A Sight to Wheat Bran: High Value-Added Products
Abstract
:1. Introduction
2. Enzyme Production by WB Utilization
2.1. Enzymes Production by SSF
2.2. Enzyme Production by SmF
3. WB as a Source for Organic Acids Production
3.1. Ferulic Acid (FA)
3.2. Lactic Acid (LA)
3.3. Other Acids Production Utilizing WB as a Source
4. Biotechnological Applications of WB to Environmental Treatment
4.1. Biodegradation Process
4.2. Wheat Bran as Biosorbent
5. Further Applications of WB in Biotechnology
6. Future Perspectives for WB Application
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of United Nations FAO). Data for Development: FAO Statistical Pocketbook 2018. Available online: http://www.fao.org/publications/highlights-detail/en/c/1164465/ (accessed on 27 April 2019).
- Food and Agriculture Organization of United Nations (FAO). FAO Cereal Supply and Demand Brief. Available online: http://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 27 May 2019).
- Luthria, D.L.; Lu, Y.; John, K.M.M. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. J. Funct. Foods 2015, 18, 910–925. [Google Scholar] [CrossRef]
- Chalamacharla, R.B.; Harsha, K.; Sheik, K.B.; Viswanatha, C.K. Wheat Bran-Composition and Nutritional Quality: A Review. Adv. Microbiol. Biotechnol. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Javed, M.M.; Zahoor, S.; Shafaat, S.; Mehmooda, I.; Gul, A.; Rasheed, H.; Bukhari, S.A.I.; Aftab, M.N. Wheat bran as a brown gold: Nutritious value and its biotechnological applications. Afr. J. Microbiol. Res. 2012, 6, 724–733. [Google Scholar] [CrossRef]
- Hell, J.; Kneifel, W.; Rosenau, T.; Böhmdorfer, S. Analytical techniques for the elucidation of wheat bran constituents and their structural features with emphasis on dietary fiber—A review. Trends Food Sci. Technol. 2014, 35, 102–113. [Google Scholar] [CrossRef]
- Prückler, M.; Siebenhandl-Ehn, S.; Apprich, S.; Höltinger, S.; Haas, C.; Schmid, E.; Kneifel, W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT Food Sci. Technol. 2014, 56, 211–221. [Google Scholar] [CrossRef]
- Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Böhmdorfer, S.; Siebenhandl-Ehn, S.; Novalin, S.; Kneifel, W. Wheat bran-based biorefinery 2: Valorization of products. LWT Food Sci. Technol. 2014, 56, 222–231. [Google Scholar] [CrossRef]
- Maheswari, M.U.; Chandra, T.S. Production and potential applications of a xylanase from a new strain of Streptomyces cuspidosporus. World J. Microbiol. Biotechnol. 2000, 16, 257–263. [Google Scholar] [CrossRef]
- Sindhu, R.; Suprabha, G.N.; Shashidhar, S. Purification and characterization of α-amylase from Penicillium janthinellum (NCIM 4960) and its application in detergent industry. Afr. J. Microbiol. Res. 2009, 3, 498–503. [Google Scholar]
- Javed, M.; Rashid, M.; Mukhtar, Z.; Riaz, M.; Nadeem, H.; Huma, T.; Nourin, A. Kinetics and thermodynamics of high level β-glucosidase production by mutant derivative of Aspergillus niger under submerged growth conditions. Afr. J. Microbiol. Res. 2011, 5, 2528–2538. [Google Scholar] [CrossRef]
- Farzana, K.; Shah, N.; Bashir Butt, F.; Bukhsh Awan, S. Biosynthesis of bacitracin in solid-state fermentation by Bacillus licheniformis using defatted oil seed cakes as substrate. Pak. J. Pharm. Sci. 2005, 18, 55–57. [Google Scholar]
- Sekar, C.; Rajasekar, V.W.; Balaraman, K. Production of Cyclosporin A by solid state fermentation. Bioprocess Eng. 1997, 17, 257–259. [Google Scholar] [CrossRef]
- Bandelier, S.; Renaud, R.; Durand, A. Production of gibberellic acid by fed-batch solid state fermentation in an aseptic pilot-scale reactor. Process Biochem. 1997, 32, 141–145. [Google Scholar] [CrossRef]
