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Abstract: Stimulating erythropoiesis is essential in the treatment of various types of anemia. Sheng
Xue Ning (SXN) is commonly used in China as an iron supplement to treat iron deficiency anemia,
renal anemia, and anemia in pregnancy. This research reports a novel effect of SXN in enhancing the
proliferation of hematopoietic stem/progenitor cell (HSPC) to promote erythropoiesis in the bone
marrow, which is distinct from conventional iron supplements that primarily aid in the maturation
of red blood cells. Employing a model of hematopoietic dysfunction induced by X-ray exposure,
we evaluated the efficacy of SXN in restoring hematopoietic function. SXN significantly promoted
the recovery of peripheral erythroid cells and enhanced the proliferation and differentiation of
Lin−/c-KIT+/Sca-1+ HSPC in mice exposed to X-ray irradiation. Our results showed that SXN
elevated the expression of stem cell factor (SCF) and activated the SCF/c-KIT/PI3K/AKT signaling
pathway, facilitating the proliferation and differentiation of HSPC. In vitro, SXN markedly enhanced
the proliferation of bone marrow nucleated cell (BMNC) and the colony-forming capacity of BFU-
E, CFU-E, and CFU-GM, while also elevating the expression of proteins involved in the SCF/c-
KIT/PI3K/AKT pathway in BMNC. Additionally, SXN enhanced the proliferation and differentiation
of mesenchymal stem cell (MSC) and increased SCF secretion. In conclusion, SXN demonstrates
the capacity to enhance erythropoiesis by upregulating SCF expression, thereby promoting HSPC
proliferation and differentiation via the SCF/c-KIT/PI3K/AKT pathway. SXN may offer a new
strategy for improving the activity of HSPC and promoting erythropoiesis in the treatment of
hematopoiesis disorders.

Keywords: Sheng Xue Ning; erythropoiesis; hematopoietic stem/progenitor cell; mesenchymal stem
cell; hematopoietic cytokine; stem cell factor

1. Introduction

Erythropoiesis is a crucial physiological process that ensures the maintenance of
hemoglobin homeostasis and facilitates effective oxygen transport. The initial phases of ery-
thropoiesis are derived from multipotential hematopoietic stem and progenitor cell (HSPC).
In response to a range of cytokines, HSPC undergo differentiation into erythroid-committed
progenitor cell, which are typically identified as burst-forming unit erythroid (BFU-E) and
subsequently differentiated colony-forming unit erythroid (CFU-E) [1]. HSPC are essential
for regenerating the entire hematopoietic system, demonstrating remarkable long-term
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self-renewal and multidirectional differentiation capacities [2,3]. They play a central role in
both steady-state and stress-induced hematopoiesis [4]. The hematopoietic niche, also re-
ferred to as the microenvironment, is a crucial regulator of HSPC proliferation, self-renewal,
and differentiation [5–7]. This niche comprises stromal cells and various cytokines. Stromal
cells provide structural support, while cytokines regulate the maintenance, migration,
proliferation, differentiation, and maturation of HSPC under both steady-state conditions
and in response to hematopoietic injury [8,9]. Among these cytokines, stem cell factor (SCF)
interacts with the KIT receptor to enhance the proliferation and survival of HSPC, BFU-E,
CFU-E, and proerythroblasts [10,11]. SCF is primarily secreted by stromal cells in the niche,
including adipocytes, fibroblasts, and endothelial cells, which originate from mesenchymal
stem cell (MSC). SCF promotes the proliferation and differentiation of HSPC by interacting
with the receptor c-KIT through the PI3K/AKT signaling pathway. The secretion of SCF
from rapidly proliferating adipocytes facilitates hematopoietic recovery in the bone marrow
of mice following X-ray radiation exposure [12]. Thus, SCF is indispensable for both the
regeneration of HSPC and stress-induced hematopoiesis [13,14]. Recombinant human
stem cell factor (rhSCF) is commonly used for the ex vivo amplification of HSC, but its
receptors are also present on mast cells and cancer cells, limiting its direct clinical use
in vivo [15,16]. Therefore, stimulating the autocrine secretion of SCF in the hematopoietic
microenvironment to promote the proliferation of HSPC may be a more effective strategy
to promote erythropoiesis.

Sheng Xue Ning (SXN), mainly composed of sodium iron chlorophyllin (Fe-chlorine
iron p6, Fe-chlorine e6, Fe-isochlorin e4, etc.), are refined through the dissolution, saponi-
fication, extraction, acid precipitation, washing, and substitution of the magnesium ion
in the chlorophyll center with an iron ion [17]. Studies have shown that chlorophyll can
promote the proliferation of hematopoietic progenitor cell [18]. Given that the structure of
chlorophyll is similar to heme, replacing the magnesium ions in the porphyrin ring with
iron ions may theoretically enhance its pharmacological role in iron supplementation and
erythropoiesis improvement [19,20]. Clinical evidence indicates that SXN is effective in
treating iron deficiency anemia, renal anemia, and anemia during pregnancy with minimal
side effects [21,22]. Research reports that SXN can effectively stimulate red blood cell
production by promoting erythropoietin (EPO) synthesis and regulating iron homeostasis
in adenine-induced anemia [23]. However, the specific effects of SXN on hematopoietic cell
lineages, particularly its molecular mechanism in enhancing HSPC function, remain to be
fully understood. Preliminary studies suggest that SXN increases nucleated cell counts in
bone marrow, elevates the proportion of c-KIT+ HSPC, and boosts SCF mRNA expression
in cyclophosphamide-induced anemia mice [24]. These findings lead us to hypothesize that
SXN may enhance SCF secretion, thereby promoting the proliferation and differentiation
of HSPC.

