
(TAAs) are released, enhancing subsequent immune responses. Every step in this cycle
is indispensable and integral to the external milieu of the immune system and cancer.
Alterations in any single step may impact the generation of an optimal immune response.
More importantly, even therapeutic strategies that create “synthetic immunity”, such as
adoptive cell therapy, must function within the context of the CI cycle. In-depth studies of
the TME have further supplemented and refined the CI cycle. T cells infiltrating tumors
encounter antigen-presenting cells dispersed throughout the tumor parenchyma, within
tumor-associated lymphoid aggregates, or in morphologically recognizable tertiary lym-
phoid structures (TLSs), leading to the direct killing of tumor cells and potentially initiating
a localized “eddy” of the CI cycle within the TME. This perspective underscores the TME’s
significant and complex role in both supporting and inhibiting cancer immunity [42].
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4. Limitations of Immunotherapy

With the evolving field of synthetic immunology and the deepening understanding of
the TME, the application of immunotherapy in oncology has advanced, with several im-
mune checkpoint inhibitors approved for clinical use, achieving satisfactory outcomes [2,43].
Although immunotherapy has shown good results in some cases, the response rate remains
low due to the complexity of immune–tumor interactions and the redundant mechanisms of
tumor-mediated immune suppression [44,45]. Agonistic antibodies, checkpoint inhibitors,
and cytokines share similar limitations and challenges. They can induce numerous au-
toimmune and adverse reactions, thereby limiting the permissible dosages. However,
due to their short half-lives, large doses are often required, causing vascular leakage and
cytokine release syndrome. CAR-T therapy also faces problems, such as target antigen
loss and low CAR-T cell effectiveness [46,47]. Therefore, there remains a significant unmet
need for safe and effective methods to drive immune responses against cancer. It may
be possible to break away from traditional drug development paradigms by designing
immunotherapeutic delivery systems that specifically target tumors and tumor-draining
lymph nodes. Nanotechnology is considered a promising delivery mechanism. Over
the years, nanoimmunotherapy has employed liposomes, polymers, gold nanoparticles,
mesoporous silica, and other nanomaterials for delivery [48–54]. The use of nanoparticles
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can improve the pharmacokinetics, biodistribution, and efficacy of therapeutic drugs, par-
ticularly by enhancing the accumulation of immunotherapeutics in diseased tissues, more
effectively targeting the desired tumors and/or immune cells, and reducing off-target side
effects. As one of the most promising candidates for cancer immunotherapy, MSNs stand
out from the other nanomaterials available.

5. Interactions of MSNs In Vivo

Mesoporous silica was first produced by Mobil Corporation in 1992, and in 1997, or-
dered submicron mesoporous silica known as MCM-41 was synthesized using an improved
Stöber method [55]. Subsequent synthesis methods have largely been based on these foun-
dational techniques. MCM-41 silica particles measuring 100 nm have been obtained using
dilute surfactant solutions [56], and nanoparticles of mesoporous silica smaller than 50 nm
have been produced using dual surfactant systems or through dialysis processes [57]. MSN
can be used as an adjuvant to activate APCs and trigger an immune response [58–60]. MSN
significantly improves Th1 and Th2 anticancer immunity in vivo, as well as effector mem-
ory T cell populations in the bone marrow. The anticancer immunity effect of MSN was
more potent compared to the common adjuvant alum [59]. The morphology of MSN plays
a role in its adjuvant properties. Asymmetric head and tail mesoporous silica nanoparticles
(HTMSNs) have better hemocompatibility and higher levels of antigen-presenting cell
uptake and in vitro maturation compared to spherical MSN [61]. Particle size has multiple
impacts on the interactions of nanoparticles within the body. Studies have shown that MSN
measuring 50 nm maximizes cellular uptake in HeLa cells [62]. This is attributed to small
particles being internalized into cells partly through energy-independent pathways and
partly through energy-dependent pathways [63]. Additionally, smaller MSNs may have
longer circulation times in the bloodstream, increasing the bioavailability of drugs. While
this is beneficial for drug delivery, smaller particles may also increase nonspecific biodis-
tribution [64]. Wang et al. studied the cytotoxicity of MSN ranging from 30–200 nm on
NIH3T3 fibroblasts, finding that larger particles exhibited lower cytotoxicity [65]. Hemoly-
sis assays indicate that MSN with diameters between 100–200 nm are relatively safe [66,67].
These findings suggest that the size of MSN is a critical parameter for determining cellular
internalization and intracellular accumulation. However, nanovesicles with sizes between
10 and 100 nm are better able to pass through the gaps between lymphatic endothelial
cells and drain into the lymph nodes, which are the main sites of immune activation and
surveillance [68,69].