- Palmarola-Adrados, B.; Choteborska, P.; Galbe, M.; Zacchi, G. Ethanol production from non-starch carbohydrates of wheat bran. Bioresour. Technol. 2005, 96, 843–850. [Google Scholar] [CrossRef]
- Hawkes, F.R.; Forsey, H.; Premier, G.C.; Dinsdale, R.M.; Hawkes, D.L.; Guwy, A.J.; Maddy, J.; Cherryman, S.; Shine, J.; Auty, D. Fermentative production of hydrogen from a wheat flour industry co-product. Bioresour. Technol. 2008, 99, 5020–5029. [Google Scholar] [CrossRef]
- Manikandan, K.; Viruthagiri, T. Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic Aspergillus niger and thermotolerant Kluyveromyces marxianus. Front. Chem. Eng. China 2009, 3, 240–249. [Google Scholar] [CrossRef]
- Okamoto, K.; Nitta, Y.; Maekawa, N.; Yanase, H. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzym. Microb. Technol. 2011, 48, 273–277. [Google Scholar] [CrossRef]
- Liu, Z.; Ying, Y.; Li, F.; Ma, C.; Xu, P. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J. Ind. Microbiol. Biotechnol. 2010, 37, 495–501. [Google Scholar] [CrossRef]
- Pan, C.; Fan, Y.; Hou, H. Fermentative Production of Hydrogen from Wheat Bran by Mixed Anaerobic Cultures. Ind. Eng. Chem. Res. 2008, 47, 5812–5818. [Google Scholar] [CrossRef]
- Farkas, C.; Rezessy-Szabó, J.M.; Gupta, V.K.; Truong, D.H.; Friedrich, L.; Felföldi, J.; Nguyen, Q.D. Microbial saccharification of wheat bran for bioethanol fermentation. J. Clean. Prod. 2019, 240, 118269. [Google Scholar] [CrossRef]
- Singh, K.K.; Hasan, S.H.; Talat, M.; Singh, V.K.; Gangwar, S.K. Removal of Cr (VI) from aqueous solutions using wheat bran. Chem. Eng. J. 2009, 151, 113–121. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Monji, A.B. Adsorption characteristics of wheat bran towards heavy metal cations. Sep. Purif. Technol. 2004, 38, 197–207. [Google Scholar] [CrossRef]
- Kaya, K.; Pehlivan, E.; Schmidt, C.; Bahadir, M. Use of modified wheat bran for the removal of chromium (VI) from aqueous solutions. Food Chem. 2014, 158, 112–117. [Google Scholar] [CrossRef]
- Flight, I.; Clifton, P. Cereal grains and legumes in the prevention of coronary heart disease and stroke: A review of the literature. Eur. J. Clin. Nutr. 2006, 60, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.K.; Koh-Banerjee, P.; Hu, F.B.; Franz, M.; Sampson, L.; Gronbaek, M.; Rimm, E.B. Intakes of whole grains, bran, and germ and the risk of coronary heart disease in men. Am. J. Clin. Nutr. 2004, 80, 1492–1499. [Google Scholar] [CrossRef]
- Lupton, J.R.; Turner, N.D. Potential protective mechanisms of wheat bran fiber. Am. J. Med. 1999, 106, 24–27. [Google Scholar] [CrossRef]
- Reddy, B.S.; Hirose, Y.; Cohen, L.A.; Simi, B.; Cooma, I.; Rao, C.V. Preventive potential of wheat bran fractions against experimental colon carcinogenesis: Implications for human colon cancer prevention. Cancer Res. 2000, 60, 4792–4797. [Google Scholar]
- Freudenheim, J.L.; Graham, S.; Horvath, P.J.; Marshall, J.R.; Haughey, B.P.; Wilkinson, G. Risks associated with source of fiber and fiber components in cancer of the colon and rectum. Cancer Res. 1990, 50, 3295–3300. [Google Scholar]
- Whelton, P.K.; He, J.; Cutler, J.A.; Brancati, F.L.; Appel, L.J.; Follmann, D.; Klag, M.J. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 1997, 277, 1624–1632. [Google Scholar] [CrossRef]
- Craig, S.A. Betaine in human nutrition. Am. J. Clin. Nutr. 2004, 80, 539–549. [Google Scholar] [CrossRef] [Green Version]
- De Kock, S.; Taylor, J.; Taylor, J.R.N. Effect of Heat Treatment and Particle Size of Different Brans on Loaf Volume of Brown Bread. LWT Food Sci. Technol. 1999, 32, 349–356. [Google Scholar] [CrossRef]
