Diabetic Kidney Disease: Contribution of Phenyl Sulfate Derived from Dietary Tyrosine upon Gut Microbiota Catabolism
Abstract
:1. Introduction
2. Gut Microbiota and Kidney Injury and the Usefulness of Animal Models
3. Catabolism of Dietary Tyrosine by Gut Microbiota and Generation of Phenyl Sulfate
4. Animal Model of Diabetic Nephropathy Induced by PS
5. Pathological Mechanisms of PS-Induced Kidney Injury
6. Potential Approaches for Mitigating PS-Induced Kidney Injury
7. Future Directions
8. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Yan, L.J. NADH/NAD+ redox imbalance and diabetic kidney disease. Biomolecules 2021, 11, 730. [Google Scholar] [CrossRef] [PubMed]
- Mise, K.; Long, J.; Galvan, D.L.; Ye, Z.; Fan, G.; Sharma, R.; Serysheva, I.I.; Moore, T.I.; Jeter, C.R.; Anna Zal, M.; et al. NDUFS4 regulates cristae remodeling in diabetic kidney disease. Nat. Commun. 2024, 15, 1965. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Dominguez, M.; Golestaneh, L. Diabetic kidney disease: An update. Med. Clin. N. Am. 2023, 107, 689–705. [Google Scholar] [CrossRef] [PubMed]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: Challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, M.A.; DeFronzo, R.A. Oxidative stress in type 2 diabetes. In Oxidative Stress in Aging; Miwa, S., Beckman, K.B., Muller, F.L., Eds.; Humana Press: Totowa, NJ, USA, 2008; pp. 191–212. [Google Scholar]
- DeFronzo, R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am. 2004, 88, 787–835. [Google Scholar] [CrossRef]
- Tuch, B.; Dunlop, M.; Proietto, J. Diabetes Research: A Guide for Postgraduates; Harwood Academic Publishers: Reading, UK, 2000. [Google Scholar]
- Ricciardi, C.A.; Gnudi, L. Kidney disease in diabetes: From mechanisms to clinical presentation and treatment strategies. Metabolism 2021, 124, 154890. [Google Scholar] [CrossRef]
- Doshi, S.M.; Friedman, A.N. Diagnosis and management of type 2 diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 1366–1373. [Google Scholar] [CrossRef]
- Persson, F.; Rossing, P. Diagnosis of diabetic kidney disease: State of the art and future perspective. Kidney Int. Suppl. 2018, 8, 2–7. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Vernocchi, P.; Del Chierico, F.; Putignani, L. Gut microbiota metabolism and interaction with food components. Int. J. Mol. Sci. 2020, 21, 3688. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T.; et al. Human genetics shape the gut microbiome. Cell 2014, 159, 789–799. [Google Scholar] [CrossRef]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef]
- Kondo, Y.; Hashimoto, Y.; Hamaguchi, M.; Kaji, A.; Sakai, R.; Inoue, R.; Kashiwagi, S.; Mizushima, K.; Uchiyama, K.; Takagi, T.; et al. Effects of smoking on the gut microbiota in individuals with type 2 diabetes mellitus. Nutrients 2022, 14, 4800. [Google Scholar] [CrossRef] [PubMed]
- Capurso, G.; Lahner, E. The interaction between smoking, alcohol and the gut microbiome. Best. Pract. Res. Clin. Gastroenterol. 2017, 31, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Gnanasambandan, R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci. 2023, 316, 121414. [Google Scholar] [CrossRef]
- Liu, J.; Tan, Y.; Cheng, H.; Zhang, D.; Feng, W.; Peng, C. Functions of gut microbiota metabolites, current status and future perspectives. Aging Dis. 2022, 13, 1106–1126. [Google Scholar] [CrossRef]
- Fujisaka, S.; Watanabe, Y.; Tobe, K. The gut microbiome: A core regulator of metabolism. J. Endocrinol. 2023, 256, e220111. [Google Scholar] [CrossRef]