High porosity is advantageous for drug delivery, as it allows for the encapsulation
of greater quantities of drugs due to a larger surface area. Hong et al. investigated the
effect of pore size on triggering immune responses [70]. With increasing pore size (7.8 nm,
10.3 nm, and 12.9 nm), MSN induced CD4+ T cells to secrete high levels of IFN-γ and
IL-4, and CD8+ T cells to secrete IFN-α, which induced a stronger immune response and
tumor suppression effect. Lee et al. developed hollow MSN with extra-large mesopores
(H-XL-MSNs), which are capable of high loading of model proteins and adjuvants, leading
to higher cellular uptake and better dendritic cell activation [71]. In order to deliver high-
molecular-weight biomolecules and produce a higher immune response, nanoparticles
with large pores and small diameters (less than 100 nm) are preferred [72,73]. However,
increased pore size can also increase the risk of reactive activity and oxidative stress [74].
MSN are considered nontoxic within certain concentration ranges. High concentrations
and intravenous administration often result in cytotoxicity [75]. It is necessary to determine
the concentration and carry out MSN modifications. Subcutaneous injection is considered
the safest method, even at high doses up to 1200 mg/kg, possibly because the injection
site significantly delays MSN entry into the bloodstream. Under biological conditions,
typically, nanoparticles larger than 200 nm in diameter activate the complement system and
are rapidly cleared from the bloodstream, accumulating in the liver and spleen, whereas
nanoparticles smaller than 10 nm are rapidly cleared by the kidneys. As the size of MSNs
increases, their accumulation in tumors decreases, whereas their accumulation in the liver
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and spleen increases [76,77]. Following intravenous injection of MSN (225 nm) in rats
(5 mg/kg), strong signals were detected in the liver and spleen at 2 and 24 h, and by day 7,
the signals had almost disappeared, indicating that most were excreted without significant
tissue damage [78,79]. Pure MSN are nontoxic to human malignant melanoma but can
promote growth by reducing intracellular reactive oxygen species (ROS) [80]. However, a
significant effect of MSN on glioblastoma growth has not been observed [81]. This suggests
that MSN as drug delivery carriers may not be suitable for all cancer treatments, and the
properties of nanomaterials in various cell lines and animal models require further attention.
When developing a new nanocarrier, it is essential to investigate the detailed mechanisms by
which nanocarriers influence tumor biology and to conduct a comprehensive examination
of biosafety issues related to nanomedicine. The properties of MSN are closely related to
the immune response, and the rational design of MSN morphology, diameter, and porous
structure can make MSN a promising vaccine candidate.

6. Modifications of MSN

Modifications of MSN enable the fulfillment of more complex objectives for treating
various cancers. Pure, non-functionalized MSNs possess a negative zeta potential, and
their surface functionalization can be performed simply and efficiently (Table 1).

6.1. Amination

Amination is a common modification, with aminated MSN capable of carrying a
large number of negatively charged nucleic acids (including protein-coding genes, small
interfering RNA, oligonucleotides, and mRNA). This modification not only facilitates
the delivery of nucleic acid-based drugs with enhanced bioavailability but also protects
them from nuclease-mediated serum degradation. Among the commonly used aminosi-
lanes are (3-Aminopropyl) triethoxysilane (APTES) and (3-Aminopropyl) trimethoxysilane
(APTMS) [82]. Moreover, polyethylenimine (PEI), a cationic polymer, is frequently utilized
to enhance nucleic acid delivery due to its ability to increase cellular uptake and transfection
efficiency. Transfection efficiency is critical in this context as it directly influences the amount
of therapeutic nucleic acid that can be successfully introduced into target cells, thereby im-
proving the overall therapeutic efficacy of the treatment. For instance, Lee et al. developed
extra-large hollow mesoporous MSNs (XL-MSN) surface-modified with PEI and the model
antigen OVA. In vivo studies on melanoma mice showed that XL-MSN could generate
a high level of antigen-specific CTL responses, leading to significant tumor suppression
and increased survival rates [63]. This highlights the crucial role of surface modifications,
including those that enhance transfection efficiency, in optimizing the therapeutic poten-
tial of MSN [71]. Through MSN-PEI-PEG delivery of siRNA-HER2, antibody–receptor
interactions were effectively absorbed by HER2+ cells in a specific manner, effectively
silencing HER2 expression in vitro and in vivo. The construct also significantly knocked
down HER2 expression and inhibited tumor growth in HER2+ xenografts that were re-
sistant to chemotherapy [83]. However, the cytotoxicity issues associated with PEI need
attention [84,85].