This study utilized a total-body X-ray irradiation mouse model to investigate the
effects of SXN on blood cell count and the proliferation and differentiation of HSPC. Our re-
sults confirm for the first time that SXN can promote MSC proliferation and differentiation
and upregulate SCF expression, thereby enhancing HSPC proliferation and promoting ery-
thropoiesis. This research may offer a novel therapeutic strategy to accelerate hematopoietic
recovery by promoting HSPC proliferation and differentiation.

2. Materials and Methods
2.1. Reagents and Antibodies

SXN (Lot: 20190306) was provided by Wuhan United Pharmaceutical Co., Ltd. and
stored at 4 ◦C. FITC anti-CD3(E-AB-F1013C), FITC anti-Gr-1(E-AB-F1120C), FITC anti-
CD11b(E-AB-F1081C), FITC anti-CD45R(E-AB-F1112C), and FITC anti-Ter119 (E-AB-F1125C);
PE anti-Sca-1(E-AB-F1191D); APC anti-c-KIT(E-AB-F1092E); PE-Cy7 anti-CD127 (E-AB-
F1023E); PE/CY5.5 Rat Anti-Mouse 7AAD(E-CK-A162); and APC-Cy7 anti-CD34(E-AB-
F1284E) were purchased from Elabscience (Wuhan, China). Mouse bone marrow mes-
enchymal stem cells (MUBMX-01001) and OriCell Basal Medium (MUBMX-90011) were
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purchased from Cyagen Biosciences (Guangzhou, China). Antibodies against c-KIT (E-AB-
70340), SCF (26582-1-AP), β-actin (E-AB-40338), and GAPDH (E-AB-40337) were purchased
from Elabscience (Wuhan, China). Antibodies against P-PI3K (T40064S), and PI3K (T40064S)
were purchased from Abmart (Shanghai, China). Antibodies against P-AKT (80455-1-RR),
and AKT (10176-2-AP) were purchased from Proteintech (Shanghai, China). A CCK-8 assay
was purchased from APExBIO (Houston, CA, USA). FICOLL PAQUE PLUS (10327061) was
purchased from Cytiva (Wales, UK).

2.2. Animals

Kunming (KM) mice were obtained from the Chengdu Dossy Experimental Animal
CO., LTD (Chengdu, China). The mice were raised in sterile laminar flow cabinets under a
12- h light/dark cycle, and they were given standard diets and unlimited access to water.
The ambient temperature was maintained at (24 ± 2) ◦C. Following a one-week acclimation
period, the mice were assigned randomly to 5 different groups, including the control group,
X-ray irradiation (model) group, X-ray irradiation + EPO (positive control) group, and
X-ray irradiation + SXN (treatment) groups. Groups treated with 78 mg/kg and 156 mg/kg
SXN were referred to as SXN-L (low dose) and SXN-H (high dose), respectively. Except
for the control group, a single dose of X-ray (4 Gy) was administered to all mice, aiming to
create a mouse model with impaired hematopoiesis. Experimental procedures involving
animals were conducted according to the guidelines set by the Committee on Animal Use
and Care of Southwest Medical University (Permission NO. 2020309) in Luzhou, China.

2.3. Hemanalysis

As previously reported [25], blood samples of 40 µL were initially collected from the
fundus vein plexus of each mouse, and subsequently after 0, 4, 7, and 10 days. These
samples were immediately mixed with a diluent of 160 µL for subsequent analysis of
blood cell composition. The peripheral blood count was recorded using Sysmex XT-1800i
(Kobe, Japan).

2.4. Flow Cytometry Analysis

Mice were sacrificed on the 7th day. Three mice were randomly chosen from each
group, and their femurs and spleens were separated. The femurs were rinsed twice with
1 mL of saline to collect mouse bone marrow cells, which were then filtered through a nylon
mesh (Solarbio, Beijing, China). From each sample, 200 µL of liquid containing one million
cells was extracted. For antibody staining, the cells were incubated on ice for 20 min with
various combinations of antibodies. BMNC were cultured in 6-well plates and treated with
different concentrations of SXN (2.5, 5, 10 µg/mL) for 6 days. Afterward, they were washed
and re-suspended with PBS. They were incubated with 5 µL of APC anti-mouse c-Kit
(Elabscience, Wuhan, China) for 20 min under dark conditions. Flow cytometric analysis
was performed utilizing BD FACSCanto II flow cytometry equipment (BD Biosciences,
SAN Jose, CA, USA), and the results were analyzed using Flow Jo software version 10.

