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Abstract: Developmental and epileptic encephalopathies (DEEs) are a group of neuropedi-
atric diseases associated with epileptic seizures, severe delay or regression of psychomotor
development, and cognitive and behavioral deficits. What sets DEEs apart is their complex
interplay of epilepsy and developmental delay, often driven by genetic factors. These
two aspects influence one another but can develop independently, creating diagnostic and
therapeutic challenges. Intellectual disability is severe and complicates potential treat-
ment. Pathogenic variants are found in 30–50% of patients with DEE. Many genes mutated
in DEEs encode ion channels, causing current conduction disruptions known as chan-
nelopathies. Although channelopathies indeed make up a significant proportion of DEE
cases, many other mechanisms have been identified: impaired neurogenesis, metabolic
disorders, disruption of dendrite and axon growth, maintenance and synapse formation ab-
normalities —synaptopathies. Here, we review recent publications on non-channelopathies
in DEE with an emphasis on the mechanisms linking epileptiform activity with intellec-
tual disability. We focus on three major mechanisms of intellectual disability in DEE and
describe several recently identified genes involved in the pathogenesis of DEE.

Keywords: neurodevelopmental disorders; developmental delay; metabolic disorders;
synaptopathies; malformations of cortical development; pathogenic variant

1. Introduction
About 40% of epileptic seizures in the first years of life are caused by developmental

and epileptic encephalopathy (DEE) [1,2]. DEEs are a group of diseases characterized by
epileptic seizures or epileptiform activity, a severe delay or regression of psychomotor
development, and cognitive and behavioral deficits [3]. Seizures and developmental delay
in DEEs have a common, usually genetic, etiology and affect each other but progress
independently. Often, onset of epilepsy is so early that it is impossible to determine the
underlying cause. Thus, the consequences for neurodevelopment in DEEs are associated
with a combination of the direct effects of the genetic variant and the impact of epileptiform
activity, both of which can contribute to pathogenesis to varying degrees [4–7].

Both seizures and the progression of cognitive impairment cause severe consequences,
compromising the quality of life and burdening families with financial and emotional
difficulties. Depending on the DEE variant, the mortality before the age of 20 can reach
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25% in some syndromes, and the remaining patients suffer from mental, behavioral, and
movement disorders [8–10]. The situation is aggravated by the limited efficiency of existing
drug therapy in controlling seizures and improving the neurological condition [9]. In our
days, early diagnosis is key in managing the outcome of DEE—timely detection of the
disease and its etiology directly correlates with a more favorable treatment outcome and
long-term prognosis [5].

Pathogenic variants are found in 30–50% of patients with DEE [11–13]. Next-
generation sequencing technologies have significantly accelerated the identification of
genetic alterations in DEE patients [14]. The identification and characterization of such
variants provide insights into the molecular mechanisms of the disease. The dissection
of the underlying mechanisms can provide the basis for personalized therapies that will
not only alleviate the severity of attacks but also improve the cognitive outcome of af-
fected children [15]. Equally important is to understand the genetic etiology and dissect
genotype–phenotype correlations in order to facilitate diagnosis and counseling of patient
families [16,17].

The literature on DEE in the last decade has focused mainly on channelopathies.
Although channelopathies indeed make up a significant proportion of DEE cases with
pathogenic gene variants, many others associated with DEE have been identified: these
variants cause disruption of different aspects of the brain development and function such
as metabolism, progenitor proliferation, neuronal migration, dendrite and axon formation
and synaptogenesis. The vast majority of reviews on DEE are devoted to epilepsy and
encephalopathy in DEE and often do not discuss mechanisms of cognitive impairment.
Intellectual disability, however, is no less severe for patients and complicates potential
treatment. Therefore, it is important to consider the mechanisms of seizures and retardation
in conjunction with each other. The goal of this review is to assess recent publications on
non-channelopathies in DEE with an emphasis on the mechanisms linking epilepsy with
intellectual disability.

2. Pathogenesis of Developmental Delay and Intellectual Disability in
Developmental and Epileptic Encephalopathy

Developmental and epileptic encephalopathies (DEEs) are characterized by associated
neurological pathologies such as developmental delay and intellectual disability. Cognitive
deficits in DEE are commonly diagnosed in infancy or early childhood [18]. Cognitive
impairment in DEE is a consequence of both the underlying encephalopathy and the
accompanying seizures or epileptiform activity detectable on EEG [4,5]. Prolonged neu-
ronal hyperexcitation during seizures, regardless of the pathway, contributes to cognitive
decline [19–21].

Normally, cognitive functions depend on the coordinated work of neural networks
that ensure the effective transfer of information between different brain regions. In epileptic
encephalopathies, seizures and epileptiform activity lead to chaotic discharges that disrupt
this coordination and destroy the functional connections between neurons [22]. As a result
of this process, the integration of sensory information, executive control, and memory
is disrupted. This subsequently impairs the development of cognitive abilities. Chronic
disruptions in neural synchrony exacerbate developmental delay and contribute to the
formation of persistent intellectual disability [23].

Pathogenic gene variants are the main cause of intellectual disability and develop-
mental delay in most cases. Many of these variants are associated with dysfunction of
voltage-gated ion channels. Since ion channels affect the generation, propagation, and
control of action potentials, such changes often also lead to epileptic activity [6,24]. Ion
balance disruption causes hyperexcitation of neurons leading to a distortion of neural
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function and subsequently cognitive impairment [25–28]. Most DEEs are characterized by
early onset. The nervous system is most vulnerable to abnormal electrical activity during
early development. Therefore, ion channel dysfunctions contribute to neuronal damage or
death, further exacerbating cognitive and developmental deficits [21].

In addition, some studies describe the disruptions in synaptic plasticity due to
pathogenic gene variants [29]. Indeed, neuronal plasticity is a key mechanism underlying
higher cognitive abilities such as memory and learning [30]. In epileptic encephalopathies,
changes in the expression of genes regulating synaptic plasticity can exacerbate cognitive
deficits, since neurons lose the ability to adapt to new conditions or form new connec-
tions [31]. This further highlights the complexity and multifactoriality of cognitive impair-
ment in DEE, since ion channels, synaptic plasticity, and neural networks in general can be
simultaneously involved in the DEE pathogenesis [32].

Metabolic disturbances in neurons cause severe consequences due to excessive ac-
cumulation of metabolic products, disruption of energy metabolism, and decreased inhi-
bition. Energy imbalance and accumulated metabolites disrupt signaling between cells,
contribute to neuroinflammation, or even lead to neuronal death. Epileptic activity disrupts
metabolism in the focal seizure area, as well as in the neighboring regions [33].

Increased excitability can impair neuronal migration during development. It was
shown that temporary activation of migrating projection neurons (PNs) in the developing
cerebral cortex causes changes in metabotropic glutamate receptors transcription, prema-
ture dendritic branching, and retention of neurons in deeper cortical layers [6,34]. On the
other hand, hyperpolarization of neuronal progenitors in the ventricular zone of the mouse
neocortex induced changes in transcription and cell division characteristics at later stages
of development: they acquired unusual morphological and molecular features. On the
other hand, intermediate progenitors expressing transcription factor Tbr2 were formed
prematurely. All this indicates that changes in bioelectrical activity during neurogenesis
can disrupt temporal programs of neuronal differentiation, causing abnormal neuronal
function [35].

Epileptic seizures and epileptiform activity damage neural networks, which are the
main substrates of cognitive functions. The basis for the functioning of neural networks in
the cerebral cortex and hippocampus is long-term potentiation (LTP), a process of enhancing
of conduction of nerve impulses in synaptic transmission over a long period of time [36]. It
plays a major role in learning, memory, and the development of sensory systems. LTP is
responsible for the stable operation and strengthening of synaptic connections [37]. Chronic
seizures, in turn, cause impairment of LTP [18,38].