- Falconi, C.A.; Junho, C.; Fogaca-Ruiz, F.; Vernier, I.C.S.; da Cunha, R.S.; Stinghen, A.E.M.; Carneiro-Ramos, M.S. Uremic toxins: An alarming danger concerning the cardiovascular system. Front. Physiol. 2021, 12, 686249. [Google Scholar] [CrossRef]
- Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G. P-cresyl sulfate. Toxins 2017, 9, 52. [Google Scholar] [CrossRef]
- Fiaccadori, E.; Cosola, C.; Sabatino, A. Targeting the gut for early diagnosis, prevention, and cure of diabetic kidney disease: Is the phenyl sulfate story another step forward? Am. J. Kidney Dis. 2020, 75, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Saigusa, D.; Kanemitsu, Y.; Matsumoto, Y.; Thanai, P.; Suzuki, N.; Mise, K.; Yamaguchi, H.; Nakamura, T.; Asaji, K.; et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat. Commun. 2019, 10, 1835. [Google Scholar] [CrossRef] [PubMed]
- Agus, A.; Clement, K.; Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021, 70, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Kanemitsu, Y.; Tsukamoto, H.; Matsumoto, Y.; Nozawa-Kumada, K.; Kondo, Y.; Abe, T.; Tomioka, Y. Generation and characterization of anti-phenyl sulfate monoclonal antibodies and a potential use for phenyl sulfate analysis in human blood. Biol. Pharm. Bull. 2018, 41, 1170–1177. [Google Scholar] [CrossRef]
- Zhang, Z.; Bi, Y.; Zhou, F.; Zhang, D.; Xu, S.; Zhang, X.; Fan, Z.; Yao, Z.; He, Y. Huajuxiaoji formula alleviates phenyl sulfate-induced diabetic kidney disease by inhibiting NLRP3 inflammasome activation and pyroptosis. J. Diabetes Res. 2024, 2024, 8772009. [Google Scholar] [CrossRef]
- Li, L.; Zou, J.; Zhou, M.; Li, H.; Zhou, T.; Liu, X.; Huang, Q.; Yang, S.; Xiang, Q.; Yu, R. Phenylsulfate-induced oxidative stress and mitochondrial dysfunction in podocytes are ameliorated by astragaloside IV activation of the SIRT1/PGC1α/Nrf1 signaling pathway. Biomed. Pharmacother. 2024, 177, 117008. [Google Scholar] [CrossRef]
- Edamatsu, T.; Fujieda, A.; Itoh, Y. Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PLoS ONE 2018, 13, e0193342. [Google Scholar] [CrossRef]
- Edamatsu, T.; Fujieda, A.; Ezawa, A.; Itoh, Y. Classification of five uremic solutes according to their effects on renal tubular cells. Int. J. Nephrol. 2014, 2014, 512178. [Google Scholar] [CrossRef]
- Ho, H.J.; Kikuchi, K.; Oikawa, D.; Watanabe, S.; Kanemitsu, Y.; Saigusa, D.; Kujirai, R.; Ikeda-Ohtsubo, W.; Ichijo, M.; Akiyama, Y.; et al. SGLT-1-specific inhibition ameliorates renal failure and alters the gut microbial community in mice with adenine-induced renal failure. Physiol. Rep. 2021, 9, e15092. [Google Scholar] [CrossRef]
- Huang, H.W.; Chen, M.J. Exploring the preventive and therapeutic mechanisms of probiotics in chronic kidney disease through the gut-kidney axis. J. Agric. Food Chem. 2024, 72, 8347–8364. [Google Scholar] [CrossRef]
- Kikuchi, M.; Ueno, M.; Itoh, Y.; Suda, W.; Hattori, M. Uremic toxin-producing gut microbiota in rats with chronic kidney disease. Nephron 2017, 135, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Oishi, S.; Matsui, M.; Hara, K.; Hashimoto, H.; Watanabe, K.; Yoshioka, Y.; Miyoshi, N. Tyrosine phenol-lyase inhibitor quercetin reduces fecal phenol levels in mice. Proc Natl. Acad. Sci. Nexus 2024, 3, 265. [Google Scholar] [CrossRef] [PubMed]
