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Abstract: Ovarian cancer remains a leading cause of death among gynecological cancers, largely
due to its propensity for peritoneal metastasis and the development of drug resistance. This review
concentrates on the molecular underpinnings of these two critical challenges. We delve into the
role of exosomes, the nano-sized vesicles integral to cellular communication, in orchestrating the
complex interactions within the tumor microenvironment that facilitate metastatic spread and thwart
therapeutic efforts. Specifically, we explore how exosomes drive peritoneal metastasis by promoting
epithelial–mesenchymal transition in peritoneal mesothelial cells, altering the extracellular matrix,
and supporting angiogenesis, which collectively enable the dissemination of cancer cells across
the peritoneal cavity. Furthermore, we dissect the mechanisms by which exosomes contribute to
the emergence of drug resistance, including the sequestration and expulsion of chemotherapeutic
agents, the horizontal transfer of drug resistance genes, and the modulation of critical DNA repair
and apoptotic pathways. By shedding light on these exosome-mediated processes, we underscore
the potential of exosomal pathways as novel therapeutic targets, offering hope for more effective
interventions against ovarian cancer’s relentless progression.

Keywords: ovarian cancer; exosomes; peritoneal metastasis; drug resistance; epithelial–mesenchymal
transition

1. Introduction

Ovarian cancer continues to represent one of the most lethal gynecological malignan-
cies, largely due to its asymptomatic progression and advanced stage at diagnosis [1,2].
The effective treatment of this disease is impeded by two significant obstacles: metastasis
and drug resistance [3–5]. These factors often result in poor prognoses and high mortality
rates [6]. A comprehensive understanding of the underlying mechanisms that drive these
processes is essential for the development of novel therapeutic strategies. Recent research
has underscored the pivotal role of exosomes, nano-sized vesicles secreted by cells, in
orchestrating diverse aspects of ovarian cancer progression, including metastasis and drug
resistance [7,8].

Exosomes, which typically range in diameter from 30 to 150 nm, are encapsulated
by a lipid bilayer membrane, and carry a diverse array of biologically active molecules,
including deoxyribonucleic acid (DNA), various forms of ribonucleic acid (RNA), proteins,

Biomolecules 2024, 14, 1099. https://doi.org/10.3390/biom14091099 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom14091099
https://doi.org/10.3390/biom14091099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-9476-5308
https://orcid.org/0009-0008-8346-0155
https://orcid.org/0000-0002-6951-3467
https://doi.org/10.3390/biom14091099
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom14091099?type=check_update&version=1


Biomolecules 2024, 14, 1099 2 of 19

and cytokines [9]. These vesicles are not mere cellular waste; rather, they play a pivotal role
in intercellular communication, influencing the behavior and fate of recipient cells [10,11].

In the context of cancer, exosomes have been demonstrated to facilitate tumor growth,
metastasis, and the development of drug resistance by transferring oncogenic molecules to
target cells [12]. This intercellular communication is of particular relevance in the context
of the tumor microenvironment, where exosomes have the capacity to modulate immune
responses, promote angiogenesis, and alter the behavior of stromal cells, thereby creating a
supportive niche for tumor cells [13,14].

The majority of ovarian cancer metastases occur in the peritoneal cavity, with cancer
cells spreading throughout the abdominal region [15]. Exosomes derived from ovarian
cancer cells have been demonstrated to play a role in this process through the induction of
epithelial–mesenchymal transition (EMT) in peritoneal mesothelial cells, thereby enhancing
their invasive capabilities [16,17]. Additionally, exosomes contribute to the remodeling
of the extracellular matrix and the creation of a pre-metastatic niche, thereby further
facilitating cancer cell dissemination [3]. Additionally, these vesicles play a pivotal role in
angiogenesis, a process vital for supplying nutrients and oxygen to growing tumors, and
in immune evasion, enabling cancer cells to evade detection and destruction by the host’s
immune system [18,19].

Another significant challenge in the treatment of ovarian cancer is drug resistance,
which exosomes are known to facilitate. They are capable of sequestering and expelling
chemotherapeutic drugs from tumor cells, thereby reducing the intracellular concentration
of these agents and diminishing their efficacy. Additionally, exosomes transfer drug
resistance-associated molecules, such as microRNAs and proteins, to drug-sensitive cells,
thereby disseminating resistance traits across the tumor population. Furthermore, exosomes
regulate DNA damage repair pathways and apoptotic responses, thereby promoting the
survival and proliferation of drug-resistant cancer cells [20–22].

This review endeavors to dissect the sophisticated molecular mechanisms by which
exosomes contribute to peritoneal metastasis and drug resistance in ovarian cancer. By
delving into the cellular and molecular dialogues facilitated by exosomes within the tumor
microenvironment, we aim to unravel how these vesicles mediate the transformation of
normal peritoneal cells, foster the degradation and remodeling of the extracellular matrix,
and establish new vascular networks, all of which are essential for metastatic coloniza-
tion. Simultaneously, we aim to clarify the molecular stratagems employed by exosomes
to circumvent chemotherapeutic interventions, including the direct expulsion of drugs,
the transfer of resistance-conferring genetic material, and the alteration of cell survival
pathways. Through a detailed understanding of these processes, this review aspires to
highlight novel molecular targets within the exosome-mediated pathways, paving the way
for innovative therapeutic strategies that could significantly ameliorate the prognosis and
treatment of ovarian cancer.

2. Biological Characterization of Exosomes

Exosomes are nano-sized vesicles, typically 30 to 150 nm in diameter, encapsulated
by a lipid bilayer membrane (Figure 1). The process of exosome production is primarily
divided into four stages: invagination of the cell membrane, formation of endosomes,
development of multivesicular bodies (MVBs), and ultimately, fusion of these bodies with
the plasma membrane followed by release into the cytosol as exosomes [23]. During
exosome formation, the plasma membrane invaginates in a cup-like structure, wrapping
cell surface proteins and soluble proteins associated with the extracellular environment to
form an early sorting endosome (ESE), and the Golgi apparatus and endoplasmic reticulum
assist in ESE formation. Later, the ESE matures into late sorting endosomes (LSE), and
LSE invagination leads to the formation of intracellular multivesicular bodies (MVBs)
containing intraluminal vesicles (ILVs). Then, MVBs fuse with the cell membrane and
cytosolizes to secrete exosomes [9]. These exosomes are rich in diverse biologically active
molecules, including DNA, various forms of RNA, proteins, and cytokines [9,24,25]. The
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exosome membranes are characterized by specific marker proteins such as CD9, CD63, and
CD81, which facilitate their recognition and binding to target cells [26–28].