The location of epileptic activity within the brain is a decisive factor for the cognitive
outcome of seizures—damage to functional areas causes their impairment. The hippocam-
pus is considered to be one of the most important structures in memory formation. After
seizures, the pyramidal cells of the hippocampus form abnormal neural connections, which
leads to impairment of long-term, short-term, and spatial memory [21,39]. The frontal lobe
of the neocortex is often damaged too, resulting in impairment of logical thinking, working
memory, control of emotions, and voluntary movements [20].

The phenotypic spectrum of gene variants causing DEE is very broad. Different
versions in a single gene can cause different consequences for a protein: “gain-of-function”
variants most often result in early-onset DEE, while “loss-of-function” variants lead to
late-onset DEE, intellectual disability, and ASD [40]. In this review, we will focus on three
major mechanisms of intellectual disability in DEE (Figure 1). In addition, we will describe
new genes involved in the pathogenic molecular cascades and ignored by other reviews
about DEEs.
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Figure 1. Mechanisms underlying intellectual disability in developmental and epileptic encephalopathies.

3. Molecular Mechanisms Underlying Developmental and Epileptic
Encephalopathy

The most frequent reasons for DEE have a genetic etiology [10,17]. The diseases are
often monogenic, but oligogenic variants also occur [41,42]. According to exome sequencing
and whole-genome analysis, de novo variants are the main causes, but there are also other
inherited forms: autosomal recessive, dominant, and X-linked variants [12,42–44]. The
majority of pathogenic variants are associated with channelopathies, metabolic disorders,
membrane transport, and progenitor growth and proliferation during neurogenesis [45].
There is a short description of genes discussed below in Table 1.

Table 1. Pathogenic variants associated with intellectual disability in developmental and epileptic
encephalopathies.

Mechanism Subgroup Gene Name Type of Inheritance

Malformation of cortical
development

Impaired differentiation and
proliferation

ACTL6B Autosomal recessive;
autosomal dominant;
de novo [46]

Differentiation of inhibitory
interneurons

CNTNAP2 Autosomal recessive [47]

Impaired differentiation and
proliferation

CUX2 Autosomal dominant;
de novo [48]

Disruption of dendrito- and
axonogenesis

CYFIP2 Autosomal dominant;
de novo [49]

Impaired migration DCX X-linked recessive;
de novo [50]

Disruption of dendrito- and
axonogenesis

DYNC1H1 Autosomal dominant;
de novo [51]

Disruption of dendrito- and
axonogenesis

EEF1A2 Autosomal dominant;
de novo [52]

Impaired proliferation GEMIN5 Autosomal recessive [53]

Impaired differentiation GNAO1 Autosomal dominant;
de novo [54]

Impaired differentiation and
proliferation

HNRNPU Autosomal dominant;
de novo [55]

Impaired proliferation INPP4A Autosomal recessive [56]

Disruption of dendritogenesis RHOBTB2 Autosomal dominant;
autosomal recessive;
de novo [57]

Impaired proliferation SMC1A X-linked dominant [58]

Impaired proliferation and migration SP9 Autosomal dominant;
de novo [59]

Impaired differentiation SPTAN1 Autosomal dominant;
de novo [60]

Impaired migration TUBA1A Autosomal dominant [61]
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Table 1. Cont.

Mechanism Subgroup Gene Name Type of Inheritance

Synaptopathies Inhibitory synaptic transmission ARHGEF9 X-linked recessive;
de novo [62]

Effects on dendritic spines CAMK2 Autosomal dominant;
de novo [63]

Disruptions in synaptic endocytosis DMXL2 Autosomal dominant [64]

Dysfunction of glutamate receptors GRIN2A/B Autosomal dominant;
de novo [65]

Disruption of disassembly and
utilization of SNARE complex proteins

NAPB Autosomal recessive [66]

Disruption of synaptic vesicle fusion STX1B Autosomal dominant;
de novo [67]

Enhanced glutamate receptor activity SYNGAP1 de novo [68]

Dysregulation of synaptic vesicles TBC1D24 Autosomal recessive [69]

Metabolic
disorders

Membrane transporter dysfunction AGC1 Autosomal recessive [70]

Congenital disorders of glycosylation ALG13 X-linked recessive;
de novo [71]

Accumulation of metabolites HK1 Autosomal recessive;
de novo [72]

Membrane transporter dysfunction SLC25A12 Autosomal recessive [73]

Decreased levels of sialoglycans ST3GAL3 de novo [74]

3.1. Malformations of Cortical Development as a Cause of DEE

Cerebral cortex development relies on correct temporal activation and inactivation
of tightly regulated genetic programs that control the proliferation and differentiation of
neuronal progenitors, specification, migration, and formation of neuronal circuits. All this
determines the formation of a brain that functions properly. Malformations of cortical de-
velopment (MCDs) are associated with impaired cerebral cortex development. Pathogenic
gene variants disrupting these processes cause abnormalities in brain morphology and
function. Pathogenic variants can be associated with genes encoding chromatin modifiers,
transcription factors, and RNA-binding proteins that control the process of neurogenesis.
Mutations in such genes cause neurodevelopmental disorders including DEEs [75–81]
(Figure 2).
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3.1.1. Neuronal Progenitor Proliferation Disruption

Pathogenic variants of the neuron-specific chromatin remodeling complex (BAF),
which regulate the expression of genes involved in the control of neocortical lamination,
dendritic branching, and synapse formation, have been described [82–85]. Pathogenic
variants of BAF, ACTL6B, are associated with severe forms of DEE with profound develop-
mental delay and intellectual disability [86–90]. ACTL6B protein controls DNA transcrip-
tion accessibility and is required for the maintenance of neuronal progenitor cell (NPC)
proliferation balance. The proliferative state is maintained by the (np)BAF complex with
ACTL6A during neurogenesis, whereas the differentiation of NPCs into mature postmitotic
neurons requires a switch from ACTL6A to ACTL6B in the (n)BAF complex [83,89,91,92].
The most common pathogenic variants have been found in the actin-like domains of the
protein, causing loss of protein function and disruption of the BAF complex assembly.
They cause dysregulation of genes associated with the self-renewal of neuronal progen-
itors, causing abnormal cytoarchitecture of the neocortex and subsequently intellectual
disability. Thus, among the clinical signs of ACTL6B variants are intellectual disability,
developmental delay, lack of speech, hypomyelination, agenesis of the corpus callosum,
and severe epilepsy [86,88,89,93–96]. Neuronal cell culture experiments demonstrated
disrupted synapse formation, supporting the important influence of ACTL6B in neuronal
development [89]. Thus, loss of ACTL6B function reduces the ability of neurons to form
synaptic connections and leads to impaired neuronal differentiation, which plays a critical
role in DEE pathology and intellectual disability.

Pathogenic variants of INPP4A are associated with disruption of intracellular signaling
pathways. Biallelic truncated variants cause a spectrum of neurodevelopmental disorders
from mild intellectual disability to DEE and microcephaly [56]. The INPP4A gene encodes
the enzyme inositol polyphosphate-4-phosphatase, which is involved in the metabolism
of inositol in phosphoinositide signaling pathways and regulates vesicle transport, which
is crucial for neuronal function. Mouse models demonstrate elevated neuronal death due
to defective proliferation [97–100]. Moreover, mice with a pathogenic variant of Inpp4a
have defects in the development of the striatum, which is important for normal motor and
cognitive behavior. In addition, in neuronal cultures, INPP4A has been shown to regu-
late NMDAR synaptic localization, protect neurons from excitotoxic death, and thereby
maintain the functional integrity of the brain [101]. In sum, INPP4A is critical for the devel-
opment of the nervous system, since the product of this gene influences the functioning of
multiple signaling pathways, maintains cellular homeostasis and neurogenesis, and plays
a role in cell proliferation and suppression of glutamate excitotoxicity [101–104].