6.2. PEGylation

PEGylation is a common functionalization strategy. Polyethylene glycol (PEG) can
protect nanoparticles like MSN from opsonization by acting as an invisible coating to the
immune system, reducing nonspecific cell hemolytic activity and endocytosis, thereby
enhancing the biocompatibility and safety of the nanomaterial [86,87]. Additionally, PEGy-
lation can serve as a linker for further functional modifications [88]. However, PEGylation
also carries the risk of producing anti-PEG antibodies that can quickly remove subsequent
doses [86].
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6.3. Liposome

The modification of MSN with lipid coatings can improve biocompatibility. PEGyla-
tion and phospholipid encapsulation of 200 nm MSN in PBS (phosphate-buffered saline)
have demonstrated excellent suspension properties and significantly reduced nonspecific
binding in vitro [89]. Xie et al. [90] reported on lipid bilayer (HMLB) and monophospho-
lipid A-coated HMSNs loaded with melanoma-derived antigenic peptides HT@HMLB,
which were shown to promote dendritic cell maturation and significantly induce anti-tumor
immune responses. MSNs with added lipid bilayers (MSN-Lip) combine the benefits of
liposomes, including low toxicity, low immunogenicity, and extended circulation [91]. This
system can overcome the instability and leakage issues of liposomes, as the adhesion be-
tween the Lip and MSN inhibits fluctuations in the membrane bilayer [92]. It is possible to
enhance the MSN–Lip complex’s stability in biological fluids using additional PEGylation,
thereby improving biocompatibility and preventing particle aggregation.

6.4. Tumor Cell Membrane

Modifications to cell membranes ensure the structural stability of nanomaterials in
complex environments and prevent harmful organic solvents from entering the nanomate-
rials. Tumor cell membranes play a significant role in mediating tumor immunotherapy.
The induction of immune cell recognition and the initiation of an immune response by
tumor-associated antigens (TAAs) are common strategies in tumor immunotherapy [93,94].
The expression of relevant proteins can also be manipulated during this process by cun-
ning tumor cells to make this scheme ineffective. On the one hand, developing tumor
antigens by modifying nanomaterials with tumor cell membranes is advantageous. On
the other hand, surface membrane protein-mediated homing enhances the targeting of
nanomaterials [95,96]. Additionally, due to the rapid proliferation of tumor cells, membrane
extraction and preparation are simpler and faster. Zhao et al. [97] designed and synthesized
DTIC@CMSN covered with human melanoma cell membrane (B16F10), which exhibited
better anti-tumor killing efficiency and a stronger ability to promote tumor cell apoptosis.
DTIC@CMSN chemotherapy combined with aPD1 immunotherapy significantly inhibited
melanoma growth and extended survival in vivo due to highly selective killing of tumors,
activation of tumor-specific T cells, and modulation of the immunosuppressive tumor
microenvironment. Furthermore, DTIC@CMSN’s safety assessment studies showed that
it increased tumor accumulation and reduced systemic toxicity. This type of cancer cell
membrane (CCM) coating significantly reduces the clearance rate after entering the body,
thus extending circulation in the blood and effectively enhancing tumor targeting [98,99].
Liu et al. [100] designed the CMSN-Gox method combined with PD-1 therapy, also using
human melanoma cell membrane (B16F10) to encapsulate MSN loaded with glucose oxi-
dase (GOx). This combination of starvation therapy and immunotherapy enhances PD-1
immune checkpoint blockade, showing better anti-tumor treatment effects.