Biomolecules 2024, 14, x FOR PEER REVIEW 3 of 19 
 

molecules, including DNA, various forms of RNA, proteins, and cytokines [9,24,25]. The 
exosome membranes are characterized by specific marker proteins such as CD9, CD63, 
and CD81, which facilitate their recognition and binding to target cells [26–28]. 

 
Figure 1. Biogenesis and structure of extracellular vesicles (EVs) (created with BioRender.com (ac-
cessed on4 August 2024)). This diagram illustrates the biogenesis and structural characteristics of 
extracellular vesicles (EVs), specifically exosomes and microvesicles. Structure of extracellular vesi-
cles: The diagram highlights EVs’ surface and internal components. EVs are lipid bilayer-enclosed 
structures displaying surface antigens (e.g., CD9, CD63), adhesion molecules, and cargo, including 
nucleic acids (DNA, RNA), proteins, lipids, and metabolites. Exosomes (30–150 nm in diameter) are 
typically depicted with a detailed cargo composition that facilitates various cellular functions and 
signaling pathways. Exosome formation: The formation begins within the cell cytoplasm, where 
early endosomes (EE) containing intraluminal vesicles (ILVs) mature into multivesicular endosomes 
(MVE) under the influence of Rab27A. MVEs then fuse with lysosomes for degradation or fuse with 
the plasma membrane to release ILVs as exosomes into the extracellular space (exocytosis). Mi-
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Recent studies have emphasized the pivotal role of exosomes in the tumor microen-
vironment, where they influence critical aspects such as tumor cell proliferation, migra-
tion, invasion, angiogenesis, immune modulation, and metabolic reprogramming [25]. 
These processes collectively contribute to drug resistance and metastasis. Over the past 
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Figure 1. Biogenesis and structure of extracellular vesicles (EVs) (created with BioRender.com
(accessed on4 August 2024)). This diagram illustrates the biogenesis and structural characteristics
of extracellular vesicles (EVs), specifically exosomes and microvesicles. Structure of extracellular
vesicles: The diagram highlights EVs’ surface and internal components. EVs are lipid bilayer-enclosed
structures displaying surface antigens (e.g., CD9, CD63), adhesion molecules, and cargo, including
nucleic acids (DNA, RNA), proteins, lipids, and metabolites. Exosomes (30–150 nm in diameter) are
typically depicted with a detailed cargo composition that facilitates various cellular functions and
signaling pathways. Exosome formation: The formation begins within the cell cytoplasm, where early
endosomes (EE) containing intraluminal vesicles (ILVs) mature into multivesicular endosomes (MVE)
under the influence of Rab27A. MVEs then fuse with lysosomes for degradation or fuse with the
plasma membrane to release ILVs as exosomes into the extracellular space (exocytosis). Microvesicle
formation: Microvesicles (100–1000 nm in diameter) are formed by the plasma membrane’s direct
outward budding and fission (ectocytosis).

Recent studies have emphasized the pivotal role of exosomes in the tumor microenvi-
ronment, where they influence critical aspects such as tumor cell proliferation, migration,
invasion, angiogenesis, immune modulation, and metabolic reprogramming [25]. These
processes collectively contribute to drug resistance and metastasis. Over the past decade,
exosome research has made considerable strides, highlighting their promise as novel
diagnostic biomarkers and therapeutic vehicles [29–31].

3. Mechanisms of Exosomes in Ovarian Cancer Metastasis

Ovarian cancer metastasis and drug resistance represent significant challenges in
the effective treatment of this malignancy. Exosomes, which play a critical role in these
processes, exert substantial influence on ovarian cancer progression and therapeutic out-
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comes [21,32,33]. These nano-sized vesicles deliver bioactive molecules, such as proteins,
RNAs, lipids and other factors, to recipient cells through membrane fusion, endocytosis,
and receptor-mediated uptake. This intercellular communication promotes tumor cell
proliferation, migration, invasion, and metastasis [34,35].

Exosomes can also affect other cells in the tumor microenvironment and promote
tumor progression by altering the original biological phenotypes of these receptor cells; for
example, tumor cell-derived exosomes promote endothelial cell proliferation and neovas-
cularization [36]. Exosomes of mesenchymal cell origin also promote tumor progression
by altering tumor cell phenotypes; for example, exosomes secreted by cancer-associated
fibroblasts (CAFs) promote tumor metastasis and chemoresistance by enhancing tumor cell
stemness and epithelial–mesenchymal transition (EMT) [20]. Thus, exosomes are critical
regulators of tumor microenvironment modulation and cancer metastasis (Figure 2 and
Table 1).
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Figure 2. The role of exosomes in tumor microenvironment modulation and cancer metastasis (created
with BioRender.com (accessed on 4 August 2024)). This figure illustrates the multifaceted roles of
exosomes within the ovarian tumor microenvironment. Exosome functions: (a) Reprogramming
fibroblasts into cancer-associated fibroblasts (CAFs): Ovarian cancer cell-derived exosomes carry
TGFβ and other factors that transform normal fibroblasts into CAFs. CAFs then enhance tumor
growth by remodeling the extracellular matrix and secreting growth factors. (b) Promoting epithelial–
mesenchymal transition (EMT): Exosomes from ovarian cancer cells deliver signals such as TGFβ,
miRNAs, and other EMT-promoting molecules to recipient epithelial cells. This induces EMT,
characterized by the loss of epithelial markers and the gain of mesenchymal traits, which increases cell
motility and invasiveness. (c) Facilitating angiogenesis: Exosomes from ovarian cancer cells promote
angiogenesis by transferring pro-angiogenic factors such as VEGF, miRNAs, and other signaling
molecules to endothelial cells. This results in the formation of new blood vessels, which supply the
growing tumor with nutrients and oxygen. (d) Modulating immune response: Exosomes influence
immune cells by promoting immunosuppressive T_REG and MDSCs while inhibiting cytotoxic T-cells
and NK cells, creating an immune-invasive environment for the tumor. (e) Facilitating metastasis:
Exosomes prepare distant organs for tumor cell colonization by modifying local cells and creating
pre-metastatic niches, thereby aiding in the spread of cancer cells.
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Table 1. Exosomes promote ovarian cancer metastasis.