- Lawson, D.H.; Stockton, L.H.; Bleier, J.C.; Acosta, P.B.; Heymsfield, S.B.; Nixon, D.W. The effect of a phenylalanine and tyrosine restricted diet on elemental balance studies and plasma aminograms of patients with disseminated malignant melanoma. Am. J. Clin. Nutr. 1985, 41, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.H.; Wilson, P.J.M.; Sutherland, H.; Judd, S.; Hughes, A.T.; Milan, A.M.; Jarvis, J.C.; Bou-Gharios, G.; Ranganath, L.R.; Gallagher, J.A. Dietary restriction of tyrosine and phenylalanine lowers tyrosinemia associated with nitisinone therapy of alkaptonuria. J. Inherit. Metab. Dis. 2020, 43, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Ito, T.; Sato, M.; Goto, S.; Kazama, J.J.; Gejyo, F.; Narita, I. Adsorption of protein-bound uremic toxins using activated carbon through direct hemoperfusion in vitro. Blood Purif. 2019, 48, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Sato, M.; Sato, Y.; Wakamatsu, T.; Takahashi, Y.; Iguchi, A.; Omori, K.; Suzuki, Y.; Ei, I.; Kaneko, Y.; et al. Adsorption of protein-bound uremic toxins through direct hemoperfusion with hexadecyl-immobilized cellulose beads in patients undergoing hemodialysis. Artif. Organs 2018, 42, 88–93. [Google Scholar] [CrossRef]
- Wu, X.Q.; Zhao, L.; Zhao, Y.L.; He, X.Y.; Zou, L.; Zhao, Y.Y.; Li, X. Traditional chinese medicine improved diabetic kidney disease through targeting gut microbiota. Pharm. Biol. 2024, 62, 423–435. [Google Scholar] [CrossRef]
- Fang, J.; Lin, Y.; Xie, H.; Farag, M.A.; Feng, S.; Li, J.; Shao, P. Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated scfas to alleviate type 2 diabetes in adult mice. Food Chem. X 2022, 13, 100207. [Google Scholar] [CrossRef]
- Liu, W.; Xu, S.; Zhang, B.; Sun, X. Ramulus mori (sangzhi) alkaloids alleviate diabetic nephropathy through improving gut microbiota disorder. Nutrients 2024, 16, 2346. [Google Scholar] [CrossRef]
- Graboski, A.L.; Redinbo, M.R. Gut-derived protein-bound uremic toxins. Toxins 2020, 12, 590. [Google Scholar] [CrossRef]
- Mosterd, C.M.; Kanbay, M.; van den Born, B.J.H.; van Raalte, D.H.; Rampanelli, E. Intestinal microbiota and diabetic kidney diseases: The role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best. Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101484. [Google Scholar] [CrossRef] [PubMed]
- Pignanelli, M.; Bogiatzi, C.; Gloor, G.; Allen-Vercoe, E.; Reid, G.; Urquhart, B.L.; Ruetz, K.N.; Velenosi, T.J.; Spence, J.D. Moderate renal impairment and toxic metabolites produced by the intestinal microbiome: Dietary implications. J. Ren. Nutr. 2019, 29, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Tomino, Y. Lessons from the kk-ay mouse, a spontaneous animal model for the treatment of human type 2 diabetic nephropathy. Nephrourol. Mon. 2012, 4, 524–529. [Google Scholar] [CrossRef]
- Chen, H.W.; Yang, M.Y.; Hung, T.W.; Chang, Y.C.; Wang, C.J. Nelumbo nucifera leaves extract attenuate the pathological progression of diabetic nephropathy in high-fat diet-fed and streptozotocin-induced diabetic rats. J. Food Drug Anal. 2019, 27, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Skovso, S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J. Diabetes Investig. 2014, 5, 349–358. [Google Scholar] [CrossRef]
- Hamza, N.; Berke, B.; Cheze, C.; Le Garrec, R.; Lassalle, R.; Agli, A.N.; Robinson, P.; Gin, H.; Moore, N. Treatment of high fat diet induced type 2 diabetes in C57BL/6J mice by two medicinal plants used in traditional treatment of diabetes in the east of algeria. J. Ethnopharmacol. 2011, 133, 931–933. [Google Scholar] [CrossRef]
- Wang, S.Y.; Cai, G.Y.; Chen, X.M. Energy restriction in renal protection. Br. J. Nutr. 2018, 120, 1149–1158. [Google Scholar] [CrossRef]
- Stern, J.S.; Gades, M.D.; Wheeldon, C.M.; Borchers, A.T. Calorie restriction in obesity: Prevention of kidney disease in rodents. J. Nutr. 2001, 131, 913S–917S. [Google Scholar] [CrossRef]