2.5. iTraq Quantitative Proteomics

iTraq quantitative protein analysis was performed by MONITOR HELIX Biotechnology
Co. (Shanghai, China). After extracting the sample proteins, their concentration was
determined. Based on the quantitative results, enzymatic digestion and peptide labeling
were performed on the protein samples. Subsequently, the labeled peptide fractions were
separated and identified using mass spectrometry. The qualitative results were obtained
by submitting the raw plot files of peptide identification from Q ExactiveHF to SEQUEST
software to a database search using Proteome Discoverer 1.3 (Thermo Scientific, Waltham,
MA, USA) software.
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2.6. Immunofluorescence Staining

Mouse femora were fixed overnight in 4% paraformaldehyde, followed by decalcifica-
tion using a decalcifying agent. The tissue was subsequently encased in paraffin and sliced
into sections following submersion in paraffin. Tissue sections were subjected to antigen
retrieval using EDTA repair solution (pH 8.0) in a microwave oven. Subsequently, the
prepared primary antibody was carefully applied onto the sections, ensuring flat placement
within a moist chamber, and incubated overnight at 4 ◦C. Slides were briefly immersed in
PBS (pH 7.4) for 5 min with gentle agitation using a shaker for decolorization purposes.
Corresponding secondary antibodies were applied and incubated at room temperature
under dark conditions. DAPI solution was added into designated areas on the slides and
incubated at room temperature under dark conditions as well. Autofluorescence quench-
ing agent B solution was subsequently added and rinsed with running water afterwards.
Finally, slides were covered with an anti-fading mounting medium and imaged using a
fluorescence microscope (Nikon, Tokyo, Japan).

2.7. Histopathological Analysis

The femurs were immersed in 10% formaldehyde solution for a duration of 24 h,
followed by decalcification using a solution for more than one month. Subsequently, the
samples were embedded in paraffin and sliced into sections measuring 5 µm. These sections
were then subjected to staining with hematoxylin and eosin (H&E) before being examined
under an Olympus BX51 microscope (Olympus Optical, Tokyo, Japan). For each sample,
relevant images were captured from three distinct perspectives.

2.8. Cell Culture

Cells were incubated in a humidified incubator with 5% CO2 at a temperature of 37 ◦C.
MSC were cultured at densities of 2.5~4 × 104 cells/cm2. Upon reaching approximately
80% confluency, the cells were detached using trypsin and transferred into 6-well plates for
subsequent experiments. BMNC Collection Procedure: Add 3 mL FICOLL PAQUE PLUS
(Cytiva, Wales, UK) along the bottom of the centrifuge tube wall to the lower layer of bone
marrow cells, centrifuge at 400× g for 20 min, collect the middle layer cells, wash three
times with serum-free medium, and resuspend in low-sugar DMEM medium containing
10% horse serum and 10% fetal bovine serum.

2.9. Cell Viability Assay

MSC were cultured in 96-well plates at a density of 2.0 × 104 cells per well and exposed
to varying concentrations of SXN (2.5, 5, and 10 µg/mL) for 3 days. The control group
consisted of untreated cells. To assess the viability of the cells, we conducted the CCK-8
assay based on the guidelines provided by APExBIO (Houston, CA, USA). The absorbance
at 450 nm was measured using BioTek (Winooski, VT, USA).

2.10. Cell Morphological Observations

To examine changes in cell morphology during the cultivation process, cells were
cultured in 6-well plates with a cell density of 1 × 106 cells per well [26]. After treatment
with SXN (2.5, 5, and 10 µg/mL) for 3 days, MSC and BMNC from each group were
visually assessed using an inverted microscope (Nikon, Tokyo, Japan), and images under
bright field conditions were captured. Then, they underwent morphological observation
and photography.

2.11. Cell Differentiation

The differentiation potential to adipocytes was confirmed by a differentiation assay.
For this assay, the MSC cells were cultured with adipocyte media (Cyagen Biosciences,
Guangzhou, China) for 18 days and then stained with Oil Red O to confirm the presence of
adipocytes [27].
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2.12. Colony Formation Assay

The BMNC were grown in MethoCult ™ GF M3434 semisolid medium (STEMCELL
Technologies, Vancouver, BC, Canada) with a cell density of 1 × 105 cells per well. Accord-
ing to the “Mouse Colony-Forming Unit Assays” operating instructions, the cells were
observed and counted under a microscope.