Exo-Source Content Target Cells Mechanism Effect Refer.

Cancer cells CD44 HPMCs EMT and secrete MMP9 EMT [37]

Cancer cells ANXA2 HMRSV5 PI3K/AKT/mTOR pathway EMT [38]

Serum and Ascites ITGA5B1/AEP Mesothelial cells FAK/Akt/Erk pathway EMT [39]

Cancer cells PKR1 HUVECs STAT3/PKR1 signaling
pathway Angiogenesis [40]

Cancer cells miR-205 HUVECs PTEN-AKT pathway Angiogenesis [41]

Ascites sE-cad HUVECs β-catenin and NF-κB signaling
pathways Angiogenesis [42]

Cancer cells miR-141 Stromal fibroblasts Hippo signaling pathway Reprogramming
CAFs [3]

CAFs miR-29c-3p Cancer cells Secrete MMP2 Regulation of
CAFs [43]

CAFs miR-21 Cancer cells Downregulation of APAF1 Regulation of
CAFs [44]

Ascites Biomolecule T-cells Inhibition of T-cell proliferation
and activation

Immune
suppression [45]

Cancer cells miR-155-5p T-cells PD-L1 Immune
suppression [46]

Cancer cells miR-181d-5p TAMs M2-type macrophage
polarization

Immune
suppression [47]

Cancer cells Laminin TAMs
ntegrinαvβ5/akt/sp1 pathway

and M2-type macrophage
polarization

Immune
suppression [48]

TAMs miR-221-3p Cancer cells Inhibits CDKN1B Immune
suppression [49]

TAMs miR-29a-3p Cancer cells FOXO3-AKT/GSK3β/PD-L1
pathway Immune escape [50]

TAMs miR-21-5p T-cells STAT3 inhibition and
Treg/Th17 ratio imbalance

Immune
suppression [51]

3.1. Exosomes Regulate Cancer-Associated Fibroblasts (CAFs) to Promote Ovarian
Cancer Metastasis

Cancer-associated fibroblasts (CAFs) represent a critical component of the tumor
microenvironment, exerting a substantial influence on tumor progression [52]. CAFs
facilitate tumor growth through the remodeling of the extracellular matrix (ECM); the
secretion of growth factors, cytokines, and chemokines; the regulation of tumor metabolism;
and the induction of angiogenesis. They also modulate immune cell function. They alter
the tumor immune microenvironment to suppress anti-tumor responses [53].

Tumor cells can influence the function of CAFs through exosomes, transforming
them into “helpers” that facilitate tumor growth, drug resistance, and metastasis [54].
Exosomes from ovarian cancer cells have been shown to activate fibroblasts into a CAF-like
state, enhancing their proliferation, motility, invasiveness, and enzyme expression [55].
Specifically, hsa-miR-141-3p (miR-141) secreted by ovarian cancer cells is transferred to
stromal fibroblasts via exosomes. By targeting YAP1, a key effector of the Hippo signaling
pathway, miR-141 downregulates YAP1 expression and increases the secretion of the pro-
inflammatory chemokine GROα in stromal fibroblasts. This reprogramming of stromal
fibroblasts into pro-inflammatory CAFs facilitates the formation of a metastatic niche, thus
promoting ovarian cancer metastasis [3].



Biomolecules 2024, 14, 1099 6 of 19

On the other hand, CAF-derived exosomes may also be involved in cancer cell pro-
liferation, metastasis, and drug resistance. Growing evidence suggests that exosomes
mediate the interaction between CAFs and other cells in the tumor microenvironment,
contributing to tumor metastasis [56]. In ovarian cancer studies, the downregulation of
miR-29c-3p in exosomes from CAFs has been associated with the promotion of peritoneal
metastasis. CAF-derived exosomes with low miR-29c-3p levels enhance MMP2 expression
in ovarian cancer cells, accelerating intraperitoneal metastasis [43]. Additionally, high
levels of miR-21 in CAF-derived exosomes from the omental tumor microenvironment are
linked to ovarian cancer metastasis. These exosomes transfer miR-21 to ovarian cancer cells,
directly binding to APAF1 and downregulating its expression, which inhibits apoptosis
and confers paclitaxel resistance, thus promoting distant metastasis [44]. It was found
that the combination of the chemotherapeutic drug gemcitabine and the exosome inhibitor
GW4869 significantly reduced the number of exosomes released by CAFs, resulting in a
better therapeutic effect [57]. To summarize, exosomes provide an important link between
ovarian cancer cells and CAFs. Exosomes from ovarian cancer cells convert CAFs into
metastasis-supporting factors, while exosomes secreted by CAFs further enhance tumor
resistance and metastasis.

3.2. Exosomes Promote Ovarian Cancer Metastasis by Inducing Epithelial–Mesenchymal
Transition (EMT) in Peritoneal Mesothelial Cells

Ovarian cancer metastasis is unique compared to other cancers due to its primary
mode of spread, which is peritoneal metastasis. The peritoneum, mainly composed of
mesothelial cells and a small amount of connective tissue, is a crucial barrier preventing
ovarian cancer cells from invading the retroperitoneal cavity and protecting underlying
tissues [58]. However, within the tumor microenvironment, ovarian cancer cells secrete
oncogenic factors that induce a mesothelial-to-mesenchymal transition (MMT) in normal
mesothelial cells, transforming them into cancer-associated mesothelial cells (CAMs) [59].
This transformation results in the loss of the protective barrier function of mesothelial
cells. CAMs exhibit epithelial–mesenchymal transition (EMT) features, such as increased
expression of fibronectin, α-SMA, vimentin, and decreased E-cadherin levels. These CAMs
further secrete cytokines, chemokines, and exosomes, enhancing ovarian cancer cells’
metastatic potential [60–62].