- Salmenkallio-Marttila, M.; Katina, K.; Autio, K. Effects of Bran Fermentation on Quality and Microstructure of High-Fiber Wheat Bread. Cereal Chem. J. 2001, 78, 429–435. [Google Scholar] [CrossRef]
- Tahir, M.I.; Khalique, A.; Pasha, T.N.; Bhatti, J.A. Comparative evaluation of maize bran, wheat bran and rice bran on milk production of Holstein Friesian cattle. Int. J. Agric. Biol. 2002, 4, 559–560. [Google Scholar]
- Rosenfelder, P.; Eklund, M.; Mosenthin, R. Nutritive value of wheat and wheat by-products in pig nutrition: A review. Anim. Feed Sci. Technol. 2013, 185, 107–125. [Google Scholar] [CrossRef]
- Bélanger, J.; Pilling, D. The State of the World’s Biodiversity for Food and Agriculture in FAO Commission on Genetic Resources for Food and Agriculture Assessments; Food and Agriculture Organization of the United Nations FAO: Rome, Italy, 2019; p. 572. [Google Scholar]
- Garibaldi, L.A.; Perez-Mendez, N.; Garratt, M.P.D.; Gemmill-Herren, B.; Miguez, F.E.; Dicks, L.V. Policies for Ecological Intensification of Crop Production. Trends Ecol. Evol. 2019, 34, 282–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, A.; Blanco, G. Chapter 8—Enzymes. In Medical Biochemistry; Academic Press: New York, NY, USA, 2017; pp. 153–175. [Google Scholar]
- Ferreira, G.; Boer, C.G.; Peralta, R.M. Production of xylanolyc enzymes by Aspergillus tamari in solid state fermentation. FEMS Microbiol. Lett. 1999, 173, 335–339. [Google Scholar] [CrossRef]
- Nagar, S.; Mittal, A.; Kumar, D.; Kumar, L.; Kuhad, R.C.; Gupta, V.K. Hyper production of alkali stable xylanase in lesser duration by Bacillus pumilus SV-85S using wheat bran under solid state fermentation. New Biotechnol. 2011, 28, 581–587. [Google Scholar] [CrossRef] [PubMed]
- El-Shishtawy, R.M.; Mohamed, S.A.; Asiri, A.M.; Gomaa, A.B.; Ibrahim, I.H.; Al-Talhi, H.A. Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnol. 2014, 14, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meena, P.; Tripathi, A.; Srivastava, S.; Jha, A. Utilization of agro-industrial waste (wheat bran) for alkaline protease production by Pseudomonas aeruginosa in SSF using Taguchi (DOE) methodology. Biocatal. Agric. Biotechnol. 2013, 2, 210–216. [Google Scholar] [CrossRef]
- Gupta, K.R.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2013, 52, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ockenden, I.; Truax, M.; Lott, J. Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid (lpa1-1) rice. Seed Sci. Res. 2004, 14, 109–116. [Google Scholar]
- Salmon, D.N.; Piva, L.C.; Binati, R.L.; Rodrigues, C.; Vandenberghe, L.P.; Soccol, C.R.; Spier, M.R. A bioprocess for the production of phytase from Schizophyllum commune: Studies of its optimization, profile of fermentation parameters, characterization and stability. Bioprocess Biosyst. Eng. 2012, 35, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Nampoothiri, K.M.; Tomes, G.J.; Roopesh, K.; Szakacs, G.; Nagy, V.; Soccol, C.R.; Pandey, A. Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Appl. Biochem. Biotechnol. 2004, 118, 205–214. [Google Scholar] [CrossRef]
- Sarsan, S.; Reddy, N.B. Isolation, screening, and optimization of phytase production from newly isolated Bacillus sp. C43. Int. J. Pharm. Biol. Sci. 2012, 2, 218–231. [Google Scholar]
- Limkar, M.B.; Pawar, S.V.; Rathod, V.K. Statistical optimization of xylanase and alkaline protease co-production by Bacillus spp using Box-Behnken Design under submerged fermentation using wheat bran as a substrate. Biocatal. Agric. Biotechnol. 2019, 17, 455–464. [Google Scholar] [CrossRef]
- Gomathi, D.; Muthulakshmi, C.; Kumar, D.G.; Ravikumar, G.; Kalaiselvi, M.; Uma, C. Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pac. J. Trop. Biomed. 2012, 2, S67–S73. [Google Scholar] [CrossRef]