2.13. Western Blot

The femurs of mice were extracted, and bone marrow cells were rinsed with saline
solution, followed by lysing at a temperature of −80 ◦C using 1 × RIPA lysis buffer (Cell
Signaling Technologies, Beverly, MA, USA) for protein extraction. MSC were cultured in 6-
well plates with a density of 4 × 104 cells/well and treated with SXN (2.5, 5, and 10 µg/mL)
for a duration of 3 days. Afterward, the culture medium was discarded and proteins were
extracted according to the above method. Protein concentrations were determined utilizing
the BCA Protein Assay Kit (EpiZyme, Shanghai, China). SDS-PAGE was utilized for protein
separation, followed by a transfer onto a PVDF membrane. Subsequently, the membranes
were blocked in a solution comprising 0.1% PBS–Tween and 10% nonfat desiccated milk
prior to being exposed to primary antibodies for a duration of 8 h. Subsequently, the
membranes underwent rinsing with PBST (PBS containing 2% Tween-20), followed by the
addition of secondary antibodies for 1 h. The ChemiDoc MP Imaging System (Bio-Rad,
Hercules, CA, USA) was employed for protein band detection after visualization using ECL
Western blotting detection reagent (4A Biotech Co., Ltd., Beijing, China). ImageJ software
was utilized to quantify the gray value of the protein bands. The relative image intensity of
the target protein in comparison to GAPDH or β-actin is indicative of their expression.

2.14. Statistical Analysis

The statistical analysis was carried out using GraphPad Prism 9.0 (GraphPad Software,
La Jolla, CA, USA), and the data were presented as mean ± standard deviations. All
experiments were repeated three times. To determine the significance between two groups,
Student’s t-test was utilized, whereas for comparisons involving three or more groups, one-
way analysis of variance was employed. Statistical significance was considered at p < 0.05.

3. Results
3.1. SXN Facilitated the Recovery of the Peripheral Blood Cell Count in X-ray Irradiated Mice

To evaluate the effect of SXN on erythropoiesis following X-ray irradiation, KM mice
were exposed to 4 Gy X-rays and subsequently treated with SXN [28]. The treatment
regimen involved oral administration of SXN at doses of 156 and 78 mg/kg daily for
10 days following irradiation (Figure 1A). A significant reduction in white blood cell (WBC)
levels 24 h after irradiation confirmed the successful establishment of the irradiated mouse
model. Mice were then grouped based on their WBC counts for subsequent treatment
with SXN or EPO (as a positive control). Notably, on the 4th, 7th, and 10th days after
irradiation, marked differences in red blood cell (RBC) levels were observed between the
control and model groups. The SXN treatment group demonstrated a substantial recovery
in peripheral blood RBC and hemoglobin (HGB) levels (Figure 1B,C) on the 7th and 10th
days. Platelet (PLT) levels across all irradiated groups reached a nadir on the 7th day post
-irradiation. On the 10th day, the SXN-treated groups exhibited a significant elevation in
platelet counts compared to the model group (Figure 1D). WBC levels remained consistent
across all irradiated groups at each time point (Figure 1E).
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Figure 1. The effect of SXN on the blood cell count and bone marrow cells in X-ray irradiated
mice. (A) Radiation exposure and administration methods in mice. Blood cell counts show (B) RBC,
(C) HGB, (D) PLT, and (E) WBC on the 4th day, 7th day, and 10th day. The data are expressed as the
mean ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the model group; n = 8. (F,G) Intracellular
ROS was examined and analyzed by flow cytometry in bone marrow cells, with * p < 0.05, ** p < 0.01
vs. the model group; n = 3. (H) Representative images of H&E staining of bone marrow cells (×100
magnification; scale bar: 100µm). (I) Representative immunoblot images of perilipin-1 in bone
marrow cells. The data are the mean ± SD (n = 3). * p < 0.05, ** p < 0.01 vs. the model group.
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Radiation-induced hematopoietic dysfunction is often attributed to the generation of
reactive oxygen species (ROS) [29], leading to the depletion of rapidly proliferating bone
marrow cells and severe hematopoietic system damage [30–32]. Flow cytometry analysis of
bone marrow cells revealed elevated ROS levels in the model group compared to the normal
group, with a significant reduction observed in the SXN-treated group (Figure 1F,G). H&E
staining indicated significant bone marrow cell loss and structural damage in the model
group, with an increased number of adipocytes and large cavity areas. In contrast, both
the EPO and SXN treatment groups showed alleviated pathological changes, characterized
by a higher number of nucleated cell and a proliferation of adipocytes within the bone
marrow (Figure 1H). Perilipin-1 is a significant protein located on the surface of lipid
droplets, predominantly expressed in adipocytes. The Western blot analysis revealed a
significant increase in perilipin-1 expression in bone marrow following SXN treatment, as
compared to the model group (Figure 1I). These findings suggest that SXN may facilitate
the regeneration of bone marrow cells, support the formation of adipocytes, and improve
hematopoietic recovery subsequent to radiation-induced injury.