Recent studies have highlighted the significant role of exosomes in mediating com-
munication between ovarian cancer cells and CAMs, thereby facilitating ovarian cancer
metastasis. For instance, Koji Nakamura et al. discovered that exosomes derived from
ovarian cancer cells were enriched with CD44. When co-cultured with human peritoneal
mesothelial cells (HPMCs), these exosomes induced high levels of CD44 expression in
HPMCs, leading to morphological changes and the adoption of an EMT phenotype in these
cells. This elevated CD44 expression promoted peritoneal metastasis by inducing HPMCs
to secrete MMP9, thereby disrupting the peritoneal mesothelial barrier and enhancing the
invasive capacity of cancer cells [37].

Further research by Lingling Gao et al. demonstrated that annexin A2 (ANXA2),
a membrane-associated protein in ovarian cancer cells, could be transferred to human
peritoneal mesothelial cells (HMRSV5) via exosomes. ANXA2 regulated morphological
changes and fibrosis in these cells, promoting EMT and extracellular matrix degradation
through the PI3K/AKT/mTOR pathway. This process remodels the microenvironment,
creating favorable conditions for ovarian cancer metastasis [38].

Moreover, Xiaoduan Li et al. identified the ITGA5B1/AEP complex as highly ex-
pressed in the exosomes found in the serum and ascites of ovarian cancer patients. This
complex can be transferred to mesothelial cells via exosomes, activating the FAK/Akt/Erk
pathway, thereby promoting EMT in mesothelial cells. This activation regulates mesothelial
cell proliferation and migration, ultimately influencing peritoneal metastasis of ovarian
cancer [39]. Intriguingly, a recent study reported a novel mechanism where exosomes carry-
ing MMP1 mRNA in the ascites of ovarian cancer patients induce apoptosis in mesothelial
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cells, leading to the destruction of the peritoneal barrier, further facilitating peritoneal
metastasis [63].

Exosomes play a key role in communication between ovarian cancer cells and mesothe-
lial cells, promote EMT in mesothelial cells, and greatly facilitate peritoneal metastasis of
ovarian cancer by secreting MMP proteins and other factors that disrupt the peritoneal
barrier. Understanding these mechanisms is critical for designing cutting-edge therapies
to address ovarian cancer spread and improve patient survival. However, we should not
only focus on exosomes that promote EMT. An increasing body of research now indicates
that exosomes also play a role in inhibiting epithelial–mesenchymal transition (EMT) [64].
For example, it has been found that LBH-enriched exosomes inhibit tumor EMT by down-
regulating VEGFA signaling [65]. In addition, it has been found that exosomes derived
from mesenchymal stem cells (MSCs) have a role in inhibiting EMT in tumor cells, which
offers a new strategy for cancer treatment [66]. These studies suggest that exosomes may
function as a double-edged sword in regulating peritoneal metastasis of ovarian cancer
through epithelial–mesenchymal transition (EMT). Specifically, exosomes may promote
the EMT process of ovarian cancer cells under certain conditions, thereby enhancing their
invasiveness and metastatic potential, leading to disease progression. Conversely, under
other conditions, exosomes might inhibit the EMT process, reducing the invasiveness and
metastasis of cancer cells, thus alleviating the disease to some extent. Therefore, the role
of exosomes in ovarian cancer peritoneal metastasis is complex and variable, depending
on their microenvironment and specific regulatory mechanisms. These findings suggest
that when considering exosomes as therapeutic targets, their dual role must be carefully
considered to avoid potential adverse effects.

3.3. Exosome-Induced Angiogenesis Promotes Ovarian Cancer Metastasis

Angiogenesis is a critical factor in the progression of tumor metastasis and the devel-
opment of drug resistance [67]. Blood vessels, formed from a single layer of endothelial
cells, provide essential nutrients to tumor cells, creating a favorable environment for their
growth and aiding in immune evasion [12]. However, the structure and function of tumor-
induced neovascularization are often abnormal, characterized by an incomplete stroma,
and a propensity for leakage. This allows tumor cells to penetrate the vascular endothelium,
enter the bloodstream, and colonize other body parts, thus facilitating metastasis [68,69]. In-
creasing evidence underscores the significant role of vascular endothelial cells in promoting
tumor cell metastasis.

Tumor-associated exosomes are known to carry various proteins, RNAs, and factors
such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), trans-
forming growth factor β (TGF-β), and tumor necrosis factor (TNF). These components
stimulate angiogenesis and alter the permeability of vascular endothelial cells, thereby pro-
moting the establishment of pre-metastatic niches that are favorable to tumor cells [70,71].
For instance, ovarian cancer cell-derived exosomes carrying the PKR1 protein have been
shown to activate the PKR1 signaling pathway by inducing STAT3 phosphorylation in
human umbilical vein endothelial cells (HUVECs). This activation promotes HUVEC migra-
tion and tube formation, elucidating the mechanism by which ovarian cancer cell-derived
exosomes facilitate tumor angiogenesis [40].