6.5. Immune Cell Membrane

Immune cells play a crucial role throughout the process of immunotherapy. Wrapping
MSNs with immune cell membranes effectively addresses the challenge of the immune
system recognizing and eliminating nanomaterials as foreign bodies while also prevent-
ing immune escape by tumor cells [101–104]. These immune cell membranes include
those from macrophages, dendritic cells (DCs), T cells, and neutrophils [105–108]. In the
glioblastoma microenvironment, a positive correlation exists between the accumulation
of macrophages post-irradiation and the mesenchymal transition of glioblastoma. The
inflammatory cytokines released by macrophages promote mesenchymal transformation in
an NF-κB-dependent manner. Ren et al. [109] constructed macrophage membrane-wrapped
porous mesoporous silica nanoparticles (MMNs) loaded with therapeutic anti-NF-κB pep-
tides to enhance the radiotherapy of glioblastoma. In a glioblastoma mouse model, the
combination of MMNs with fractionated irradiation blocked tumor evolution. Invasive
macrophages were competitively inhibited by MMNs at the blood–brain barrier, sug-
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gesting that nanoparticles can fundamentally prevent the evolution of radiation-resistant
cells. Biomimetic MMNs can inhibit mesenchymal transformation, improve the effects of
radiotherapy, and increase the survival rates of patients with glioblastoma.

Systemic administration of drugs often suffers from limited selectivity to targets and
susceptibility to off-target effects [110,111]. Transforming inert prodrugs into biologically
active substances at the desired site is an effective method to enhance therapeutic effects
and mitigate adverse reactions [112]. The chirality of life is an essential characteristic. All
pharmacological and toxicological processes are affected by chiral drugs’ enantiomeric prop-
erties (such as enzyme binding and metabolism). Therefore, the two enantiomeric isomers
of the same drug may differ in their pathogenic mechanisms, therapeutic effects, and side
effects [113,114]. Qu et al. [115] utilized sodium formate as a biocompatible reductant to
construct a chiral-modified Pd catalyst (MSN-Pd) for asymmetric transfer hydrogenation
(ATH) reactions. By combining the ATH reaction with the chemotactic properties of neutrophil
membranes, they refined the chiral Pd catalyst into an MSN-Pd/CD@Neu catalyst wrapped in
a neutrophil membrane. This catalyst was used for in situ selective synthesis of chiral drugs at
inflammatory sites in living cells. In order to alleviate inflammation, the authors synthesized
the chiral model drug ibuprofen in situ in an inflamed mouse paw model. Compared to
controls, the neutrophil membrane-wrapped chiral Pd catalyst demonstrated both targeted
anti-inflammatory capabilities and enantioselectivity. Neutrophils tend to gather at inflamed
sites after activation, so wrapping MSN with neutrocyte cell membranes can be used for
site-specific cargo transport [116–118]. At present, most drugs often lack specific targets and
have potential off-target toxicity, resulting in rapid drug inactivation, low bioavailability, and
poor pharmacokinetics, leading to poor therapeutic effects. The conversion of inert precursor
drugs into bioactive substances at the desired site is an effective way to improve therapeutic
effect and reduce adverse reactions [112,119,120]. Qu et al. combined the anti-inflammatory
targeting ability of neutrophils with the activation of prodrugs, providing a new idea for the
treatment of inflammation and the development of new immunotherapies.

6.6. RBC Membrane

Red blood cells (RBCs) are biconcave disks that easily traverse capillaries. Encapsulating
MSN within red blood cells not only shields them from immune clearance but also leverages
the fact that aging or damaged red blood cells are naturally cleared by immune cells, allowing
these RBC-modified nanomaterials to specifically target responsive immune cells [121,122].
Xie and colleagues [123] designed ultrasound-responsive, superhydrophobic MSN encapsu-
lated in red blood cell membranes and loaded with doxorubicin (DOX) (F-MSN-DOX@RBC),
which exhibited anti-tumor activity triggered by ultrasound. The signal-regulatory protein
alpha expressed by phagocytes interacts directly with the red blood cell membrane, emit-
ting a “don’t eat me” signal that inhibits the reticuloendothelial system from engulfing the
nanoparticles. The ultrasound-responsive platform developed in this study demonstrated
that nanoparticles coated with RBC membranes circulated for longer periods in mice and
performed significantly better than PEG-modified controls [124–126]. Compared to sono-
dynamic therapy, Bio-RBCm@PDA@MSN-DOX nanoparticles developed by Li et al. [127]
combine photothermal therapy with chemotherapy to improve circulation time and target
specific areas of the body. With the assistance of biotin and red blood cell membranes, the
Bio-RBCm@PDA@MSN-DOX combination successfully evaded immune clearance and was
delivered and targeted to HeLa tumor sites, ultimately suppressing cancer up to 98.95% with
no adverse effects on human normal tissues.