The next interesting player in neurogenesis disorders is SMC1A. This gene encodes a
component of the cohesin complex, which is involved in chromosome segregation during
replication, DNA repair, and transcriptional regulation [105–108]. Pathogenic variants of
this gene can lead to Cornelia de Lange syndrome with specific developmental delay and
can also induce early DEE. Moreover, DEE associated with SMC1A is characterized by
global developmental delay and occurs exclusively in women, due to the probable male
lethality [106,109,110].

Changes in this gene in embryonic brain stem cells caused decreased DNA loops,
loss of cohesin on promoters and enhancers, changes in gene expression, and prolifer-
ation defects. Supposedly the defects in SMC1A lead to chromosomal instability and
gene expression disorders in the early stages of brain development, contributing to the
neurodevelopmental pathologies [105–108,111].

Impaired neurogenesis may also be caused by other mechanisms. For example, the for-
mation of the correct pool of mRNA isoforms is necessary for neuronal progenitors to exit
the cell cycle. The disruption of RNA splicing programs during early brain development
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plays an important role in the etiology of NDDs [112–115]. The gene GEMIN5 encodes
a multifunctional protein involved in the assembly of small nuclear ribonucleoproteins
(snRNPs), the regulation of pre-mRNA splicing, and, in general, translation [116–124].
Defects in GEMIN5 are associated with cerebellar atrophy, intellectual disability, movement
disorders, and early infantile developmental epileptic encephalopathy (EIDEE) [3,125,126].
Pathogenic variants of GEMIN5 impair the ability of GEMIN5 to interact with other proteins
of the SMN complex or to bind snRNA. “Loss-of-function” variants of GEMIN5 are the most
common and result in impaired translation and decreased binding of the internal ribosome
entry site (IRES), which causes defects in the expression of genes essential for nervous
system development [122,124,127–129]. “Loss-of-function” variants of GEMIN5 increase
the activity of pathways associated with postsynaptic membrane signaling and neurotrans-
mitter secretion and decrease the activity of pathways associated with cell development,
the extracellular matrix, and nuclear transport [129]. Gemin5 is thought to play a critical
role in early mammalian development. Homozygous knockout models are embryonic
lethal [130,131]. Biallelic variants in GEMIN5 are also known to cause developmental delay,
motor dysfunction, and cerebellar atrophy. This is likely due to decreased levels of snRNP
complex assembly proteins and defects in target RNA regulation [129].

The HNRNPU gene is one of the genes regulating RNA processing. It encodes hetero-
geneous nuclear ribonucleoprotein U (hnRNP U), a protein that plays a key role in maintain-
ing the three-dimensional genome structure [81,132–138]. HNRNPU is widely expressed
in the brain, especially in the cortex, hippocampus, and cerebellum [139]. Pathogenic
variants are recognized as causes of NDD, intellectual disability, ASD, and early DEE
(EIEE54) [55,114,115,140,141]. HNRNPU-associated developmental pathologies are mostly
caused by loss-of-function defects, which lead to a spectrum of neural pathologies: abnor-
mal neuronal migration, enlargement of the lateral ventricles, and defects in the forma-
tion of the corpus callosum [81,142–144]. Mouse models with Hnrnpu haploinsufficiency
demonstrate abnormalities in brain organization and pathologies of neuronal projection and
migration pathways. Since all reported human variants are heterozygous, homozygous HN-
RNPU ones probably lead to prenatal death in humans, similar to mice [80,81,115,137,145].
HNRNPU haploinsufficiency supposedly prevents neuronal progenitors from exiting the
cell cycle and initiating differentiation, disrupting the neuronal developmental trajectory.
This leads to impaired neural development and causes a spectrum of neurological disor-
ders [115,146,147].

3.1.2. Neuronal Differentiation Disruption

Another gene implicated in DEE known to be important for neurogenesis is
CUX2 [148]. CUX2 encodes a transcription factor regulating the proliferation of neu-
ronal progenitors in the subventricular zone (SVZ) and their differentiation and exit from
the cell cycle. CUX2 is expressed late in the cell cycle, before the final mitosis of neuronal
progenitors in the SVZ [149–151]. Cux-2 with Cux-1 together are early markers of neuronal
differentiation: the Cux1 gene is involved in proliferation, and the Cux2 gene controls cell
type specification and neuronal differentiation. It is also known that Cux gene expression
is required for the differentiation and development of interneurons [149,150,152–154]. De-
layed CUX2 expression can lead to abnormal cell cycle exit, causing defects in corticogenesis
and subsequent neurodevelopmental pathologies [149–151].

Another group of genes whose pathogenic variants cause intellectual disability is
involved in intracellular signaling cascades. Thus, in recent years, de novo variants of the
G-protein subunits have been identified. For example, pathogenic variants of the GNAO1
gene are associated with severe neurological syndromes, ranging from developmental delay
with movement disorders to EIEE [155–162]. GNAO1 encodes the alpha subunit of Gα, a
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heterotrimeric G protein that regulates intracellular signaling. The highest level of GNAO1
is observed in the growth cone of differentiating neurons. Gα is responsible for molecular
signaling that directs the growth cone navigation lead by external signals. This process
is key for correct neural circuit formation [162–165]. Defects in Gα disrupt the protein’s
ability to bind and hydrolyze GTP, reduce interactions with partner proteins, and cause a
loss of the protein in the cytoplasmic membrane. Because of a key role in multiple neuronal
signaling systems, Gα variants cause various defects in development. For example, they
lead to impaired neurite growth and extension [166–170]. Mouse models of Gnao1 exhibited
early postnatal lethality, decreased numbers of cortical neuronal progenitors, and enlarged
lateral ventricles [171]. In contrast, patients with impaired GNAO1 had decreased levels of
neurogenesis genes, increased expression of astrocyte markers, differentiation defects, and
abnormal neural network formation. They had low intracellular free calcium concentrations
and impaired neurotransmitter responsiveness. Thus, pathogenic GNAO1 variants impair
neural communication [172].

The next example is the SP9 gene, which encodes a transcription factor of the Sp/KLF
family, which is necessary for the regulation of gene expression in neurogenesis. SP9
is expressed during embryogenesis in the cerebral cortex and basal ganglia, where it
is necessary for the correct differentiation, migration of neurons, and the formation of
neural circuits [59,173]. Several studies have reported two main types of NDD caused by
defects in the SP9 gene. A loss of function in the third C2H2 binding domain results in
developmental delay, epilepsy, and autistic disorders, while changes in the second domain
result in EE [59,174]. SP9 is involved in the development of the corticospinal tract and
tangential migration of GABAergic neurons. The gene also plays an important role in
the proliferation and differentiation of striatopallidal projection neurons. Without SP9,
cortical interneurons do not migrate to the cortex or striatum. Sp9-knockout animal models
exhibit reduced cortical interneuron density, abnormal network organization, and defective
axonal growth. Thus, Sp9 knockout results in cognitive and motor impairments similar
to those seen in patients with DEE [59]. It appears that loss-of-function SP9 disrupts the
transcriptional control of genes critical for corticogenesis, causing neuronal mislocalization,
defective circuit formation, and altered synaptic plasticity [59,175].

3.1.3. Neuronal Migration Disorders

Disruption of neuron migration during brain development may be the cause of
DEE [160,176]. Appropriate regulation of cytoskeletal dynamics, particularly microtubules,
is essential for neuronal migration [177]. Tubulins play an important role in this process,
being essential for mitosis, axonal transport, neuronal migration, and synapse forma-
tion [178–180]. One of these genes, TUBA1A, encodes the α-tubulin isotype, which is
highly expressed in postmitotic neuronal cells but absent in neuronal precursors [181–184].
α-tubulin forms heterodimers with β-tubulin to form microtubule polymers. Microtubule
dysfunction can lead to various disorders of neural development referred to as tubu-
linopathies [180,185,186].