Further studies have identified that miR-205 is highly expressed in the tumor tissues
and sera of ovarian cancer patients, and its elevated levels in circulating exosomes are
associated with tumor metastasis [41]. Mechanistically, exosome-dependent secretion of
miR-205 from ovarian cancer cells to neighboring vascular endothelial cells, mediated by
endocytosis via lipid rafts, regulates the PTEN-AKT pathway, inducing angiogenesis and
subsequent tumor metastasis [41]. Additionally, Tang, M.K.S., et al. discovered that soluble
E-cadherin (sE-cad), abundantly present in the malignant ascites of ovarian cancer patients,
is a potent inducer of angiogenesis. These sE-cad-positive exosomes form heterodimers
with VE-cadherin on endothelial cells, triggering a novel sequential activation of β-catenin
and NF-κB signaling pathways, thereby enhancing angiogenesis in ovarian cancer [42].
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In summary, exosomes exert a profound influence on the angiogenic and metastatic
processes in ovarian cancer by transporting essential pro-angiogenic factors and regulatory
molecules. The insights gained from studying the exosome-mediated signaling pathways
and their effects on vascular endothelial cells offer a valuable understanding of the pro-
gression of ovarian cancer and present potential avenues for developing novel therapeutic
strategies. Exosomes derived from miR-16-containing mesenchymal stem cells have been
reported to down-regulate vascular endothelial growth factor expression, thereby inhibit-
ing angiogenesis in vitro and in vivo [72]. In addition, the combination of exosomes with
monoclonal antibodies against vascular endothelial growth factor provides a new idea for
cancer treatment [73].

3.4. Exosomes Regulate Immune Cells to Promote Ovarian Cancer Metastasis

Immune cells, including lymphocytes, dendritic cells, monocytes, macrophages, gran-
ulocytes, and mast cells, play vital roles in antigen recognition, presentation, and immune
response [74]. While these cells typically act as defenders against cancer, their function
can be altered within the tumor microenvironment, aiding immune escape and promoting
drug resistance and metastasis [75,76].

Exosomes mediate intercellular communication and significantly influence the tumor
immune microenvironment [77]. They are involved in both immune stimulation and
immunosuppression within ovarian cancer. On the one hand, exosomes can stimulate
immune cells to exert anti-tumor functions by secreting biological factors and transmitting
bioactive substances. On the other hand, exosomes secreted by ovarian cancer cells can
shift immune cells from an activated state to an immunosuppressive one, facilitating tumor
growth, drug resistance, and metastasis by evading immune surveillance [78,79]. Exosomes
carry immunoreactive molecules, including major histocompatibility complex (MHC I),
heat shock proteins (HSPs), and CD81, which stimulate anti-tumor immune responses [80].
However, they can also enhance immune escape by promoting immunosuppression, hereby
promoting tumor development and metastasis [81].

CD4(+) and CD8(+) T lymphocytes are crucial for specific anti-tumor immunity. Emerg-
ing evidence suggests that exosomes can carry various immunosuppressive signals to in-
hibit T-cell proliferation and function, contributing to tumor immunity [82]. Exosomes iso-
lated from the ascites of ovarian cancer patients can inhibit T-cell receptor (TCR)-dependent
T-cell activation, affecting endpoints such as NF-κB and NFAT translocation, CD69 and
CD107a upregulation, cytokine production, and cellular proliferation. This immune sup-
pression is reversible, and blocking these exosomes can reactivate anti-tumor responses in
suppressed tumor-associated T-cells [45].

The programmed death ligand-1/programmed death receptor-1 (PD-L1/PD-1) signal-
ing pathway is crucial to tumor immunosuppression. It inhibits T lymphocyte activation
and enhances tumor immune tolerance, facilitating immune escape [83–85]. For example,
elevated reactive oxygen species (ROS) in ovarian cancer downregulate exosomal miR-
155-5p, increasing PD-L1 expression and reducing CD8(+) T lymphocytes, thereby aiding
immune escape [46]. Cisplatin-resistant ovarian cancer cells secrete exosomes carrying
plasma gelsolin (pGSN), which induce CD8(+) T lymphocyte apoptosis, decrease IFN-γ
secretion, and increase the glutathione (GSH) content in ovarian cancer cells, enhancing
immune resistance [86].

Studies on the impact of exosomes on the tumor immune microenvironment in ovar-
ian cancer have mainly focused on tumor-associated macrophages (TAMs) [87]. TAMs
release exosomes, cytokines, chemokines, and enzymes that enhance ovarian cancer cell
invasiveness and chemoresistance, playing a crucial role in peritoneal metastasis by aiding
tumor cell adhesion and sphere formation [88]. M2-type macrophages, predominantly
found among TAMs, are pro-carcinogenic [89]. Hypoxia increases the secretion of exosomes
carrying miR-21-3p, miR-125b-5p, and miR-181d-5p from ovarian cancer cells, promoting
M2 macrophage polarization and furthering tumor cell proliferation and migration [47].
Elevated ROS levels in ovarian cancer cells reduce exosomal miR-155-5p uptake by TAMs,



Biomolecules 2024, 14, 1099 9 of 19

upregulating immunosuppressive factors like PD-L1 and promoting immune escape [46].
Additionally, ovarian cancer cells with high ETS proto-oncogene 1 (ETS1) expression release
laminin-rich exosomes that promote M2 macrophage polarization and CXCL5 and CCL2
secretion via the integrin αvβ5/akt/sp1 pathway, supporting metastasis [48].

TAM-derived exosomal miRNAs also play significant roles in ovarian cancer metasta-
sis. For instance, miR-221-3p in M2-TAM exosomes inhibits CDKN1B, promoting tumor
cell proliferation and peritoneal metastasis [49]. miR-29a-3p in TAM exosomes enhances
PD-L1 expression in ovarian cancer cells via the FOXO3-AKT/GSK3β pathway, aiding
immune escape [50]. TAMs also interact with other tumor microenvironment cells, as seen
in exosome-mediated miR-29a-3p and miR-21-5p interactions with T-cells, leading to STAT3
inhibition and Treg/Th17 ratio imbalance, fostering an immunosuppressive environment
and promoting metastasis [51].