- Nyanhongo, G.S.; Gomes, J.; Gubitz, G.; Zvauya, R.; Read, J.S.; Steiner, W. Production of laccase by a newly isolated strain of Trametes modesta. Bioresour. Technol. 2002, 84, 259–263. [Google Scholar] [CrossRef]
- Li, S.; Tang, B.; Liu, Y.; Chen, A.; Tang, W.; Wei, S. High-level production and characterization of laccase from a newly isolated fungus Trametes sp. LS-10C. Biocatal. Agric. Biotechnol. 2016, 8, 278–285. [Google Scholar] [CrossRef]
- Nagendra Prabhu, G.; Chandrasekaran, M. Impact of process parameters on l-glutaminase production by marine Vibrio costicola in solid state fermentation using polystyrene as an inert support. Process Biochem. 1997, 32, 285–289. [Google Scholar] [CrossRef]
- Kashyap, P.; Sabu, A.; Pandey, A.; Szakacs, G.; Soccol, C.R. Extra-cellular l-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochem. 2002, 38, 307–312. [Google Scholar] [CrossRef]
- Renu, S.; Chandrasekaran, M. Extracellular l-glutaminase production by marine bacteria. Biotechnol. Lett. 1992, 14, 471–474. [Google Scholar] [CrossRef]
- Binod, P.; Sindhu, R.; Madhavan, A.; Abraham, A.; Mathew, A.K.; Beevi, U.S.; Sukumaran, R.K.; Singh, S.P.; Pandey, A. Recent developments in l-glutaminase production and applications—An overview. Bioresour. Technol. 2017, 245, 1766–1774. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.S. l-glutaminase production by Trichoderma koningii under solid-state fermentation. Indian J. Microbiol. 2009, 49, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhongyang, D.; Shuangping, L.; Zhenghua, G.; Liang, Z.; Kechang, Z.; Guiyang, S. Production of milk-clotting enzyme by Bacillus subtilis B1 from wheat bran. Afr. J. Biotechnol. 2011, 10, 9370–9378. [Google Scholar] [CrossRef] [Green Version]
- Demir, H.; Tarı, C. Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Ind. Crop Prod. 2014, 54, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.A.; Krieger, N.; Stuart, D.M.; Pandey, A. New developments in solid-state fermentation. Process Biochem. 2000, 35, 1211–1225. [Google Scholar] [CrossRef]
- Kalogeris, E.; Fountoukides, G.; Kekos, D.; Macris, B.J. Design of a solid-state bioreactor for thermophilic microorganisms. Bioresour. Technol. 1999, 67, 313–315. [Google Scholar] [CrossRef]
- Raimbault, M. General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1998, 1, 26–27. [Google Scholar] [CrossRef]
- Krishna, C. Solid-State Fermentation Systems—An Overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. [Google Scholar] [CrossRef]
- Babu, K.R.; Satyanarayana, T. Production of Bacterial Enzymes by Solid State Fermentation. J. Sci. Ind. Res. 1996, 55, 464–467. [Google Scholar]
- Kaur, S.; Vohra, R.M.; Kapoor, M.; Beg, Q.K.; Hoondal, G.S. Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J. Microbiol. Biotechnol. 2001, 17, 125–129. [Google Scholar] [CrossRef]
- Divate, R.D.; Wang, C.-C.; Chou, S.-T.; Chang, C.-T.; Wang, P.-M.; Chung, Y.-C. Using wheat bran and soybean meal as solid state fermentation substances for the production of Xylaria nigripes with bioactivities. J. Taiwan Inst. Chem. Eng. 2017, 70, 127–133. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Madhavan, A.; Beevi, U.S.; Mathew, A.K.; Abraham, A.; Pandey, A.; Kumar, V. Molecular improvements in microbial alpha-amylases for enhanced stability and catalytic efficiency. Bioresour. Technol. 2017, 245, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, S.; Vimala, R. Solid state and submerged fermentation for the production of bioactive substances: A comparative study. Int. J. Sci. Nat. 2012, 3, 480–486. [Google Scholar]