Pathogenic variants of TUBA1A are the main genetic cause of lissencephaly and can
also lead to microcephaly, corpus callosum abnormalities, gray matter heterotypes, and
DEE [61,187–189]. Variants that cause a loss of function (LoF) of TUBA1A result in a lack of
tubulin in cells, as these variants are unable to polymerize microtubules. On the other hand,
gain-of-function (GoF) variants are able to form microtubules but are unable to interact
with dynein [180,185,190,191].

Tuba1a mutants have impaired radial neuronal migration. Mouse models of the
pathogenic Tuba1a variant exhibit perinatal mortality in the homozygous state and severe
brain malformations by E16.5. These mice show a decrease in the thickness of CTIP2+
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and PAX6+ neuronal layers and apoptotic neuron death. The severe phenotype of neu-
rodevelopment is associated with a decrease in postmitotic and apical neuronal precur-
sors [180,192,193].

Another key gene for neuron migration is DCX. It encodes the doublecortin protein,
which is involved in organizing microtubules during neuronal differentiation and the
migration of interneurons to the cerebral cortex [194–199]. Pathogenic variants of DCX
disrupt the structure of the N- and C-terminal regions of the protein, which are necessary
for binding to microtubules and unpolymerized tubulin. These changes in the DCX protein
prevent neurons from interacting properly, leading to impaired neuron migration and
defects in the architecture of the developing brain cortex [195,200,201].

These pathogenic variants have been clinically associated with severe brain malfor-
mations, subcortical band heterotopia, lissencephaly, intellectual disability, epilepsy, and
DEE [195,197,202]. The most severe variants of the phenotype are associated with de novo
frameshift variants, while missense variants cause milder developmental defects. DCX
is located on the X chromosome. Therefore, the most severe consequences of pathogenic
variants of this gene occur in males, manifesting as severe MCD, lissencephaly, develop-
mental delay, intellectual disability, and seizures. Females, on the other hand, have a milder
phenotype in the form of heterotopia [195,203–205].

3.1.4. Dendrito- and Axonogenesis Disorders

Neuronal morphogenesis which includes the formation of dendritic trees and ax-
ons, depends on the action of multiple molecules that control cytoskeleton structure and
maintenance. One such factor is the CYFIP2 gene, which plays an important role in reg-
ulating the actin cytoskeleton via the WAVE complex [206]. When the small Rho GTPase
Rac1 binds to the CYFIP2 protein, the WAVE complex is activated, and it interacts with
Arp2/3 [207]. This interaction promotes actin filament polymerization and maintains
polymerization/depolymerization dynamics required for neurite outgrowth and branch-
ing [208]. Defects in CYFIP2 disrupt this process, leading to actin filament destabilization
and impaired outgrowth [209]. This is manifested by a reduced ability of neurons to form
leaf-like lamellipodia and synaptic contacts, which entails defects in synaptic plasticity
and impaired neuronal migration [210]. In patients, a pathogenic variant of CYFIP2 leads
to severe DEE, psychomotor delay, intellectual impairment, hypotonia, and behavioral
disorders and may be associated with fragile X syndrome [211,212].

SPTAN1 is another gene important for maintaining the structural integrity of neurons
too. SPTAN1 encodes the spectrin αII protein, which is also involved in the actin organi-
zation and membrane structure stabilization. SPTAN1 ensures the structural integrity of
the cytoskeleton and the normal functioning of neurons [213]. Spectrin αII binds to actin
filaments, forming a supporting network under the cell membrane, which is important for
maintaining the mechanical stability of membranes and synaptic plasticity [60]. This protein
is also necessary for the assembly of nodes of Ranvier [214]. Pathogenic variants of SPTAN1
result in axonal defects and disrupted cellular architecture, leading to epilepsy, develop-
mental delay, ASD, microcephaly, spastic paraplegia, and West syndrome [213,215,216].

Cytoskeletal dynamics is also regulated by the RHOBTB2 gene, which encodes a
protein of the Rho-type GTPase family. RHOBTB2 is involved in the regulation of cy-
toskeletal dynamics, cell migration, and vesicular transport, influencing cell differentiation
and apoptosis [217]. Interaction of RhoBTB with the Cullin3 protein, which is part of the
ubiquitin–proteasome complex, can regulate the levels of specific proteins required for
normal dendritic development and synaptic plasticity. In the context of RHOBTB2, the asso-
ciation with Cullin3 suggests that missense variants may disrupt the degradation machinery,
affecting the stability of proteins required for normal dendritic development and neuronal
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function. RHOBTB2 has an important role in cell cycle control, participating in the regula-
tion of cellular differentiation and apoptosis [218,219]. Knockout of RhoBTB in Drosophila
dendritic neurons highlighted the critical role of the formation of dendritic architecture,
decreasing the number of dendritic branches. Missense variants in the coding region of
the BTB domain of RHOBTB2 are associated with DEE, indicating importance in neuronal
development and possibly in the regulation of dendritogenesis [220]. However, the precise
molecular mechanisms linking missense variants with neurodevelopment remain poorly
understood, requiring further studies to characterize their role in neuropathology.

The DYNC1H1 gene regulates cytoskeleton functions too. It contains the cytoplasmic
dynein heavy chain, which mediates the binding of dynein complexes to microtubules [221].
This process is critical for maintaining neuronal homeostasis and delivering key compo-
nents involved in synaptic activity, such as neurotransmitter receptors, synaptic vesicle
precursors, and others [222,223]. Disruptions in DYNC1H1 function can lead to defects in
protein folding and microtubule bundling [224]. Patients with pathological variants of the
DYNC1H1 exhibit neurodevelopmental delay, DEE, and, in some cases, abnormal brain
morphology, including microcephaly and other phenotypes [221].

Impaired inhibitory neuron function in DEE may be due to decreased levels of the
Caspr2 protein, encoded by the CNTNAP2 gene [225]. This gene encodes contactin-
associated protein-like 2, a member of the neurexin family—cell adhesion molecules
involved in the formation of synaptic contacts [226,227]. CNTNAP2 is necessary for myeli-
nation, axon guidance, organization of dendritic branching, and spine formation, and
therefore, it controls the formation of neural networks in general [228]. CNTNAP2 defi-
ciency causes increased neuronal excitability [229]. In particular, recessive variants in the
CNTNAP2 gene affect the levels and functions of GluA1, a subunit of AMPA receptors
regulating excitatory synaptic transmission [230]. Disruption of CNTNAP2 leads to altered
expression, surface localization, and endocytosis of GluA1, attenuating synaptic plasticity
and modulating the activity of calcium-dependent signaling pathways [231]. Patients with
a recessive variant in the CNTNAP2 gene demonstrated cognitive impairment, language
disorders, seizures, and focal cortical dysplasia epilepsy syndrome (CDFE) and also had a
decrease in the number of GABAergic interneurons and neuronal migration abnormalities,
indicating profound defects in the formation and functioning of neural networks [47].

The EEF1A2 gene plays an important role in the translation and organization of the
neuronal cytoskeleton. It encodes eukaryotic translation elongation factor 1A2, which
affects the process of protein synthesis. EEF1A2 binds to amino acids and tRNAs and
participates in the transfer of tRNA to the A-site of the ribosome, which is necessary for the
elongation of the polypeptide chain during translation. Pathogenic variants of EEF1A2 are
associated with DEE, developmental delay, and microcephaly [232] because they disrupt
translation (due to increased tRNA binding), reducing the translation velocity. This affects
the morphological development of cortical neurons. Pathogenic EEF1A2 has lower actin-
binding activity. Thus, EEF1A2 has two functions: translation regulation and organization
of the neuronal cytoskeleton [233]. When EEF1A2 was knocked out in human glioblastoma
cells, the process of cell proliferation and differentiation was impaired [234].