These findings provide new insights into the role of immune cells in the ovarian
cancer tumor microenvironment, highlighting potential diagnostic markers and therapeutic
targets. However, in ovarian cancer research, we have found that most studies have
focused primarily on exosomes inhibiting immune responses, while there is a lack of
attention to the other side of the coin, i.e., that exosomes can also activate immunity [90].
For example, it was found that exosomes are involved in antigen presentation to modulate
the immune response. In a pancreatic cancer study, tumor-derived exosomes interacted
with antigen-presenting cells (APCs) to efficiently kill tumors by activating tumor antigen-
specific cytotoxic T-cell (CTL) responses [91]. Thus, further comprehensive investigation of
the mechanisms of exosomal influence on the immune system is warranted.

4. Mechanisms of Exosomes in Ovarian Cancer Drug Resistance

Exosome secretion is a universal capability of all cell types, enabling them to mediate
intercellular communication and modulate the function of recipient cells. These functions
are inextricably linked to many physiological processes and the progression of various
diseases [92–95]. For example, exosomes secreted by drug-resistant tumor cells can cause
drug-resistant phenotypic changes in sensitive cells, and information transfer between
tumor cells via exosomes allows tumor cells to escape immune killing [94] better.

They modulate immune cell activity and can alter the expression of drug-resistant
genes and survival pathways, thereby affecting the sensitivity of tumor cells to chemother-
apy and promoting the development of drug resistance [96–98]. Understanding the diverse
mechanisms through which exosomes contribute to ovarian cancer drug resistance is crucial
for developing novel therapeutic strategies to overcome these challenges (Figure 3 and
Table 2).

Table 2. Exosomes promote drug resistance in ovarian cancer.

Exo-Source Content Target Cells Mechanism Effect Refer.

Cancer cells Cisplatin N/A Transmembrane protein
TMEM205 Drug Efflux [99,100]

Cancer cells Cisplatin N/A Sorting and release Drug Efflux [101]

Cancer cells Cisplatin, STAT3, and
FAS N/A Rab27a, Rab7, LAMP1/2

and NEU-1 Drug Efflux [102]

Cancer cells DNMT1 Sensitive cells DNA replication and
damage repair DNA repair [103]

Cancer cells miR-429 Sensitive cells CASR/STAT3 pathway DNA repair [104]

Cancer cells hsa_circ_0010467 Sensitive cells LIF/STAT3 pathway DNA repair [105]

CAAs and CAFs miR-21 Cancer cells Down-regulating APAF1 Inhibiting
apoptosis [44]
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Table 2. Cont.

Exo-Source Content Target Cells Mechanism Effect Refer.

CAFs miR-98-5p Cancer cells Down-regulating
CDKN1A

Inhibiting
apoptosis [106]

Cancer cells miR-21-3p and
miR-891-5p Sensitive cells DNA repair mechanisms Inhibiting

apoptosis [107]

Cancer cells miR-1246 TAMs M2-type macrophage
polarization

Immune
suppression [108]

TAMs miR-223 Cancer cells PTEN-PI3K/AKT
pathway

Immune
suppression [109]

Biomolecules 2024, 14, x FOR PEER REVIEW 9 of 19 
 

in exosome-mediated miR-29a-3p and miR-21-5p interactions with T-cells, leading to 
STAT3 inhibition and Treg/Th17 ratio imbalance, fostering an immunosuppressive envi-
ronment and promoting metastasis [51]. 

These findings provide new insights into the role of immune cells in the ovarian can-
cer tumor microenvironment, highlighting potential diagnostic markers and therapeutic 
targets. However, in ovarian cancer research, we have found that most studies have fo-
cused primarily on exosomes inhibiting immune responses, while there is a lack of atten-
tion to the other side of the coin, i.e., that exosomes can also activate immunity [90]. For 
example, it was found that exosomes are involved in antigen presentation to modulate the 
immune response. In a pancreatic cancer study, tumor-derived exosomes interacted with 
antigen-presenting cells (APCs) to efficiently kill tumors by activating tumor antigen-spe-
cific cytotoxic T-cell (CTL) responses [91]. Thus, further comprehensive investigation of 
the mechanisms of exosomal influence on the immune system is warranted. 

4. Mechanisms of Exosomes in Ovarian Cancer Drug Resistance 
Exosome secretion is a universal capability of all cell types, enabling them to mediate 

intercellular communication and modulate the function of recipient cells. These functions 
are inextricably linked to many physiological processes and the progression of various 
diseases [92–95]. For example, exosomes secreted by drug-resistant tumor cells can cause 
drug-resistant phenotypic changes in sensitive cells, and information transfer between tu-
mor cells via exosomes allows tumor cells to escape immune killing [94] better. 

They modulate immune cell activity and can alter the expression of drug-resistant 
genes and survival pathways, thereby affecting the sensitivity of tumor cells to chemo-
therapy and promoting the development of drug resistance [96–98]. Understanding the 
diverse mechanisms through which exosomes contribute to ovarian cancer drug re-
sistance is crucial for developing novel therapeutic strategies to overcome these challenges 
(Figure 3 and Table 2). 

 

Figure 3. The role of exosomes in ovarian cancer drug resistance (created with BioRender.com
(accessed on 22 August 2024)). This figure schematically depicts the three principal pathways by
which exosomes in the tumor microenvironment promote drug resistance in ovarian cancer. These
are as follows: (1) the activation of the mid-tumor DNA repair system and inhibition of the death
pathways; (2) direct promotion of drug efflux to reduce intracellular drug concentrations in tumor
cells; and (3) direct modulation of immune cells to create an immunosuppressive microenvironment.

4.1. Exosome-Promoted Drug Efflux Leads to Drug Resistance in Ovarian Cancer

Decreased intracellular concentrations of anti-cancer drugs contribute significantly
to tumor cell drug resistance. Hydrophobic drugs and their breakdown products interact
with exosome lipid membranes, becoming encapsulated and expelled from tumor cells.
Understanding the mechanism of exosome-mediated drug exocytosis is crucial for devel-
oping therapies for chemotherapy-resistant ovarian cancer [12]. It is well documented that
drug-resistant ovarian cancer cells secrete more exosomes than drug-sensitive cells, a phe-
nomenon linked to the transmembrane protein TMEM205 [99,100]. Safaei et al. found that
the cisplatin (CDDP)-resistant ovarian cancer cell line 2008/C13×5.25 released 2.6 times
more CDDP in exosomes than CDDP-sensitive cells, with CDDP concentrated in lysosomes,
indicating that exosomes contribute to resistance through abnormal protein sorting and
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release, leading to increased CDDP expulsion [101]. Under hypoxic conditions, ovarian
cancer cells upregulate Rab27a and downregulate Rab7, LAMP1/2, and NEU-1, promot-
ing exosome release. Hypoxic ovarian cancer cell exosomes carrying STAT3 and FAS
significantly increase chemotherapy resistance in vitro [102].