3.2. SXN Enhanced the Proliferation and Differentiation of HSPC in X-ray Irradiated Mice

The bone marrow is the primary hematopoietic site in adults and supports the dif-
ferentiation of hematopoietic stem cells into various hematopoietic progenitor cell [33].
Utilizing flow cytometry, we identified key hematopoietic stem and progenitor cell popula-
tions including HSPC (KLS, Lin−/Sca-1+/c-KIT+), common lymphoid progenitors (CLP,
Lin−/CD127+/Sca-1+/c-KIT+), common myeloid progenitors (CMP, Lin−/CD127−/Sca-
1−/c-KIT+/CD34+), and megakaryocyte–erythroid progenitors (MEP, Lin−/CD127−/Sca-
1−/c-KIT+/CD34−) [34–37]. These cell populations were useful for assessing the effects of
SXN on hematopoietic stem and progenitor cell after X-ray irradiation. On the 7th day after
irradiation, flow cytometric analysis revealed a significant reduction in the KLS population
in the bone marrow of the model group, with a notable increase in the SXN-treated group.
Moreover, an increase in the populations of downstream CLP, CMP, and MEP cells was
observed in the SXN group compared to the model group. These results indicate that SXN
enhanced the proliferation and differentiation of HSPC in the bone marrow of irradiated
mice (Figure 2A–E). Given the spleen’s role in emergency hematopoiesis [38–40], we also
assessed the effects of SXN on splenic HSPC in irradiated mice. The results indicated a
significant increase in KLS and CLP populations in the spleen of SXN-treated irradiated
mice (Figure S2A–E).

Additionally, tSNE dimensionality reduction analysis was employed to dissect the
interrelationships between different hematopoietic cell populations (Figure 3A). Compared
to the control group, the model group exhibited a loss of lineage+ mature hematopoietic
cells, which reappeared in the EPO and SXN groups. Notably, the SXN group showed
a more abundant lineage+ cell population than the EPO group. The results indicated a
significant proliferation of mature hematopoietic cells after EPO and SXN treatment in
X-ray irradiated mice. Compared to the model group, the overlap between the KLS and
CMP or MEP cell populations increased in the SXN group. In the area between CMP
and MEP, an additional KLS population appeared in the SXN group, and the analysis
showed that these cells exhibited the characteristics of the CLP population. These results
demonstrated that SXN administration significantly promotes the differentiation of KLS
cells into CMP, MEP, and CLP populations. The EPO group only showed an increase in
the overlap between the KLS and MEP populations, indicating that EPO promoted the
differentiation of KLS cells into the MEP population.
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Figure 2. SXN promoted the proliferation of HSPC in X-ray irradiated mice in bone marrow cells.
(A) The frequencies of HSPC (KLS, Lin−−/Sca-1+/c-KIT+), common lymphoid progenitor cell
(CLP, Lin−/CD127+/Sca-1+/c-KIT+), common myeloid progenitor cell (CMP, Lin−/CD127−/Sca-
1−/c-KIT+/CD34+), and megakaryocyte-erythroid progenitor cell (MEP, Lin−/CD127−/Sca-1−/c-
KIT+/CD34−) in the bone marrow cells of each group (n = 3). (B–E) The histogram represents the
percentage of KLS, CLP, CMP, and MEP cells in each group. The data are the mean ± SD (n = 3).
* p < 0.05, ** p < 0.01vs. the model group.

Given the iron content of SXN, its primary action appears to be on terminal ery-
thropoiesis and hemoglobin synthesis [41]. We utilized flow cytometry to examine the
levels of advanced erythroid progenitor cell (CD71+/Ter119+ cell) in the bone marrow and
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spleen using flow cytometry. We observed that the increased levels of erythroid progeni-
tor CD71+/Ter119+ cell in both the EPO and SXN groups compared to the model group
(Figure 3B–D). The experimental results showed that SXN promotes the proliferation and
further differentiation of immature HSPC to establish long-term hematopoietic function.
Additionally, SXN directly affects mature hematopoietic cells, such as erythroid progenitor
cell, to promote the early recovery of hematopoietic function.

1 
 

 
Figure 3. SXN promoted the differentiation of HSPC and the proliferation of erythroid progenitor
cell in X-ray irradiated mice. (A) tSNE dimensionality reduction analysis of hematopoietic cell
populations. (B–D) The frequencies of erythroid progenitor cell (Ter119+/CD71+) cell populations
in the bone marrow and spleen of each group as measured by flow cytometry. The data are the
mean ± SD (n = 3). * p < 0.05, ** p < 0.01 vs. the model group.

3.3. Proteomic Analysis of the Mechanism of SXN in Enhancing HSPC Proliferation and
Differentiation after X-ray Irradiation