In summary, as the cerebral cortex develops, multiple molecular pathways interact to
produce a complex neuronal network making up the cerebral cortex. The disruption of any
of these pathways can lead to serious pathologic conditions. This, in turn, can cause the
development of intense and sometimes multifocal epileptic activity associated with DEE.

3.2. Synaptopathies—Synaptic Transmission Disorders

Pathogenic gene variants affecting pre- and postsynaptic transmembrane proteins can
lead to DEE both directly and indirectly. Pre- and postsynaptic membranes are involved
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in the transport of synaptic vesicles in axons and action potential initiation in dendrites
(Figure 3).
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The SNARE protein complex plays an important role in the presynaptic mem-
brane [235]. One of the members of the complex is syntaxin-1B, which is encoded by
the STX1B gene. The main role of the protein is to anchor synaptic vesicles to the presy-
naptic membrane [236]. Syntaxin-1B has two conformations: open, which is necessary
for the formation of the SNARE complex, and closed, which initiates the vesicle fusion
reaction [237,238]. De novo STX1B pathogenic variants are clinically associated with DEE
and generalized epilepsy with febrile seizures [67]. Most often, missense variants are loss-
of-function variants of the open conformation of the protein, resulting in disruption of the
assembly of the complex and vesicle transport. Pathogenic variants of the closed conforma-
tion of the protein lead to the disruption of protein–protein interactions and normal fusion
of presynaptic vesicles [239]. Mice with a gene knockout of Stx1b exhibit severe seizures
and premature death associated with dysfunction of neurotransmitter release at GABA and
glutamatergic synapses [240]. In addition to STX1B, other regulatory proteins, such as the
product of the STXBP6 gene, are involved in maintaining the fidelity of vesicle–membrane
fusion processes. STXBP6, encoding syntaxin-binding protein 6, also known as amysin, is
involved in modulating syntaxin activity and controlling membrane interactions, which is
necessary for the normal functioning of the synaptic apparatus, namely the movement of
neuronal vesicles [241]. A patient with epileptic encephalopathy and autism spectrum dis-
order (ASD) was found to have a truncated variant of the protein encoded by the STXBP6
gene [242]. Mice with a deletion of this gene had reduced body weight, which is also one
of the phenotypes in some ASD patients. However cognitive skills were not impaired in
these mice [243].

Neurotransmitter release occurs through Ca(2+)-induced synaptic vesicle fusion me-
diated by the SNARE complex [244]. The SNARE complex is associated with the βSNAP
protein, which is a product of the NAPB gene. βSNAP is one of the cofactors of NSF-ATPase,
which is essential for synaptic transmission, since this enzyme is involved in the disassem-
bly and utilization of SNARE complex proteins [245]. Whole-exome sequencing of three
siblings with severe intellectual disability and DEE revealed a seven-base-pair deletion
in the NAPB gene, resulting in a 46% truncation of the protein. The children developed
epileptic seizures before 6 months of age and severe developmental regression by 2 years
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of age [246]. Recently, whole-exome sequencing of an Arab-Palestinian consanguineous
family of three identical twins diagnosed with Cohen syndrome was performed. The
twins suffered from early-onset epileptic encephalopathy, autism, and intellectual disability.
Analysis of the sequencing data identified a pathogenic variant affecting the splice site
of the NAPB gene [247]. Mice with reduced βSnap expression showed epileptic seizures,
followed by ataxia and, in some cases, death [245].

Among the postsynaptic membrane proteins, pathogenic variants of SYNGAP1 are
most frequently associated with DEE [248]. This protein is a key mediator in the RAS
signaling cascade activated by the NMDA receptor. During LTP, SYNGAP1 activates
RAS-GTPase (SynGAP) in glutamatergic neurons, resulting in the insertion of AMPA
receptors and an increase in synaptic surface area [249–251]. SYNGAP1 pathogenic variants
affect glutamatergic synapses and enhance glutamate receptor activity, increasing the
probability of epileptogenesis [252]. SYNGAP1 mRNA has multiple alternatively spliced
variants encoding different protein isoforms that differ in structure, function, and temporal
expression. Four C-terminal isoforms have been identified: α1, α2, β, and γ. The β isoform
is expressed early in postnatal development, while α2 is expressed at higher levels in the
mature brain [253,254]. This explains the differences in phenotypic severity; for example,
nonsense-mediated decay caused by defects in early isoforms leads to complete loss of the
gene product. A milder outcome of SYNGAP1-DEE is observed in patients with splice site
variants in exons 1 through 4 [68].

Another gene associated with synaptopathy is TBC1D24. This gene encodes a protein
that activates the small GTPases Arf6 and Rab35, which act antagonistically. They are
required for membrane transport at synapses, as well as between the plasma membrane and
endocytic compartments [255]. TBC1D24 has a broad expression pattern and is found in all
layers of the cerebral cortex and the hippocampus. Pathogenic variants of TBC1D24 cause
dysregulation of synaptic vesicles, which causes excessive neurotransmission. In addition,
it interferes with the normal disposal of defective proteins through endosomal pathways,
leading to their accumulation and neuronal dysfunction. These alterations contribute to
the development of a wide range of epileptic phenotypes and other neurodevelopmental
disorders in patients [69]. Knockout of the Tbc1d24 gene in rat primary cortical neurons
revealed impaired axon initial segment formation and neuronal excitability. This phenotype
was associated with increased activation of the GTPase Arf6, which is required for axon
specification and neurite extension [256].

The DMXL2 gene encodes a large protein that is associated with vesicular transport
and plays a key role in the regulation of synaptic transmission. Disruptions in the function
of the DMXL2 protein can lead to disruptions in synaptic endocytosis and vesicle recycling.
This is due to the fact that DMXL2 regulates the acidification of intracellular compartments
via the vacuolar proton pump (V-ATPase) [257]. In addition, the DMXL2 protein acts as a
modulator of the Notch signaling pathway and is required for chromatin recruitment of
Notch-dependent transcription factors [258]. Pathogenic variants of DMXL2 can disrupt
these processes, which leads to an imbalance of excitation/inhibition in the nervous system,
causing neuronal hyperexcitability. This, in turn, is associated with the development of
epileptic seizures and severe developmental delay, characteristic of DEE [6]. The neuronal
hyperexcitability underlying DEE may also be associated with dysfunction of glutamate
receptors. In particular, the GRIN2A and GRIN2B genes encode subunits of NMDA (N-
methyl-D-aspartate) receptors, which are subtypes of glutamate receptors. They play a
key role in synaptic plasticity, learning, and memory. These receptors control the entry of
calcium, sodium, and potassium ions across the neuronal membrane, which is necessary
for the transmission of excitatory signals in the brain [65,259]. Increased activity of NMDA
receptors leads to excessive calcium influx into cells, which can cause neuronal hyperactivity



Biomolecules 2025, 15, 133 13 of 32

and, as a result, neuronal death [260]. There are multiple rare variants of GRIN2A and
GRIN2B genes associated with neurological diseases. Currently, 304 variants that cause
DEE have been reported in GRIN2A, and 273 variants that cause DEE have been reported in
GRIN2B (ClinVar) [261]. The phenotypic manifestations in these genes have been studied in
detail in a number of clinical studies. Patients with pathogenic variants of GRIN2A/GRIN2B
exhibit severe forms of epileptic encephalopathy, accompanied by delayed motor and
cognitive development. These clinical manifestations correlate with disturbances observed
at the level of synaptic transmission and neuronal activity [262].

The ARHGEF9 gene encodes the protein collibostin (Cb), which regulates the actin cy-
toskeleton dynamics and synaptic activity through activation of Rho GTPases, in particular
Cdc42 [263]. It interacts directly with the scaffold protein gephyrin and is required for the
formation of gephyrin-dependent GABA A clusters on the postsynaptic membrane [264].
Cb interaction occurs due to the presence of the SH3 domain, which binds to the large in-
tracellular loop of the α2 subunit of GABA A receptors [265]. Point mutations in ARHGEF9
disrupt inhibitory synaptic transmission through interaction with GABA and glycine recep-
tors, which leads to neuronal hyperexcitability and cognitive impairment. It is associated
with the development of epilepsy, ASD, intellectual disability, and, in some cases, certain
facial dysmorphism [62,147].