Membrane encapsulation technology has effectively played the role of delivery and
improved the targeting ability, but the complexity of tumor microenvironment and the im-
mune escape mechanism make membrane encapsulation technology face many challenges.
Further enhancing targeting capabilities and reducing side effects are effective alternatives.
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6.7. Peptide

Targeted molecules can be attached to MSNs to add active targeting functionality.
Active targeting allows nanoparticles to accumulate more at specific sites or within specific
cells, including peptides, proteins, and aptamers. A commonly used peptide is RGD, which
targets integrins that are upregulated in tumor vascular endothelial cells [128–130]. MSN
co-modified with folic acid and RGD, loaded with paclitaxel (PTX) (PTX@MSN-NH2-FA-
RGD), can dual-target human breast cancer MCF-7 cells and exert an inhibitory effect [131].
Hyaluronic acid (HA) and RGD-modified MSNs containing chlorambucil (CHL) are used
for targeted delivery to cancer cells expressing CD44 and integrins [132]. iRGD, a cyclic
tumor-penetrating peptide, consists of an RGD module connected to a C-end R module
via a disulfide bond. There is no comparison between its ability to target and penetrate
tumors and that of RGD peptides [130,133]. iRGD-modified red blood cell membrane-
wrapped MSN, by delivering DOX (iRGD-RM-(DOX/MSNs)), shows remarkable tumor
targeting ability and enhanced anti-tumor efficacy in a subcutaneous in situ breast cancer
transplant model [134]. Compared to peptides, proteins exhibit advantages in structural
stability and hydrophobicity [135,136]. Monoclonal antibodies (mAb) are among the most
commonly used targeting proteins. As new target proteins are discovered on cell surfaces,
monoclonal antibodies can be generated [137]. By combining mifepristone (MIF) with
epithelial cell adhesion molecules (aEpCAMs), biodegradable nanomaterials can inhibit
the adsorption of circulating tumor cells (CTCs) and their invasion of the endothelium.
aE-MSN-M significantly inhibits the adhesion of colorectal cancer cells and endothelial
cells [138]. Peptides have size advantages over proteins but have limitations in terms of
structural stability and hydrophobicity [135,136]. In the selection, we should also make
comprehensive consideration according to the type of disease and the targeting of drugs.

6.8. Aptamer

Aptamers, short chains of RNA or DNA, are capable of interacting with biological
markers in tumor cells [139]. Folic acid and hyaluronic acid can serve as simple yet
effective targeting methods. An aptamer consists of a short single-stranded nucleic acid
(ssDNA or ssRNA), often fewer than 40 nucleotides in length [140]. Clinical diagnostics
and targeted therapies are emerging from them [141]. The process of generating aptamers,
known as the Systematic Evolution of Ligands by Exponential Enrichment (SELEX), is used
for diagnosing pathogen-induced infectious diseases by targeting bacteria, viruses, and
protozoa and is known as cell-SELEX when targeting mammalian cell lines [142]. With
high affinity, SELEX aptamers can target specific surface molecules on pathogens or cell
lines, inhibiting their mechanism of action. According to Yang et al. [143], S6-1b is a specific
aptamer that binds to the malignant glioma cell line SHG44 through cell-SELEX. Due to its
active targeting ability, this aptamer can identify SHG44 cells from other types of cancer,
rapidly accumulating and retaining at tumor sites for over four hours, enabling detection of
tumor locations in vivo. Aptamer S6-1b is, therefore, ideal for imaging noninvasive tumors
due to these features.

Table 1. Summary of MSN modifications.

Modifications Size (nm) Classes of
Therapy Advantages Diseases Ref.

Amination PEI 100–180 Vaccines Increased activation of DCs. Melanoma [71]

APTES/
APTMS 200 Photothermal

immunotherapy

Cause mitochondrial and Golgi
body dysfunction, inhibit energy
and material metabolism.

Breast cancer [82]

PEG 121 Photodynamic
immunotherapy

Activate NK cells and inhibit the
proliferation of tumor cells. Colon cancer [88]
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Table 1. Cont.

Modifications Size (nm) Classes of
Therapy Advantages Diseases Ref.

Membrane Liposome 150–200 Vaccines
Induce the activation of both
tumor specific CD8+ and CD4+
T lymphocytes.