Increased drug efflux is one of the causes of drug resistance in tumors. Increased
exosome secretion leads to drug efflux, preventing chemotherapeutic agents from ade-
quately killing tumor cells [110]. Combining the exosome release inhibitor GW4869 with
chemotherapeutic drugs has been reported to restore chemosensitivity in tumors [111].

4.2. Exosomes Promote Drug Resistance in Ovarian Cancer by Modulating DNA Damage Repair
Systems and Death Pathways

Exosomes can significantly contribute to the development of drug resistance by deliv-
ering drug resistance-associated molecules to drug-sensitive cells. Wang et al. reported that
the expression of PANDAR (promoter of CDKN1A antisense DNA damage-activated RNA)
is higher in cisplatin-resistant ovarian cancer tissues and cells from patients with wild-type
p53 ovarian cancer than in cisplatin-sensitive cases [112]. Their studies showed that exo-
somes from ovarian cancer cell lines carrying PANDAR increased the SIRT4/SIRT6 mRNA
proportion in ovarian cancer cells by interacting with the target gene SRSF9, significantly
enhancing tumor cell survival and chemotherapy resistance in vitro [113].

DNA methyltransferase 1 (DNMT1) plays an essential role in maintaining genome-
wide methylation during DNA replication and damage repair, and its oncogenic potential
has been well documented [103]. Recently, DNMT1 was highly enriched in exosomes se-
creted by ovarian cancer cells. In vivo experiments demonstrated that DNMT1-containing
exosomes promoted tumor resistance, while treatment with the exosome inhibitor GW4869
almost wholly restored the sensitivity of resistant cells [114]. Additionally, higher plasma
gelsolin (pGSN) expression was observed in chemotherapy-resistant ovarian cancer cells
compared to sensitive ones. This was mediated through exosomal secretion, which upregu-
lated HIF1α expression and conferred cisplatin resistance to other chemotherapy-sensitive
cells [115]. pGSN in exosomes also induced CD8(+) T-cell apoptosis, leading to reduced
IFNγ secretion and increased glutathione (GSH) production in ovarian cancer cells, enhanc-
ing resistance to CDDP-induced cell death [86].

The role of tumor cell-derived exosomal miRNAs (exo-miRNAs) in fostering drug
resistance has garnered significant attention. Exo-miRNAs regulate gene expression in
target cells locally and systematically, influencing disease progression by modulating DNA
damage repair systems and death pathways and promoting chemoresistance [116]. For
example, miR-429 was highly expressed in multidrug-resistant SKOV3 cells and their
secreted exosomes, compared to sensitive A2780 cells. miR-429 promoted A2780 cell
proliferation and drug resistance by targeting the calcium-sensing receptor (CASR)/STAT3
pathway [104].

Interestingly, increased expression of circular RNA hsa_circ_0010467 was observed in
exosomes from platinum-resistant ovarian cancer cells. RNA-binding protein AUF1 pro-
motes the biogenesis of hsa_circ_0010467 in ovarian cancer, which activates the LIF/STAT3
signaling pathway by mediating the inhibitory effect of miR-637 on leukemia inhibitory
factor (LIF), thereby promoting platinum resistance [105]. Exo-miRNAs also play crucial
roles in inhibiting apoptosis and regulating DNA damage repair, contributing to drug
resistance. For instance, Zou et al. reported that exosomal miR-6836 can be transferred
to cisplatin-sensitive epithelial ovarian cancer (EOC) cells, promoting drug resistance by
targeting DLG2 and enhancing Yap1 nuclear translocation, forming a TEAD1-regulated
positive feedback loop that increases cell stemness and inhibits apoptosis [22].

Levels of miR-21 are markedly elevated in exosomes derived from cancer-associated
adipocytes (CAA) and fibroblasts (CAF) harvested from the omental tumor milieu. These
exosomes convey miR-21 to ovarian cancer cells, where it binds directly to APAF1, sup-
presses its expression, impedes apoptosis, and bestows resistance to paclitaxel [44]. Guo
et al. found that cyclin-dependent kinase inhibitor 1A (CDKN1A) is highly expressed in
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cisplatin-sensitive ovarian cancer cells. CAF-derived exosomes carrying miR-98-5p increase
OC cell proliferation and cell cycle entry, inhibit apoptosis, and promote cisplatin resistance
by downregulating CDKN1A [106].

Moreover, exosomes originating from ovarian cancer cells are notably enriched with
miR-21-3p, miR-21-5p, and miR-891-5p [117]. Quantitative MS/MS analyses have shown
that miR-21-5p stimulates glycolysis and elevates the levels of ATP-binding cassette family
proteins as well as detoxifying enzymes. Both miR-21-3p and miR-891-5p play roles in
regulating proteins linked to DNA repair processes; collectively aiding in the development
of carboplatin resistance in ovarian cancer [107]

In summary, exosomes contribute to drug resistance in ovarian cancer through com-
plex interactions with DNA damage repair systems and apoptotic pathways. A deeper
understanding of these mechanisms could help create innovative therapeutic approaches
to circumvent chemoresistance in ovarian cancer. Interestingly, it was previously reported
that miR-21, which is highly expressed in ovarian cancer, impedes tumor cell apoptosis and
leads to paclitaxel resistance [44]. Then, we found that in another report, the researchers’
engineered exosome-based co-delivery system of the chemotherapeutic drug 5-FU and
the miR-21 inhibitor oligodeoxynucleotide (miR-21i) efficiently promoted 5-FU-resistant
HCT116 cells to undergo apoptosis and reverse drug resistance [118]. This makes us won-
der whether an engineered exosome co-delivery system constructed in the same way as
paclitaxel and miR-21i would be effective in reversing drug resistance in ovarian cancer.