Ca 2+/calmodulin-dependent protein kinase II (CAMK2) is one of the most impor-
tant enzymes in synaptic plasticity and memory formation [266]. The protein consists of
two predominant subunits, alpha (CAMK2A) and beta (CAMK2B), that are highly ho-
mologous to each other and can probably substitute each other’s functions when one is
inactivated [267]. Pathogenic variants of CAMK2A or CAMK2B cause intellectual disability,
ASD, and DEE in humans [268]. The CAMK2 enzyme is part of the Ca-dependent signaling
pathway and phosphorylates various substrates responsible for LTP [269]. When activated,
CAMK2A exerts significant effects on dendritic spines and postsynaptic density by inter-
acting with enzyme-associated proteins, particularly the GluN2B subunits of the NMDA
receptor [270]. When the CaMK2A autophosphorylation site is disrupted in mice, defects
in spatial learning and memory are observed [271].

Thus, synaptopathies are one of the key mechanisms underlying epileptic en-
cephalopathies and neurodevelopmental disorders in general. Disturbances in synaptic
plasticity lead to dysregulation of neural connections, which causes epileptic activity in
the brain and significant cognitive and motor deficits. This undoubtedly emphasizes the
importance of studying synaptopathies for understanding the pathogenesis of epileptic
disorders and associated developmental delays [31].

3.3. Metabolic Disorders

The mammalian brain has a high energy demand. Most of the energy is utilized for
the activation of action potentials and synaptic transmission. It is provided by glycolysis
and mitochondrial respiration. On the other hand, energy demand during neurogenesis
is extremely high as well. It is not surprising therefore that abnormal bioenergetics and
mitochondrial dysfunction in neurons cause cognitive disorders [272].

One such disorder is caused by pathogenic variants of HK1, which encodes hexokinase
HK1. This enzyme carries out ATP-dependent phosphorylation of glucose to glucose-
6-phosphate (G6P) in glycolysis [273]. HK1 is predominantly expressed in neurons and
astrocytes in the brain, and gene dysfunction has been associated with multiple develop-
mental disabilities, including neurodevelopmental disorders (NDDs) and DEE [72,273].

Pathogenic variants of HK1 can cause intellectual disability through several mecha-
nisms related to the essential functions of hexokinase in cellular metabolism and neuronal
activity. HK1 consists of two symmetrical monomers that contain an alpha-helix-linked
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regulatory N-terminal domain and a catalytic C-terminal domain [274,275]. The phospho-
rylation product of this hexokinase, G6P, binds to both domains of the enzyme, resulting
in competitive inhibition of ATP binding and inhibition of kinase activity [276,277]. This
process is disrupted by missense variants in the alpha helix and regulatory domain of
the enzyme, which makes binding of G6P to the HK1 domains impossible, and the en-
zyme loses its ability to self-regulate. Such defects result in HK1 “gain of function”: the
enzyme continues to constitutively phosphorylate glucose, leading to the accumulation of
metabolites and mitochondrial damage [278]. It is thought to result in the accumulation of
misfolded proteins, endoplasmic reticulum stress, mitochondrial dysfunction, apoptosis,
and cell death [72,279]. This may cause neuronal loss in brain regions responsible for learn-
ing, memory, and cognition, such as the hippocampus and prefrontal cortex. Pathogenic
variants of HK1 reduce energy availability in brain cells, and energy deficiency leads to
impaired neuronal activity. This, in turn, may lead to defects in the formation of neural
networks during critical periods of development and, consequently, cognitive impairment
and intellectual disability [6,72] (Figure 4).
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Figure 4. Pathogenic variants of HK1 can lead to intellectual disability by disrupting cellular
metabolism. Normally, HK1 hexokinase catalyzes the phosphorylation of glucose to glucose-6-
phosphate (G6P), which binds to the enzyme domains. Competitive inhibition with ATP blocks
kinase activity. Pathogenic HK1 disrupts the reverse binding of G6P to the enzyme domains. As a
result, the kinase continues to constitutively phosphorylate glucose, which leads to the accumulation
of metabolites, damage to mitochondria, and death of neurons. Lack of energy and dysfunction of
neural networks can subsequently lead to intellectual disability in DEE.

Other pathogenic variants, such as those causing membrane transporter dysfunc-
tion, can also lead to disruption of neuronal bioenergetics. The SLC25A12 gene encodes
the mitochondrial aspartate–glutamate transporter (AGC1/Aralar), a component of the
malate–aspartate shuttle (MAS), mainly expressed in the nervous system and muscles. This
transporter carries out the antiport of cytosolic glutamate and protons in exchange for
intramitochondrial aspartate. MAS function is necessary to maintain the redox balance be-
tween cytosolic glycolysis and mitochondrial respiration and ensures ATP synthesis, which
is important for neurons, which have high energy requirements [280–283]. Pathogenic vari-
ants of SLC25A12 result in AGC1 deficiency, which causes infantile epileptic encephalopathy
with global psychomotor retardation and brain hypomyelination [284]. Pathogenic variants
result in the disruption of the transporter gating, which limits conformational changes in
the protein for substrate release in the mitochondrial matrix and impairs cellular metabolic
activity [285–288]. Studies in Agc1-knockout mouse models demonstrate decreased cellular
respiration in the brain, decreased aspartate levels, and impaired glutamate metabolism. As
a result, neurons lacking AGC1 are unable to maintain normal metabolic activity [282,288].
AGC1 plays a central role in neuronal bioenergetics, and since neuronal growth and dif-
ferentiation require increased energy production, this protein is very important during
neurogenesis [272,289].

In addition, AGC1 pathologies in the nervous system lead to aspartate deficiency and
limited biosynthesis of N-acetylaspartate (NAA), which is necessary for myelin synthesis.
Reduced myelination disrupts normal axon development and the ability of axons to trans-
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mit signals, causing pathologies of neurotransmission, in particular glutamatergic, which
explains the intellectual deficit observed in patients [70,290–292] (Figure 5).
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Figure 5. Pathogenic variants of SLC25A12 can lead to the disruption of neuronal bioenergetics and
axonal myelination. The SLC25A12 gene encodes the mitochondrial aspartate–glutamate transporter
(AGC1/Aralar). Pathogenic variants of SLC25A12 lead to disruption of the functioning of the
transporter gate and the inability to antiport aspartate and glutamate. The lack of aspartate in the
nervous system causes a deficiency in the biosynthesis of N-acetylaspartate (NAA), which is necessary
for the synthesis of myelin and myelination of axons. Decreased myelination disrupts the normal
development of axons and their ability to transmit signals, which may be the cause of intellectual
disability in DEE.

Mouse models of pathologies of this transporter have pronounced hypomyelina-
tion, as well as impaired development of cortical axons and postnatal development of
cortico-hippocampal neurons [282,293–296]. Thus, pathogenic variants of SLC25A12 lead
to disruptions in neuronal function and the development of severe forms of epileptic en-
cephalopathy with concomitant intellectual deficit, which is associated with disruptions of
corticogenesis, myelination, and glutamatergic transmission due to metabolic disorder.