Melanoma [90]

Melanoma 90 Checkpoint
inhibitors

Ablate tumors and induce
dendritic cell maturity to
stimulate an antitumor immune
response.

Melanoma [100]

Macrophage 60 Radiotherapy

Reduce the mesenchymal
transformation of glioma stem
cells and improve the
radiosensitivity of glioblastoma.

Glioblastoma [109]

RBC 124.76

Photothermal
therapy
combined with
chemotherapy

Evade immune clearance and
effectively target transport to
HeLa tumor sites.

Cervical cancer [127]

Peptide 135.5–141.1 chemotherapy

Escape the phagocytosis of
immune cells and achieve
efficient targeting of
nanoparticles at the tumor site.

Triple-negative
breast cancer [134]

7. Combined Immunotherapy with MSN for Cancer
7.1. MSN and Photodynamic Therapy (PDT) Combined Immunotherapy

PDT is a non-invasive treatment that generates cytotoxic intracellular ROS, espe-
cially singlet oxygen (SO), through a photochemical reaction based on photosensitizers
(PS). It is an effective method for cancer treatment [144]. PDT using nanotechnology
has the advantage of targeting PS more effectively while reducing toxicity to normal tis-
sues/cells. Furthermore, controlled release can maintain a steady delivery rate of PS,
thereby improving PDT’s effectiveness [145]. It has been shown by multiple research
groups that PDT kills cancer cells directly and promotes antitumor immunity by generating
tumor-associated antigens [146–148]. Lin and colleagues designed a nanovaccine using
sub-100 nm monodisperse large-pore mesoporous silica coated with β-NaYF4:20%Yb,2%Er
upconversion nanoparticles (UCMSs), co-loaded with MC540 and CT26 tumor antigen
(labeled UCMSs MC450-TF), for photodynamic immunotherapy of colorectal cancer [149].
The resulting UCMSs-MC540-OVA showed optimal synergistic immune-enhancing effects
under 980 nm NIR irradiation, validated by the strongest Th1 and Th2 immune responses
and the highest frequencies of CD4+, CD8+ T cells and effector memory due to efficient
protein delivery. Additionally, UCMSs-MC540-TF, a nanovaccine using TF as the anti-
gen, suppressed tumor growth and extended the lifespan of tumor-bearing BALB/c mice
compared with PDT or immunotherapy. The successful construction of multifunctional
UCMS immune adjuvants not only demonstrates the tremendous potential of UCMS in
therapeutic diagnostic applications to enhance immunotherapy efficacy but also provides a
paradigm for developing advanced vaccine delivery systems for cancer treatment.

Singlet oxygen usually has a short half-life (<40 ns), can only be effective over a short
distance (<20 nm) after generation, and many solid tumors suffer from insufficient oxygen
supply, limiting the therapeutic effect of oxygen-dependent PDT [150]. To overcome the lim-
itations of traditional PDT, the multistage responsive smart nanoparticle system designed
by Zhuang et al. [151] enhanced the therapeutic effects of PDT using smart nanoparticles
(Figure 2). Hollow silica nanoparticles were used with catalase (CAT) encapsulated within
their cavities and chlorin e6 (Ce6) (a PS agent) doped into the silica lattice structure. Using
electron-transfer interactions, 3-carboxypropyl triphenylphosphonium bromide (CTPP)
nanoparticles were modified to target mitochondria, and the nanoparticles were further
modified with acidic pH-responsive charge-converting polymers. These nanoparticles,
as innovative smart PDT agents, possess numerous unique functions. A pH-responsive
surface coating on such nanoparticles enhances their retention in acidic tumor microen-
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vironments, and they are capable of targeting mitochondria, the cellular organelle most
vulnerable to ROS. In the meantime, this nanoreactor would decompose tumor endoge-
nous H2O2, resulting in a marked reduction in tumor hypoxia, further advancing in vivo
PDT. Furthermore, nanoparticle-based PDT combined with checkpoint blockade therapy
resulted in systemic antitumor immune responses that killed non-irradiated tumors 1–2 cm
away, which has promising results for inhibiting metastases.
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7.2. MSN and Photothermal Therapy (PTT) Combined Immunotherapy