To decipher the molecular mechanisms of SXN in hematopoietic function reconstruc-
tion, we employed iTRAQ/TMT quantitative proteomics to examine alterations in protein
levels within mouse bone marrow cells post -SXN treatment. Our comprehensive analysis
identified a total of 5386 proteins, with 5266 quantified. Compared to the model groups,
considering a fold change of 1.2 and a significance threshold of p < 0.05, 291 up-regulated
and 132 down-regulated proteins were revealed in the SXN-treated group (Figure 4A). The
up-regulated proteins in the SXN group predominantly participated in molecular functions
such as binding, catalytic activity, transporter activity, and transcription factor activity. At
the cellular component level, these proteins were chiefly associated with organelles and
membranes. Functional classification highlighted their involvement in various cellular
processes, signaling pathways, metabolic and developmental processes, and biological
adhesion (Figures 4B and S3). Moreover, molecular function enrichment analysis showed
that the proteins that were up-regulated in the SXN group were significantly involved
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in growth factor binding, macromolecular complex binding, special structure DNA bind-
ing, and transcription factor binding (Figures 4C and S4). The findings suggest that SXN
administration leads to a significant increase in the proliferation of bone marrow cells,
potentially due to the direct impact of upregulated growth factors on promoting both the
multiplication and specialization of HSPC.
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3.4. SXN Enhanced HSPC Proliferation via the Expression of SCF and the Activation of the c-KIT
PI3K/Akt Signaling Pathway

Based on previous experiments, it is speculated that SCF may contribute to the re-
covery of hematopoietic function in X-ray irradiated mice following SXN treatment. We
focused on evaluating the expression of SCF in femoral bone marrow. Immunofluorescence
staining of the femoral bone marrow revealed a marked elevation in SCF expression in the
SXN groups compared to the model group (Figure 5A,B). Western blot analysis provided
supporting evidence demonstrating an elevation in SCF expression in the SXN group
compared to the model group (Figure 5C). This finding indicated that SXN upregulated
SCF expression in the bone marrow. SCF is known to bind to its receptor c-KIT, initiating
the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, which
plays a crucial role in supporting the survival, proliferation, and differentiation processes of
HSPC [42]. Meanwhile, c-KIT is a surface-specific marker of HSPC in hematopoietic tissues.
Our Western blot results demonstrated that SXN treatment significantly upregulated the ex-
pression of c-KIT and the phosphorylation of PI3K and AKT in bone marrow, compared to
the model group (Figure 5D–F). The same trend was also observed in the Western blot anal-
ysis of mouse splenic cells (Figure 5G–J). Therefore, we consider that SXN could increase
SCF expression in hematopoietic microenvironments and activate the c-KIT/PI3K/AKT
pathway, thereby promoting the proliferation of HSPC in X-ray irradiated mice.
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in X-ray irradiated mice. (A) Immunocytochemical analysis of the expression of SCF in bone marrow
cells. (B) Statistical results of immunofluorescence staining. Data represent the mean ± SD (n = 4).
* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the model group. (C,D) Representative immunoblot images
of SCF in bone marrow cells of each group mice (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the
model group; (E–G) Representative immunoblot images of c-KIT and PI3K/Akt signaling pathways
in bone marrow cells. The data are the mean ± SD (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001
vs. the model group. (H–J) Representative immunoblot images of the SCF/c-KIT and PI3K/Akt
signaling pathways in spleen cells. The data are the mean ± SD (n = 3). * p < 0.05, ** p < 0.01, and
*** p < 0.001 vs. the model group.

3.5. SXN Enhanced the Proliferation and Differentiation of HSPC In Vitro

Based on the in vivo experimental data, we then validated the effect of SXN in vitro.
We extracted mouse bone marrow nucleated cell (BMNC), and then treated them with
varying SXN concentrations (2.5, 5, 10 µg/mL). The findings indicated a time-dependent
increase in the quantity of BMNC within the SXN treatment group, with SXN (10 µg/mL)
demonstrating the most pronounced impact. The BMNC grew in compact clusters, and
on the 6th day, the cells in the SXN (10, 5 µg/mL) group were partially adherent to the
wall. These cells may be MSC, suggesting that SXN may promote the proliferation of MSC
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(Figure 6A). To investigate the impact of SXN on the growth of BMNC, we isolated BMNC
from EGFP transgenic mice and assessed the influence of SXN by analyzing the fluorescence
intensity of BMNC following treatment with varying concentrations of SXN. The results
showed that SXN can significantly promote the proliferation of BMNC (Figure 6B–D). Flow
cytometry was used to identify c-KIT+HSPC in BMNC, and the results showed that SXN
promoted the proliferation of HSPC in vitro compared with the control group (Figure 6E,F).
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were captured randomly at 10× resolution. (B–D) Representative images of morphological observa-
tions of EGFP -transgenic mouse BMNC on the 3rd day and 6th day. Scale bar: 200 µm. Microscopy
fields were captured randomly at 20× resolution. (E,F) The proportion of c-KIT+HSPC was examined
and analyzed by flow cytometry in BMNC for 6 days (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs.
the control group. (G,H) The effect of SXN on the formation of CFU-E, BFU-E, and CFU-GM colonies
in BMNC and spleen cells. The data are the mean ± SD (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001
vs. the control group. (I–L) Representative immunoblot images of the SCF/c-KIT and PI3K/AKT
signaling pathways after treatment with SXN (2.5, 5, and 10 µg/mL) in BMNC for 6 days. The data
are the mean ± SD (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the control group.