There are cases of intellectual disability caused by protein glycosylation defects. This
post-translational modification of proteins plays an important role in many intracellu-
lar processes, including synaptic plasticity. Animal models of glycosylation disorders in
the nervous system demonstrate synaptogenesis disorders, hippocampal developmental
abnormalities, and intellectual disability [297–300]. One of the genes involved in the con-
trol of glycosylation is ALG13. The product of this gene is involved in post-translational
modification of proteins by N-glycosylation, and gene expression is predominantly ob-
served in neurons of the cerebral cortex and hippocampus [301]. Pathogenic variants of
ALG13 lead to congenital disorders of glycosylation and DEE. They are characterized by
global developmental delay with regression, hypotonia, and movement disorders. They
are mainly diagnosed in females [302–304]. Inside the cell, ALG13 forms a heterodimeric
complex with the ALG14 protein, which performs an auxiliary function for anchoring
ALG13 to the endoplasmic reticulum membrane. Together, they form a functional glyco-
syltransferase UDP-GlcNAc, which transfers N-acetylglucosamine to asparagine residues
of proteins [305–309]. This process is necessary for the correct folding of proteins and the
formation of functional glycoproteins, which ensures their stability, sorting, and transport,
and is also important for the implementation of intercellular interactions [301,310–312].
The ALG13 protein has several isoforms: long (ALG13-is1) and short (ALG13is2). These
isoforms are identical in the catalytic domain of the N-terminal region but are significantly
different in the C-terminal region, the part of the protein responsible for the transport of
proteins to the endoplasmic reticulum. Pathologies are caused by mutations in both the
catalytic and C-terminal domains, which disrupt the activity of the protein, its interac-
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tions with the endoplasmic reticulum membrane, and the ability to glycosylate proteins.
Defects in the C-terminal region of the long isoform of ALG13 are known to cause devel-
opmental and epileptic encephalopathy, intellectual disability, and type I glycosylation
disorders [308,313–315]. The Alg13KO mouse model exhibited cognitive deficits, decreased
dendritic complexity and length, and dendritic spine density in the hippocampus. It is
likely that cognitive decline in ALG13 pathology is caused by the failure to form correct
synaptic connections [316–319]. Furthermore, ALG13 loss was found to be characterized by
neuronal death and reactive astrogliosis and may reduce inhibitory synaptic transmission
by regulating the transcription of the GABA A R α2 subunit, which aggravates synaptic
plasticity pathologies [301]. Collectively, pathogenic variants of ALG13 cause profound cog-
nitive impairment, developmental delay, and a severe DEE phenotype due to glycosylation
and neuronal plasticity disorders.

Other examples of glycosylation disorders are pathogenic variants of ST3GAL3, which
encodes the Golgi transmembrane enzyme sigleosyltransferase ST3Gal-III. This enzyme
catalyzes the transfer of sialic acid to galactose in gangliosides and glycoproteins. Sialogly-
cans are critical for the nervous system, as they are required for normal neuronal function,
intercellular communication, myelination, and synaptic plasticity [320–324]. Disruptions in
the ST3Gal-III enzyme result in decreased levels of sialoglycans, which impair nervous sys-
tem function, affecting cognitive development and learning ability. Sialoglycan deficiency
disrupts the stability and function of membrane proteins, which interferes with normal
neuronal signaling [325,326].

ST3GAL3 loss-of-function variants result in West syndrome, a DEE syndrome with
developmental regression and intellectual disability, and severe nonsyndromic autosomal
recessive intellectual disability (NSARID) [324,325,327–329].

Studies in the St3gal3-null and St3gal2/3-null mouse models showed that gene dis-
ruptions lead to a lack of glycoprotein sialylation and, subsequently, to hypomyelination,
impaired oligodendrocyte proliferation, and abnormal formation of nodes of Ranvier. Sim-
ilar to the human phenotype, these mice exhibited severe cognitive deficits, decreased
motor coordination, and hyperactive behavior. In addition, the lack of adequate sialyla-
tion disrupted the proper functioning of synapses, which reduced synaptic plasticity and
impaired learning and memory. Taken together, pathogenic variants of ST3GAL3 lead to
glycosylation deficiency of gangliosides and glycoproteins, and subsequently to cognitive
dysfunction, and patients with pathogenic ST3GAL3 exhibit severe intellectual disability,
developmental delay, and DEE [323,325] (Figure 6).
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Thus, metabolic disorders in the developing nervous system are one of the mechanisms
for the development of intellectual disability in DEE. Among the causes we considered,
pathogenic variants of some enzymes and transporters cause defects in bioenergetics
and post-translational modification, leading to synaptic transmission and myelination
pathologies, neural network formation pathologies, and neuronal death. Ultimately, all this
comes down to the disruption of interneuronal communication and subsequent intellectual
disability.

4. Conclusions
Developmental and epileptic encephalopathies (DEEs) are a group of diseases charac-

terized by epileptic seizures, interictal epileptiform activity, and severe developmental delay
with cognitive deficits. These pathologies often have a common etiology and influence
each other but develop in parallel and in different ways.

A genetic etiology often underlies DEEs. In the last decade, due to the development of
next-generation sequencing, many research groups around the world have discovered many
pathogenic variants that cause DEE. These are often monogenic disorders that either occur
de novo or are inherited recessively. The most frequent variants that cause DDE, associated
with channelopathies, disrupt the function of the genes that encode voltage-dependent
sodium and potassium channels, such as, for example, SCN2A and KCNQ2.

However, many DEE-causing variants have been described recently whose gene prod-
ucts control processes other than current conductance: metabolic disorders, membrane
transport, and growth and proliferation during neurogenesis. These findings demonstrate
that the pathogenesis of DEE extends far beyond neuronal transmission and any disruption
of the correct numbers and proportions of different types of neurons, their positioning,
synaptic input and output, axonal and dendritic transport, and energy consumption can dis-
rupt the correct excitation/inhibition balance and cause very severe consequences in brain
function that will be manifested in epileptiform activity and cause intellectual disability.

The identification and detailed investigation of the genetic causes of DEE and the
molecular cascades involved are important for understanding the molecular basis of patho-
genesis responsible for the occurrence of these disorders. Understanding these pathways
and determining the genotype–phenotype correlation can help in the diagnosis and genetic
counseling of patients’ families. Although in many cases, by the time when the disease
has been diagnosed, the cytoarchitecture of the brain has been terminally malformed and
treatment is no longer possible, there are DEE cases where the brain structure has not been
dramatically changed. Such cases could potentially be treated individually, depending on
the molecular cascade affected by the pathogenic gene variant. For example, if the cause is
a metabolic disorder, a replacement therapy in combination with gene therapy can be used.
Gene constructs or mRNAs that would replace malfunctioning proteins can be delivered to
the brain. On the other hand, if the main cause of the disease is a “gain of function” of a
certain gene, a small inhibitor molecule can be identified that attenuates the hyperactivity
of the gene product. A common feature and problem of many DEEs is pharmacoresistance
to antiepileptic drugs. Here, animal models replicating the pathology can be used in
individual cases in order to select a treatment with a combination of antiepileptic drugs.

Uncovering the molecular mechanisms of the pathogenesis of intellectual disability in
DEE can become the basis for personalized therapy that will improve not only the severity
of seizures, but also the cognitive outcome in affected children.
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of the Effect of Asn107Ser Mutation on Alg13 Activity and Alg13-Alg14 Complex Formation and Expanding the Phenotypic
Variability of ALG13-CDG. Biomolecules 2022, 12, 398. [CrossRef]

310. Kukuruzinska, M.; Lennon, K. Protein N-Glycosylation: Molecular Genetics and Functional Significance. Crit. Rev. Oral Biol. Med.
1998, 9, 415–448. [CrossRef]

311. Helenius, A.; Aebi, M. Intracellular Functions of N-Linked Glycans. Science 2001, 291, 2364–2369. [CrossRef]
312. Dennis, J.W.; Nabi, I.R.; Demetriou, M. Metabolism, Cell Surface Organization, and Disease. Cell 2009, 139, 1229–1241. [CrossRef]
313. Epi4K Consortium; Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 2013, 501,