Historically, researchers have focused on the ablative effects of light and heat, often
overlooking the immunological impacts of such treatments. Photothermal agents and
drugs delivered together with MSN to the tumor site allow for the sustained release of the
drug and energy conversion, which prolongs the destruction of tumor tissues throughout
the photothermal therapy process [152]. Carbon nanodots, known for their unique biocom-
patibility and tumor accumulation effect, have been used as efficient photothermal agents
on MSN. Huang and colleagues [153] developed a dual-modal nanoparticle system combin-
ing immunotherapy and photothermal therapy, which incorporates fluorescent-emitting
carbon nanodots (CD) uniformly into the ordered framework of MSN. Co-assembling
CD@MSNs though hydrogen bonding and electrostatic interaction produced biodegrad-
able molecules that can accumulate in tumors and enhance PTT both in vitro and in vivo.
Most importantly, as a result of photothermal destruction of tumor cells, the biodegradable
nanoparticle fragments can in situ capture TAA. In order to perform immunotherapy, these
fragments of nanoparticles contain antigens that escape from necrotic tissue and enter
immune organs, where they stimulate NK cell proliferation and macrophage activation.
As a result, the CD@MSN-based photothermal system has been effective in suppressing
tumor metastasis.

Zhang and colleagues [154] designed a simple vaccine carrier system that can be
activated by near-infrared radiation (Figure 3). Using a single dose, tumors in situ can be
effectively exterminated, metastasized, and recurred without costly antibody treatments.
For PTT immunotherapy of melanoma, MSNs are used as carriers for the photothermal
agents polydopamine (PDA) and ovalbumin (OVA), as well as for the antigen-release
enhancer ammonium bicarbonate (ABC). A single injection of MSNs-ABC@PDA-OVA into
the tumor, followed by a single round of near-infrared irradiation, achieves the goal of
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eliminating most melanomas. The nano-vaccine is then engulfed by APCs. Under the dual
destruction caused by the temperature rise from near-infrared laser irradiation and the
disintegration of the nano-vaccine-producing NH3 and CO2 gases, OVA containing the
model antigen is released from the PDA layer. ABC, in an acidic environment, triggers
a strong systemic anti-tumor immune response, thereby eradicating residual and diffuse
metastatic tumors. Moreover, an immune memory is created and enhanced against B16-
OVA melanoma in an effort to reduce recurrence risk.
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7.3. MSN and the Combination of PTT and PDT in Immunotherapy

PDT involves photosensitizing agents (PSA) absorbing photon energy, leading to
the transfer of their electrons to oxygen molecules (O2) within cancer cells [155]. This
generates highly toxic ROS, such as singlet oxygen (1O2), causing irreversible damage
to cancer cells. PTT is an alternative phototherapy technique in which PTA is used to
increase the temperature surrounding cancer cells, stimulating their death [156]. It is pos-
sible that PTT can be enhanced using PTAs that are highly biocompatible and have high
photothermal conversion efficiency. PTT is used in combination with PDT and maximizes
synergies in the treatment of tumors or inflammation by triggering a local immune re-
sponse or in combination with other immunotherapies. The combination therapy of PTT
and PDT enables the simultaneous delivery of PS and PTA mediated by nanoparticles,
synergistically enhancing the anti-tumor effect. Magzoub and colleagues [157] developed
biocompatible and biodegradable tumor-targeting upconversion nanospheres with imaging
capabilities (Figure 4). These biocompatible and biodegradable core-shell nanospheres
consist of a mesoporous silica shell loaded with PS surrounding lanthanide elements
(ytterbium, erbium, and gadolinium) of sodium yttrium fluoride and bismuth selenide
(NaYF4:Yb/Er/Gd, Bi2Se3). Near-infrared (NIR) light is converted by NaYF4:Yb/Er into
visible light, which activates Ce6 to produce cytotoxic ROS, while absorbed NIR light is
converted into heat efficiently by Bi2Se3. Moreover, Gd allows for magnetic resonance
imaging of the nanospheres. DPPC-cholesterol-DSPE-PEG wraps the shell so that the



Biomolecules 2024, 14, 1057 12 of 20

encapsulated Ce6 stays in place and macrophages cannot recognize it, preventing tumor
targeting. The coating is also conjugated with a peptide that triggers the acidification
of rational membranes (ATRAM), ensuring specific and efficient internalization in the
mildly acidic microenvironment of the tumor. As a result of the nanospheres having an
effective NIR laser-induced anti-cancer action both in vitro and in vivo, as they induce ROS
production as well as localized hyperthermia, they facilitate tumor magnetic resonance,
thermal imaging, and fluorescent imaging. Nanospheres with negligible toxicity to healthy
tissues significantly prolong survival.
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7.4. MSN and Chemodynamic Therapy (CDT) Combined Immunotherapy