- Cooke, D.; Ouattara, A.; Ables, G.P. Dietary methionine restriction modulates renal response and attenuates kidney injury in mice. FASEB J. 2018, 32, 693–702. [Google Scholar] [CrossRef]
- Pradas, I.; Jove, M.; Cabre, R.; Ayala, V.; Mota-Martorell, N.; Pamplona, R. Effects of aging and methionine restriction on rat kidney metabolome. Metabolites 2019, 9, 280. [Google Scholar] [CrossRef]
- Liu, H.; Yan, L.-J. The role of ketone bodies in various animal models of kidney disease. Endocrines 2023, 4, 236–249. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, K.; He, X.; Xue, D.; Ma, X. Ezetimibe ketone protects against renal ischemia-reperfusion injury and attenuates oxidative stress via activation of the Nrf2/HO-1 signaling pathway. J. Biochem. Mol. Toxicol. 2024, 38, e23792. [Google Scholar] [CrossRef] [PubMed]
- Athinarayanan, S.J.; Roberts, C.G.P.; Vangala, C.; Shetty, G.K.; McKenzie, A.L.; Weimbs, T.; Volek, J.S. The case for a ketogenic diet in the management of kidney disease. BMJ Open Diabetes Res. Care 2024, 12, e004101. [Google Scholar] [CrossRef] [PubMed]
- Koutnik, A.P.; Klein, S.; Robinson, A.T.; Watso, J.C. Efficacy and safety of long-term ketogenic diet therapy in a patient with type 1 diabetes. JCEM Case Rep. 2024, 2, luae102. [Google Scholar] [CrossRef] [PubMed]
- Diwan, V.; Brown, L.; Gobe, G.C. Adenine-induced chronic kidney disease in rats. Nephrology 2018, 23, 5–11. [Google Scholar] [CrossRef]
- Yan, L.J. Folic acid-induced animal model of kidney disease. Animal Model. Exp. Med. 2021, 4, 329–342. [Google Scholar] [CrossRef]
- Ni, H.; Ou, Z.; Wang, Y.; Liu, Y.; Sun, K.; Zhang, J.; Zhang, J.; Deng, W.; Zeng, W.; Xia, R.; et al. XBP1 modulates endoplasmic reticulum and mitochondria crosstalk via regulating NLRP3 in renal ischemia/reperfusion injury. Cell Death Discov. 2023, 9, 69. [Google Scholar] [CrossRef]
- Kale, A.; Shelke, V.; Habshi, T.; Dagar, N.; Gaikwad, A.B. Er stress modulated klotho restoration: A prophylactic therapeutic strategy against acute kidney injury-diabetes comorbidity. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 166905. [Google Scholar] [CrossRef]
- Wu, J.; Luo, X.; Thangthaeng, N.; Sumien, N.; Chen, Z.; Rutledge, M.A.; Jing, S.; Forster, M.J.; Yan, L.J. Pancreatic mitochondrial complex i exhibits aberrant hyperactivity in diabetes. Biochem. Biophys. Rep. 2017, 11, 119–129. [Google Scholar] [CrossRef]
- Wu, J.; Jin, Z.; Yan, L.J. Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biol. 2017, 11, 51–59. [Google Scholar] [CrossRef]
- Pan, X.; Olatunji, O.J.; Basit, A.; Sripetthong, S.; Nalinbenjapun, S.; Ovatlarnporn, C. Insights into the phytochemical profiling, antidiabetic and antioxidant potentials of lepionurus sylvestris blume extract in fructose/streptozotocin-induced diabetic rats. Front. Pharmacol. 2024, 15, 1424346. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.D.; Islam, M.S. Fructose-fed streptozotocin-injected rat: An alternative model for type 2 diabetes. Pharmacol. Rep. 2012, 64, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.J. The nicotinamide/streptozotocin rodent model of type 2 diabetes: Renal pathophysiology and redox imbalance features. Biomolecules 2022, 12, 1225. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Ma, W.X.; Yan, L.J. 5-methoxyindole-2-carboxylic acid (MICA) fails to retard development and progression of type II diabetes in ZSF1 diabetic rats. React. Oxyg. Species 2020, 9, 144–147. [Google Scholar]
- Wang, A.N.; Carlos, J.; Fraser, G.M.; McGuire, J.J. Zucker diabetic-sprague dawley (ZDSD) rat: Type 2 diabetes translational research model. Exp. Physiol. 2022, 107, 265–282. [Google Scholar] [CrossRef]