217–221. [CrossRef]
314. Bissar-Tadmouri, N.; Donahue, W.L.; Al-Gazali, L.; Nelson, S.F.; Bayrak-Toydemir, P.; Kantarci, S. X chromosome exome

sequencing reveals a novel ALG13 mutation in a nonsyndromic intellectual disability family with multiple affected male siblings.
Am. J. Med. Genet. Part A 2013, 164, 164–169. [CrossRef]

315. Esposito, T.; De Stefano, G.; Reccia, M.G.; Di Lorenzo, I.; Napolitano, F.; Scalabrì, F.; Lombardi, A.; Saleem, M.A.; Griffiths,
L.R.; Gianfrancesco, F. Dysregulation of the Expression of Asparagine-Linked Glycosylation 13 Short Isoform 2 Affects Nephrin
Function by Altering Its N-Linked Glycosylation. Nephron 2017, 136, 143–150. [CrossRef]

316. Charych, E.I.; Akum, B.F.; Goldberg, J.S.; Jörnsten, R.J.; Rongo, C.; Zheng, J.Q.; Firestein, B.L. Activity-Independent Regulation of
Dendrite Patterning by Postsynaptic Density Protein PSD-95. J. Neurosci. 2006, 26, 10164–10176. [CrossRef]

317. Matsuo, N.; Reijmers, L.; Mayford, M. Spine-Type-Specific Recruitment of Newly Synthesized AMPA Receptors with Learning.
Science 2008, 319, 1104–1107. [CrossRef] [PubMed]

318. Arikkath, J. Molecular mechanisms of dendrite morphogenesis. Front. Cell Neurosci. 2012, 6, 37943. [CrossRef] [PubMed]
319. Guo, B.; Xia, Y.; Wang, C.; Wang, F.; Zhang, C.; Xiao, L.; Zhang, X.; Meng, Y.; Wang, Y.; Ding, J.; et al. Decreased cognitive function

of ALG13KO female mice may be related to the decreased plasticity of hippocampal neurons. Neuropeptides 2022, 96, 102290.
[CrossRef] [PubMed]

320. Kolter, T.; Proia, R.L.; Sandhoff, K. Combinatorial Ganglioside Biosynthesis. J. Biol. Chem. 2002, 277, 25859–25862. [CrossRef]
321. Wang, B. Sialic Acid Is an Essential Nutrient for Brain Development and Cognition. Annu. Rev. Nutr. 2009, 29, 177–222. [CrossRef]
322. Audry, M.; Jeanneau, C.; Imberty, A.; Harduin-Lepers, A.; Delannoy, P.; Breton, C. Current trends in the structure-activity

relationships of sialyltransferases. Glycobiology 2010, 21, 716–726. [CrossRef]

https://doi.org/10.1016/j.neuint.2010.05.004
https://www.ncbi.nlm.nih.gov/pubmed/20471436
https://doi.org/10.1002/dneu.20891
https://www.ncbi.nlm.nih.gov/pubmed/21509945
https://doi.org/10.1126/scisignal.2005438
https://doi.org/10.1016/j.neuroscience.2019.03.009
https://doi.org/10.1056/NEJMoa1206524
https://doi.org/10.1038/nature13394
https://doi.org/10.1111/epi.16761
https://doi.org/10.1074/jbc.M507569200
https://doi.org/10.1091/mbc.e07-10-1077
https://doi.org/10.1074/jbc.M804060200
https://www.ncbi.nlm.nih.gov/pubmed/18809682
https://doi.org/10.1093/hmg/dds123
https://www.ncbi.nlm.nih.gov/pubmed/22492991
https://doi.org/10.3390/biom12030398
https://doi.org/10.1177/10454411980090040301
https://doi.org/10.1126/science.291.5512.2364
https://doi.org/10.1016/j.cell.2009.12.008
https://doi.org/10.1038/nature12439
https://doi.org/10.1002/ajmg.a.36233
https://doi.org/10.1159/000455129
https://doi.org/10.1523/JNEUROSCI.2379-06.2006
https://doi.org/10.1126/science.1149967
https://www.ncbi.nlm.nih.gov/pubmed/18292343
https://doi.org/10.3389/fncel.2012.00061
https://www.ncbi.nlm.nih.gov/pubmed/23293584
https://doi.org/10.1016/j.npep.2022.102290
https://www.ncbi.nlm.nih.gov/pubmed/36152356
https://doi.org/10.1074/jbc.R200001200
https://doi.org/10.1146/annurev.nutr.28.061807.155515
https://doi.org/10.1093/glycob/cwq189


Biomolecules 2025, 15, 133 32 of 32

323. Yoo, S.; Motari, M.G.; Susuki, K.; Prendergast, J.; Mountney, A.; Hurtado, A.; Schnaar, R.L. Sialylation regulates brain structure
and function. FASEB J. 2015, 29, 3040–3053. [CrossRef]

324. Rivero, O.; Alhama-Riba, J.; Ku, H.-P.; Fischer, M.; Ortega, G.; Álmos, P.; Diouf, D.; Hove, D.v.D.; Lesch, K.-P. Haploinsufficiency
of the Attention-Deficit/Hyperactivity Disorder Risk Gene St3gal3 in Mice Causes Alterations in Cognition and Expression of
Genes Involved in Myelination and Sialylation. Front. Genet. 2021, 12, 688488. [CrossRef]

325. Hu, H.; Eggers, K.; Chen, W.; Garshasbi, M.; Motazacker, M.M.; Wrogemann, K.; Kahrizi, K.; Tzschach, A.; Hosseini, M.; Bahman,
I.; et al. ST3GAL3 Mutations Impair the Development of Higher Cognitive Functions. Am. J. Hum. Genet. 2011, 89, 407–414.
[CrossRef]

326. Taniguchi, N.; Honke, K.; Fukuda, M.; Narimatsu, H.; Yamaguchi, Y.; Angata, T. Handbook of Glycosyltransferases and Related Genes,
2nd ed.; Springer: Berlin/Heidelberg, Germany, 2014; Volumes 1–2.

327. Edvardson, S.; Baumann, A.; Mühlenhoff, M.; Stephan, O.; Kuss, A.W.; Shaag, A.; He, L.; Zenvirt, S.; Tanzi, R.; Gerardy-Schahn,
R.; et al. West syndrome caused by ST3Gal-III deficiency. Epilepsia 2012, 54, e24–e27. [CrossRef]

328. Schnaar, R.L.; Gerardy-Schahn, R.; Hildebrandt, H. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System
Development, Stability, Disease, and Regeneration. Physiol. Rev. 2014, 94, 461–518. [CrossRef] [PubMed]

329. Indellicato, R.; Domenighini, R.; Malagolini, N.; Cereda, A.; Mamoli, D.; Pezzani, L.; Iascone, M.; Dall’olio, F.; Trinchera, M. A
novel nonsense and inactivating variant of ST3GAL3 in two infant siblings suffering severe epilepsy and expressing circulating
CA19. Glycobiology 2019, 30, 95–104. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1096/fj.15-270983
https://doi.org/10.3389/fgene.2021.688488
https://doi.org/10.1016/j.ajhg.2011.08.008
https://doi.org/10.1111/epi.12050
https://doi.org/10.1152/physrev.00033.2013
https://www.ncbi.nlm.nih.gov/pubmed/24692354
https://doi.org/10.1093/glycob/cwz079
https://www.ncbi.nlm.nih.gov/pubmed/31584066

	Introduction 
	Pathogenesis of Developmental Delay and Intellectual Disability in Developmental and Epileptic Encephalopathy 
	Molecular Mechanisms Underlying Developmental and Epileptic Encephalopathy 
	Malformations of Cortical Development as a Cause of DEE 
	Neuronal Progenitor Proliferation Disruption 
	Neuronal Differentiation Disruption 
	Neuronal Migration Disorders 
	Dendrito- and Axonogenesis Disorders 

	Synaptopathies—Synaptic Transmission Disorders 
	Metabolic Disorders 

	Conclusions 
	References