- Box, G.E.P.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Mukherjee, G.; Singh, R.K.; Mitra, A.; Sen, S.K. Ferulic acid esterase production by Streptomyces sp. Bioresour. Technol. 2007, 98, 211–213. [Google Scholar] [CrossRef]
- Songulashvili, G.; Spindler, D.; Jimenez-Tobon, G.A.; Jaspers, C.; Kerns, G.; Penninckx, M.J. Production of a high level of laccase by submerged fermentation at 120-L scale of Cerrena unicolor C-139 grown on wheat bran. C. R. Biol. 2015, 338, 121–125. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, S.S. Antioxidant and antiproliferative activities in immature and mature wheat kernels. Food Chem. 2016, 196, 638–645. [Google Scholar] [CrossRef]
- Plakys, G.; Katilevičiūtė, A.; Kodzius, R. Wheat phenolic acids and their possible extraction and strategies. Biomolecules 2020, unpublished. [Google Scholar]
- Barros Santos, M.C.; Ribeiro da Silva Lima, L.; Ramos Nascimento, F.; Pimenta do Nascimento, T.; Cameron, L.C.; Simoes Larraz Ferreira, M. Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development. Food Res. Int. 2019, 124, 118–128. [Google Scholar] [CrossRef]
- Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992, 13, 435–448. [Google Scholar] [CrossRef]
- Mamma, D.; Kourtoglou, E.; Christakopoulos, P. Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol. 2008, 9, 2373–2383. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.Y.; Gu, Z.X.; You, X.; Liu, G.; Tan, Y.; Zhang, H. Screening of edible mushrooms for release of ferulic acid from wheat bran by fermentation. Enzym. Microb. Technol. 2010, 46, 125–128. [Google Scholar] [CrossRef]
- Ferreira, P.; Diez, N.; Faulds, C.B.; Soliveri, J.; Copa-Patino, J.L. Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by Streptomyces tendae. Bioresour. Technol. 2007, 98, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Database. Ferulic Acid, CID=445858. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ferulic-acid (accessed on 26 November 2019).
- Buranov, A.U.; Mazza, G. Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem. 2009, 115, 1542–1548. [Google Scholar] [CrossRef]
- Wu, H.; Li, H.; Xue, Y.; Luo, G.; Gan, L.; Liu, J.; Mao, L.; Long, M. High efficiency co-production of ferulic acid and xylooligosaccharides from wheat bran by recombinant xylanase and feruloyl esterase. Biochem. Eng. J. 2017, 120, 41–48. [Google Scholar] [CrossRef]
- Gopalan, N.; Nampoothiri, K.M. Biorefining of wheat bran for the purification of ferulic acid. Biocatal. Agric. Biotechnol. 2018, 15, 304–310. [Google Scholar] [CrossRef]
- Dupoiron, S.; Lameloise, M.-L.; Bedu, M.; Lewandowski, R.; Fargues, C.; Allais, F.; Teixeira, A.R.S.; Rakotoarivonina, H.; Rémond, C. Recovering ferulic acid from wheat bran enzymatic hydrolysate by a novel and non-thermal process associating weak anion-exchange and electrodialysis. Sep. Purif. Technol. 2018, 200, 75–83. [Google Scholar] [CrossRef]
- Naveena, B.J.; Altaf, M.; Bhadriah, K.; Reddy, G. Selection of medium components by Plackett-Burman design for production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour. Technol. 2005, 96, 485–490. [Google Scholar] [CrossRef]
- Wakai, S.; Arazoe, T.; Ogino, C.; Kondo, A. Future insights in fungal metabolic engineering. Bioresour. Technol. 2017, 245, 1314–1326. [Google Scholar] [CrossRef]
- Datta, R.S.; Sai, P.T.; Patric, B.; Moon, S.H.; Frank, J.R. Technological and economic potential of polylactic acid and lactic acid derivatives. FEMS Microbioly Rev. 1995, 16, 221–231. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Database. Lactic Acid, CID=612. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Lactic-acid (accessed on 13 December 2019).