MSN can be utilized for chemodynamic immunotherapy. As primary immune infiltrat-
ing cells in the immunosuppressive TME, macrophages play a scavenger role in the body
by engulfing pathogens, aging cells, and damaged cells and then bridging innate immunity
by cross-presenting tumor antigens to cytotoxic lymphocytes [158–160]. However, due to
the upregulation of anti-phagocytic molecules such as CD47 on tumor cells, which makes it
difficult to activate macrophage phagocytosis, Du and colleagues constructed a co-delivery
nanocarrier aCD47-DMSN [161]. MSNs co-loaded with DOX and aCD47 can block the
“don’t eat me” signal on tumor cells. Moreover, the immunogenic cell death (ICD) effect
induced by internalized DOX exposes calreticulin (CALR) on tumor cells, resulting in an
“eat me” signal and increasing phagocytosis. The ICD effect also promotes the activation of
DCs and enhances T-cell-mediated immune responses. Therapeutic studies in 4T1 triple-
negative breast cancer models and B16F10 melanoma tumor models in vivo have shown
that aCD47-DMSN can effectively modulate macrophage phagocytosis, thereby producing
a robust anti-tumor efficacy through the combination of chemotherapy and immunotherapy
(Figure 5).
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This innovative approach not only targets tumor cells directly but also modifies the
TME to reactivate the body’s immune system against cancer. By combining the chemother-
apeutic action of DOX with the blockade of CD47, this strategy effectively reverses the
tumor’s defense against immune clearance, leading to enhanced anti-tumor activity. This
highlights the potential of integrating MSNs with CDT and targeted immunotherapy
agents to create a multifaceted attack against tumors, potentially improving the outcomes
of treatments for cancers that are resistant to conventional therapies.

8. Conclusions and Future Perspectives

MSNs, as a nanomaterial, hold many advantageous properties for drug delivery
systems and immunotherapy. MSN features tunable particle size, shape, pore structure,
and pore size. Their surface functionalization is both straightforward and efficient, and their
high surface area allows for substantial drug-loading capacities. Mesoporous silica also
exhibits moderate biocompatibility and can be further modified with membrane coating or
PEGylation to enhance its biocompatibility. When designing MSN-based cancer treatments,
it is crucial to thoroughly consider the characteristics of MSN in different cancers, study
the detailed mechanisms through which MSN induces tumor biological behaviors, and
conduct more comprehensive investigations into the biosafety issues of nanomedicine.
Pure MSN is still toxic at high concentrations, and biocompatibility and biodistribution
still need to be considered. In addition to current modification methods to reduce toxicity,
new methods are worth exploring.

The development and application of MSN in cancer immunotherapy are ongoing
and have already yielded promising results. Combined immunotherapy based on MSNs
represents a highly promising multimodal approach to cancer treatment. This not only
effectively avoids the problems of low delivery efficiency and potential immune-related
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side effects associated with sole immunotherapy but also leverages the advantages of MSN
delivery. The adjuvant properties inherent to MSN can enhance immune responses, and
their unique characteristics can synergistically enhance treatment effects when combined
with other therapies. Although nanodevices that are as simple as possible are more popular
in clinical applications, complex systems show remarkable results, and in some cases,
combination therapies can completely eradicate primary tumors and prevent metastasis.
Then again, avoiding the over-complexity of nanostructures is something that needs to be
considered in order to avoid the accumulation of particles. MSNs are still poorly studied in
terms of pathways and mechanisms to reach the target site, in vivo fate, and clearance, and
there is a large gap between animal models and humans. The complexity of nanostructures
will undoubtedly cause more uncertainty in biosafety and clearance. Despite this, the
integration of MSNs with immunotherapy is still in its infancy, and there are still challenges
to overcome in clinical practice. Although the effects of MSNs on antigen-presenting cells
have been studied, the complexity of interactions between MSNs and the immune system,
as well as the inherent ability to regulate innate and adaptive immunity, still need to be
investigated.

Although human trials using MSNs have begun, there is still a long way to go before
actual clinical therapy can be realized. Future basic research on MSN–immune cell inter-
actions is needed to design new delivery technologies and to actively direct the immune
response in order to maximize and quantify the benefits of combination therapy.
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