A colony-inducing culture of mouse BMNC and spleen cells was conducted, and the
formation of erythroid progenitor cell colonies was observed following treatment with
varying concentrations of SXN (10, 5, 2.5 µg/mL). The research results indicate that the
number of BMNC and spleen cells significantly increased after SXN treatment. In BMNC,
SXN demonstrated a concentration-dependent enhancement in the promotion of colony-
forming unit-erythroid (CFU-E) and colony-forming unit-granulocyte and macrophage
(CFU-GM), as well as colony-burst forming unit-erythroid (BFU-E). Specifically, the greatest
impact was observed with SXN at a concentration of 10 µg/mL (Figure 6G). In spleen
cells, the same trend of promoting colony formation was shown as in BMNC (Figure 6H).
The results demonstrated that SXN significantly promoted the colony formation of ery-
throid progenitor cell in BMNC and spleen cell, further proving that SXN promoted the
proliferation and differentiation of erythroid-committed progenitor cell in bone marrow
and spleen. Western blot results showed that the expression of SCF and c-KIT and the
phosphorylation of PI3K and AKT were significantly upregulated in BMNC treated with
2.5, 5, and 10 µg/mL SXN (Figure 6I–L). The results showed that SXN upregulated the
expression of SCF in BMNC, activated the c-KIT/PI3K/AKT pathway, and promoted the
proliferation and differentiation of HSPC.

3.6. SXN Upregulated the Expression of SCF by Promoting MSC Proliferation and Differentiation

Mesenchymal stem cell (MSC), capable of differentiating into various cell types includ-
ing endothelial cells, adipocytes, and fibroblasts, are vital components of this environment
and the source of SCF in hematopoietic microenvironments [43–45]. To investigate the effect
of SXN on SCF secretion, we treated mouse bone MSC with varying SXN concentrations
(1.25, 2.5, 5, 10, and 20 µg/mL) for 3 days. The treatment with SXN, particularly at 2.5, 5,
and 10 µg/mL, increased the cell density (Figure 7A) and cell viability of MSC (Figure 7B)
compared to the control group. Western blotting results revealed significant upregulation
of p-PI3K and p-AKT in MSC treated with 2.5, 5, and 10 µg/mL SXN (Figure 7C,D). The
results indicate that SXN could promote the proliferation of MSC. Additionally, we investi-
gated the effect of SXN on the differentiation of MSC into adipocytes. SXN treatment at 2.5,
5, and 10 µg/mL notably increased the area of lipid droplets and perilipin-1 expression
compared to the control group (Figure 7F–H), indicating that SXN significantly enhances
MSC’ differentiation ability. Further analysis showed that SCF expression was substan-
tially upregulated in MSC and adipocytes derived from MSC’ differentiation (Figure 7E,I).
The collective evidence suggests that SXN administration promotes the proliferation and
differentiation of MSC, while markedly enhancing the secretion of SCF.
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Figure 7. SXN upregulated the expression of SCF by promoting the proliferation and differentiation
of MSC. (A) Representative images of morphological observations of MSC. Scale bar: 100 µm.
Microscopy fields were captured randomly at 10× resolution. (B) Results of the CCK-8 assay for MSC
proliferation. Cells were treated with different concentrations of SXN (1.25, 2.5, 5, 10 and 20 µg/mL)
for 3 days. (C–E) Representative immunoblot images of the PI3K/AKT and SCF signaling pathways
after treatment with SXN (2.5, 5, and 10 µg/mL) in MSC for 3 days. The data are the mean ± SD
(n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the control group. (F) MSC were induced to
differentiate into adipocytes for 18 days. (G) The area of lipid droplets after adipocyte differentiation
in the SXN-treated and control groups. (H) Representative immunoblot images of perilipin-1 in
adipocytes differentiated MSC treated with SXN (2.5, 5, and 10 µg/mL). The data are the mean ± SD
(n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the control group. (I) Representative immunoblot
images of SCF in adipocytes from differentiated MSC treated with SXN (2.5, 5, and 10 µg/mL). The
data are the mean ± SD (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the control group.
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4. Discussion

Erythropoiesis primarily occurs in the bone marrow and spleen, and it is substantially
affected by various factors, such as chronic inflammatory diseases, cancer, and cancer ther-
apy. In particular, the damage caused by radiotherapy and chemotherapy to hematopoietic
stem cell and progenitor cell in cancer patients leads to anemia, underscoring the urgent
need for effective strategies to promote red blood cell generation [46,47]. During the
process of erythropoiesis, multiple external factors have been identified that regulate the
differentiation, proliferation, and survival of erythroid precursor cells. Currently, the main
cytokine that stimulates erythropoiesis in clinical practice is erythropoietin (EPO). It is
well established that EPO can stimulate the differentiation of HSPC into BFU-E while
also promoting the rapid proliferation and maturation of CFU-E to responsible for the
production of red blood cells. However, the long-term and continuous use of EPO carries
the risk of depleting more primitive HSPC [48,49]. Therefore, there is an urgent need for
new therapeutics that can effectively enhance the proliferation and differentiation of HSPC
to promote erythropoiesis.