- Naveena, B.J.; Vishnu, C.; Altaf, M.; Reddy, G. Wheat Bran an Inexpensive Substrate for Production of Lactic Acid in Solid State Fermentation by Lactobacillus amylophilus GV6—Optimization of Fermentation Conditions. J. Sci. Ind. Res. 2003, 62, 453–456. [Google Scholar]
- Srinivas, M.R.S.; Chand, N.; Lonsane, B.K. Use of Plackett-Burman design for rapid screening of several nitrogen sources, growth/product promoters, minerals and enzyme inducers for the production of alpha-galactosidase by Aspergillus niger MRSS 234 in solid state fermentation system. Bioprocess Eng. 1994, 10, 139–144. [Google Scholar]
- Yun, J.S.; Wee, Y.J.; Kim, J.N.; Ryu, H.W. Fermentative production of dl-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Biotechnol. Lett. 2004, 26, 1613–1616. [Google Scholar] [CrossRef] [PubMed]
- Chandragiri, R.; Sastry, R.C. Selection of media components for optimization in the synthesis of itaconic acid by Plakette-Burmann design. Intern. J. Chem. Sci. Appl. 2011, 2, 200–206. [Google Scholar]
- Cordes, T.; Moerner, W.; Orrit, M.; Sekatskii, S.; Faez, S.; Borri, P.; Prabal Goswami, H.; Clark, A.; El-Khoury, P.; Mayr, S.; et al. Plasmonics, Tracking and Manipulating, and Living Cells: General discussion. Faraday Discuss. 2015, 184, 451–473. [Google Scholar] [CrossRef]
- Kuenz, A.; Gallenmuller, Y.; Willke, T.; Vorlop, K.D. Microbial production of itaconic acid: Developing a stable platform for high product concentrations. Appl. Microbiol. Biotechnol. 2012, 96, 1209–1216. [Google Scholar] [CrossRef]
- Okabe, M.; Lies, D.; Kanamasa, S.; Park, E.Y. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 2009, 84, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Liu, Q.; Deng, Y.; Li, J.; Chen, X.; Gu, Y.; Lv, X.; Zheng, Z.; Jiang, S.; Li, X. Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. Bioresour. Technol. 2017, 241, 25–34. [Google Scholar] [CrossRef]
- Zhou, Z.; Du, G.; Hua, Z.; Zhou, J.; Chen, J. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour. Technol. 2011, 102, 9345–9349. [Google Scholar] [CrossRef]
- Wang, G.; Huang, D.; Li, Y.; Wen, J.; Jia, X. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae. Bioresour. Technol. 2015, 180, 119–127. [Google Scholar] [CrossRef]
- Di Gioia, D.; Sciubba, L.; Setti, L.; Luziatelli, F.; Ruzzi, M.; Zanichelli, D.; Fava, F. Production of biovanillin from wheat bran. Enzym. Microb. Technol. 2007, 41, 498–505. [Google Scholar] [CrossRef]
- Speight, J.G. Chapter Seven—Transformation of Inorganic Chemicals in the Environment. In Environmental Inorganic Chemistry for Engineers; Butterworth-Heinemann: Oxford, UK, 2017; pp. 333–382. [Google Scholar]
- Dupont, L.; Bouanda, J.; Dumonceau, J.; Aplincourt, M. Metal ions binding onto a lignocellulosic substrate extracted from wheat bran: A NICA–Donnan approach. J. Colloid Interface Sci. 2003, 263, 35–41. [Google Scholar] [CrossRef]
- Nester, E.; Anderson, D.; Roberts, J.C.E.; Nester, M. Microbiology: A Human Perspective; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Papinutti, L.; Mouso, N.; Forchiassin, F. Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran—Fomes sclerodermeus. Enzym. Microb. Technol. 2006, 39, 848–853. [Google Scholar] [CrossRef]
- Fessard, V.; Godard, T.; Huet, S.; Mourot, A.; Poul, J.M. Mutagenicity of malachite green and leucomalachite green in in vitro tests. J. Appl. Toxicol. 1999, 19, 421–430. [Google Scholar] [CrossRef]
- Weng, X.-Y.; Sun, J.-Y. Kinetics of biodegradation of free gossypol by Candida tropicalis in solid-state fermentation. Biochem. Eng. J. 2006, 32, 226–232. [Google Scholar] [CrossRef]
- Brocas, C.; Rivera, R.M.; Paula-Lopes, F.F.; McDowell, L.R.; Calhoun, M.C.; Staples, C.R.; Wilkinson, N.S.; Boning, A.J.; Chenoweth, P.J.; Hansen, P.J. Deleterious actions of gossypol on bovine spermatozoa, oocytes, and embryos. Biol. Reprod. 1997, 57, 901–907. [Google Scholar] [CrossRef] [Green Version]