- Bilan, V.P.; Salah, E.M.; Bastacky, S.; Jones, H.B.; Mayers, R.M.; Zinker, B.; Poucher, S.M.; Tofovic, S.P. Diabetic nephropathy and long-term treatment effects of rosiglitazone and enalapril in obese zsf1 rats. J. Endocrinol. 2011, 210, 293–308. [Google Scholar] [CrossRef]
- Lee, S.M.; Bressler, R. Prevention of diabetic nephropathy by diet control in the db/db mouse. Diabetes 1981, 30, 106–111. [Google Scholar] [CrossRef]
- Iskander, A.; Yan, L.J. Cisplatin-induced kidney toxicity: Potential roles of major NAD+-dependent enzymes and plant-derived natural products. Biomolecules 2022, 12, 1078. [Google Scholar] [CrossRef]
- Yan, L.-J.; Allen, D.C. Cadmium-induced kidney injury: Oxidative damage as a unifying mechanism. Biomolecules 2021, 11, 1575. [Google Scholar] [CrossRef]
- Voroneanu, L.; Burlacu, A.; Brinza, C.; Covic, A.; Balan, G.G.; Nistor, I.; Popa, C.; Hogas, S.; Covic, A. Gut microbiota in chronic kidney disease: From composition to modulation towards better outcomes-a systematic review. J. Clin. Med. 2023, 12, 1948. [Google Scholar] [CrossRef]
- Zhu, T.; Hu, B.Y.; Zhang, Y.Q.; Zhang, Z.Y.; Cai, K.W.; Lei, L.; Hu, B.; Wang, X.H.; Tang, C.; Lu, Y.P.; et al. The role of microbial metabolites in diabetic kidney disease. Heliyon 2023, 9, e17844. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, X.; Shang, Z.; Li, Q.; Yao, W.; Guo, S.; Guan, Y. Exploring the causal effects of gut microbiota on diabetic nephropathy: A two-sample mendelian randomization study. Comb. Chem. High. Throughput Screen. 2024. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, S.; Inagi, R. Harnessing metabolomics to describe the pathophysiology underlying progression in diabetic kidney disease. Curr. Diab Rep. 2021, 21, 21. [Google Scholar] [CrossRef] [PubMed]
1. Tyrosine phenol lyase inhibitors or blockers [24,34]; |
2. Decrease in dietary tyrosine intake or dietary tyrosine restriction [28,29]; |
3. Adsorption of protein-bound PS through direct hemoperfusion [37,38]; |
4. Natural products possessing anti-oxidation and anti-inflammation properties [27,39,40,41]. |
1. High-fat diet/Streptozotocin [46,47,48] |
2. High fructose/Streptozotocin [63,64] |
3. Nicotinamide/Streptozotocin [65] |
4. Zucker diabetic rats and ZSF-1 rats [66,67,68] |
5. Caloric restriction/energy restriction [49,50,69] |
6. Dietary methionine restriction [51,52] |
7. Ketogenic drug or ketogenic diet [53,54,55,56] |
8. Adenine-induced chronic kidney disease [31,57] |
9. High folic acid-induced chronic kidney disease [58] |
10. Metal-induced kidney injury [70,71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Diep, T.N.; Wang, Y.; Wang, Y.; Yan, L.-J. Diabetic Kidney Disease: Contribution of Phenyl Sulfate Derived from Dietary Tyrosine upon Gut Microbiota Catabolism. Biomolecules 2024, 14, 1153. https://doi.org/10.3390/biom14091153
Liu H, Diep TN, Wang Y, Wang Y, Yan L-J. Diabetic Kidney Disease: Contribution of Phenyl Sulfate Derived from Dietary Tyrosine upon Gut Microbiota Catabolism. Biomolecules. 2024; 14(9):1153. https://doi.org/10.3390/biom14091153
Chicago/Turabian StyleLiu, Haoxin, Tram N. Diep, Ying Wang, Yucheng Wang, and Liang-Jun Yan. 2024. "Diabetic Kidney Disease: Contribution of Phenyl Sulfate Derived from Dietary Tyrosine upon Gut Microbiota Catabolism" Biomolecules 14, no. 9: 1153. https://doi.org/10.3390/biom14091153
APA StyleLiu, H., Diep, T. N., Wang, Y., Wang, Y., & Yan, L. -J. (2024). Diabetic Kidney Disease: Contribution of Phenyl Sulfate Derived from Dietary Tyrosine upon Gut Microbiota Catabolism. Biomolecules, 14(9), 1153. https://doi.org/10.3390/biom14091153