The hematopoietic niche is a dynamic environment that regulates the behavior and
function of HSPC, including self-renewal, maturation, apoptosis, quiescence, and migra-
tion. The niche comprises various stromal cells, such as mesenchymal stem cell (MSC),
osteoblasts, adipocytes, and endothelial cells, which modulate HSPC’ functions through the
secretion of cytokines such as SCF, IL3, and G-CSF [50]. The importance of the hematopoi-
etic microenvironment in the expansion of HSPC, bone marrow transplantation, and
regenerative medicine is increasingly recognized [51]. SCF can bind to the surface-specific
marker c-KIT to regulate HSPC proliferation and differentiation, demonstrating the poten-
tial application of hematopoiesis. In addition to HSPC, c-KIT is also expressed in adult
tissues such as the prostate, liver, and heart. Therefore, administering exogenous SCF
has been limited to achieve the effect of regulating the proliferation of HSPC to improve
erythropoiesis in vivo [52,53]. Consequently, strategies that increase SCF secretion in the
hematopoietic microenvironment, promoting HSPC proliferation and differentiation to pro-
mote erythropoiesis, may provide new therapeutic options for hematopoietic dysfunction.

SXN has been clinically used in China as an iron supplement for the treatment of
various types of anemia. Our investigation suggests that SXN possesses the ability to
promote the proliferation of HSPC, thereby facilitating the process of erythropoiesis in the
bone marrow. These findings broaden the potential applications and mechanisms of SXN
in the treatment of anemia. We observed that SXN treatment increased the proportion of
HSPC (KLS population) and differentiated the KLS population into CLP, MEP, and CMP
in the bone marrow and spleen. Additionally, SXN was demonstrated to enhance the
capacity of bone marrow and spleen cells to generate BFU-E and CFU-E colonies. This
suggests that SXN contributes to the proliferation and differentiation of HSPC, thereby
facilitating long-term hematopoietic establishment. Proteomic analysis revealed that SXN
affects biological processes and molecular functions mainly related to cell proliferation
and differentiation, potentially through the upregulation of growth factors. We further
demonstrated that SXN promotes SCF secretion in hematopoietic microenvironments,
which influences HSPC proliferation and differentiation by binding to the HSPC’ surface
characterization marker, c-KIT. Unfortunately, mice that undergo multiple punctures of the
posterior venous plexus in the fundus during the experimental procedure may suffer from
blood loss, which can lead to extramedullary hematopoiesis and subsequently promote the
proliferation of HSPC in the spleen. We cannot confirm the priority of SXN for stimulating
hematopoiesis in the bone marrow or spleen. Adult hematopoiesis occurs primarily in
the bone marrow. The spleen is an important site for extramedullary hematopoiesis in
mice and humans, and the conditional deletion of SCF in splenic endothelial cells does not
affect bone marrow hematopoiesis [39]. Therefore, we focused our SXN studies on bone
marrow hematopoiesis. Additionally, we confirmed that SXN promotes the proliferation
and differentiation of bone marrow MSC, which are cells that constitute the hematopoietic
microenvironment and produce SCF in the bone marrow. These results indicate that SXN
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enhances the proliferation and differentiation of MSC, thereby increasing SCF production
in hematopoietic microenvironments and promoting HSPC proliferation and differentiation
in the bone marrow.

During erythropoiesis, iron associates with transferrin (Tf–iron) and is incorporated
into proerythrocytes as a fundamental component for hemoglobin synthesis via the trans-
ferrin receptor (TfR). Recent investigations have indicated that the iron demand of HSPC
escalates as these cells undergo differentiation. Notably, significant apoptosis of HSPC has
been observed in the bone marrow of mice with a targeted knockout of the hematopoietic
stem cell TfR1 [54]. However, heme, which is an iron-containing protein that does not rely
on TfR1 for cellular entry, can substitute Tf–iron to fulfill the iron requirements of HSPC
during their differentiation [55]. Furthermore, our additional research demonstrated that
SXN has the capacity to directly enhance the proliferation of K562 cells and their ability to
form colonies. Given the structural similarity between SXN and heme, it is postulated that
SXN may enter bone marrow MSC and HSPC through endocytosis, thereby improving the
hematopoietic microenvironment and promoting hematopoiesis. In conclusion, beyond its
function as an iron supplement in erythrocyte maturation, our study elucidated that SXN
enhances the proliferation and differentiation of MSCs and promotes HSPC proliferation,
thereby accelerating erythropoiesis within the bone marrow.

5. Conclusions

In conclusion, this study demonstrated that SXN promotes the proliferation and
differentiation of MSC and upregulates the expression of SCF in the hematopoietic microen-
vironment. This results in the enhancement of HSPC proliferation and differentiation via
the SCF/c-KIT/PI3K/AKT pathways, thereby promoting erythropoiesis (Figure 8). These
findings suggest that SXN may represent a promising therapeutic approach to promote
HSPC proliferation and differentiation, facilitating long-term hematopoietic reconstitution
for the treatment of anemia or hematopoietic dysfunction.
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