4.3. Exosomes Regulate Immune Cells to Promote Drug Resistance in Ovarian Cancer

Recent studies investigating the interplay between tumor-associated immune cells
and exosomes in ovarian cancer, particularly concerning mechanisms of drug resistance,
are primarily centered on tumor-associated macrophages (TAMs) [119]. TAMs are the
predominant immune cell population in the ovarian tumor microenvironment, character-
ized by high plasticity. They can be easily polarized into an immunosuppressive M2-like
phenotype by colony-stimulating factor-1 released by tumor cells, which is closely linked
to ovarian cancer progression and chemoresistance [87].

Previous studies have shown that ovarian cancer cell-derived exosomal miR-1246
confers chemoresistance to OC cells by directly targeting Cav1; when OC cells were co-
cultured with macrophages, they transferred their oncogenic miR-1246 to M2-type TAMs,
rather than M0-type TAMs. This suggests that ovarian cancer cells promote tumor resistance
through exosomes transferred to adjacent infiltrating immune cells [108]. Conversely,
exosomes isolated from OC cells treated with naphthoquinone shikonin (SK), which has
anti-tumor effects, were found to inhibit M2 polarization of macrophages by blocking β-
catenin activation mediated by exosomal galectin-2 (LGALS2). This reduced the infiltration
of M2 macrophages in tumor tissues, providing a novel approach for immunotherapy
against ovarian cancer resistance [120].

Furthermore, recent research indicates that hypoxic environments within epithelial
ovarian cancer (EOC) cells initiate the recruitment of macrophages and stimulate their
transformation into a phenotype resembling tumor-associated macrophages (TAMs). [121].
MiR-223 was found in high concentrations in TAM-derived exosomes produced under
hypoxic conditions and could enhance drug resistance in epithelial ovarian cancer (EOC)
cells through the PTEN-PI3K/AKT signaling pathway [109].

Despite these insights, there remains a significant gap in understanding the drug
resistance mechanisms of immune cell-derived exosomes in the ovarian cancer tumor
microenvironment beyond TAMs. In exosome-mediated drug resistance, research on other
immune cells, such as lymphocytes, NK cells, dendritic cells, monocytes, granulocytes, and
mast cells, is sparse and warrants further exploration.

5. The Potential of Exosomes in the Treatment of Ovarian Cancer

The significant role of exosomes within the ovarian cancer tumor microenvironment
establishes them as effective therapeutic targets for therapy and treatment approaches [122,123].
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The findings discussed earlier about exosomes promoting metastasis and drug resistance
suggest potential therapeutic applications targeting exosomes in ovarian cancer. With their
ability to target specific cells and deliver bioactive molecules, exosomes have become a focal
point in drug delivery research owing to their excellent biocompatibility, high permeability,
and low immunogenicity [9]. For instance, the cisplatin-loaded exosomes from umbilical cord
blood-derived M1 macrophages could target ovarian cancer and reverse cisplatin resistance
in vivo [124]. Exosomes can also serve as carriers of siRNA for ovarian cancer treatment [125].
Recently, cell-free immunotherapy has emerged as a noteworthy approach to treating ovarian
cancer. In this domain, exosomes derived from immune cells are recognized for their capacity
to modulate immune responses. Heyong Luo et al. have shown that using exosomes from
NK cells to deliver cisplatin can rejuvenate the immune activity of NK cells in the tumor
microenvironment, offering an innovative treatment method [126].

Cutting-edge technologies, like the M-Trap, have been designed to isolate T-cells,
aiming to treat peritoneal metastases stemming from ovarian cancer [127]. Simone Pisano
et al. pioneered the development of immune cell-derived exosome mimetics (IDEMs),
introducing a new strategy to combat ovarian cancer [128]. Furthermore, Longxia Li
et al. demonstrated that combined delivery of TP and miR-497 using exosome–liposome
composite nanoparticles effectively overcome drug resistance in ovarian cancer [129].

Given that most ovarian cancer patients are diagnosed at advanced stages with extensive
peritoneal metastases, the importance of targeted delivery systems becomes paramount. Qian Li
et al. have shown that a peritoneal-localized hydrogel is based on an artificial exosome derived
from engineered M1-type macrophages. This hydrogel can regulate peritoneal macrophages’
polarization and phagocytic function following X-ray radiation-induced immunogenicity, en-
hancing phagocytosis and antigen presentation to ovarian cancer cells [130].

Despite significant advancements, there are still considerable hurdles to surmount
before exosome-based therapies can be effectively translated from bench to bedside. The
intricate nature of exosome biology, challenges in large-scale production, and the need for
precise targeting mechanisms are among the hurdles that need to be addressed to realize
the full therapeutic potential of exosomes in the fight against ovarian cancer.

6. Conclusions

Exosomes emerge as central orchestrators of the molecular events that drive peritoneal
metastasis and drug resistance in ovarian cancer. This discussion has highlighted the
complex roles of exosomes in modulating key processes such as epithelial-to-mesenchymal
transition (EMT), which primes cancer cells for metastasis, and the re-engineering of the
extracellular matrix, which clears the path for tumor invasion. Furthermore, exosomes are
implicated in fostering new blood vessel formation, ensuring the metastatic cells’ survival
and spread. On the front of drug resistance, exosomes are revealed to be conveyors of
chemoresistance, facilitating the horizontal transfer of drug-resistant genetic material and
modulating cell survival pathways to evade the cytotoxic effects of therapy. This review
has underscored the intricate molecular mechanisms at play, suggesting that disrupting
exosome-mediated communication could be a promising strategy for stalling the progres-
sion of ovarian cancer. Further investigative efforts into these pathways may unlock new
avenues for therapeutic intervention, potentially leading to more effective management of
the disease and improved patient survival rates.
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