- Chenoweth, P.J.; Chase, C.C., Jr.; Risco, C.A.; Larsen, R.E. Characterization of gossypol-induced sperm abnormalities in bulls. Theriogenology 2000, 53, 1193–1203. [Google Scholar] [CrossRef]
- Garg, U.K.; Kaur, M.P.; Garg, V.K.; Sud, D. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Hazard. Mater. 2007, 140, 60–68. [Google Scholar] [CrossRef]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011, 43, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Montanher, S.F.; Oliveira, E.A.; Rollemberg, C.M. Removal of metal ions from aqueous solutions by sorption onto rice bran. J. Hazard. Mater. 2005, 117, 207–211. [Google Scholar] [CrossRef]
- Patel, R.; Dodia, M.; Singh, S.P. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem. 2005, 40, 3569–3575. [Google Scholar] [CrossRef]
- Bulut, Y.; Baysal, Z. Removal of Pb (II) from wastewater using wheat bran. J. Env. Manag. 2006, 78, 107–113. [Google Scholar] [CrossRef] [PubMed]
- VITO. Biotrickling Filter. Available online: https://emis.vito.be/en/techniekfiche/biotrickling-filter (accessed on 8 September 2019).
- Chen, J.M.; Zhu, R.Y.; Yang, W.B.; Zhang, L.L. Treatment of a BTo-X-contaminated gas stream with a biotrickling filter inoculated with microbes bound to a wheat bran/red wood powder/diatomaceous earth carrier. Bioresour. Technol. 2010, 101, 8067–8073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-X.; Lai, L.; Mei, P.; Li, Y.; Li, Y.-H.; Liu, Y. Enhanced removal efficiency of acid red 18 from aqueous solution using wheat bran modified by multiple quaternary ammonium salts. Chem. Phys. Lett. 2018, 710, 193–201. [Google Scholar] [CrossRef]
- Lipsa, R.; Tudorachi, N.; Darie-Nita, R.N.; Oprica, L.; Vasile, C.; Chiriac, A. Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride. Int. J. Biol. Macromol. 2016, 88, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, J.; Yao, H. Production of feruloyl oligosaccharides from wheat bran insoluble dietary fibre by xylanases from Bacillus subtilis. Food Chem. 2006, 95, 484–492. [Google Scholar] [CrossRef]
- Sánchez-Bastardo, N.; Romero, A.; Alonso, E. Extraction of arabinoxylans from wheat bran using hydrothermal processes assisted by heterogeneous catalysts. Carbohydr. Polym. 2017, 160, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.; Nichols, P.D.; McMeekin, T.A. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J. Microbiol. Methods 2000, 43, 107–116. [Google Scholar] [CrossRef]
- Peng, X.; Chen, H. Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour. Technol. 2008, 99, 3885–3889. [Google Scholar] [CrossRef]
- Terpou, A.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A.; Nigam, P. Enhanced probiotic viability and aromatic profile of yogurts produced using wheat bran (Triticum aestivum) as cell immobilization carrier. Process Biochem. 2017, 55, 1–10. [Google Scholar] [CrossRef]
- Mantzourani, I.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Production of a potentially synbiotic fermented Cornelian cherry (Cornus mas L.) beverage using Lactobacillus paracasei K5 immobilized on wheat bran. Biocatal. Agric. Biotechnol. 2019, 17, 347–351. [Google Scholar] [CrossRef]
- Xie, C.; Coda, R.; Chamlagain, B.; Edelmann, M.; Deptula, P.; Varmanen, P.; Piironen, V.; Katina, K. In situ fortification of vitamin B12 in wheat flour and wheat bran by fermentation with Propionibacterium freudenreichii. J. Cereal Sci. 2018, 81, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, J.A.; Berger, E.; Ramsay, B.A.; Chavarie, C. Recovery of poly-3-hydroxyalkanoic acid granules by a surfactant-hypochlorite treatment. Biotechnol. Tech. 1990, 4, 221–226. [Google Scholar] [CrossRef]
- Annamalai, N.; Sivakumar, N. Production of polyhydroxybutyrate from wheat bran hydrolysate using Ralstonia eutropha through microbial fermentation. J. Biotechnol. 2016, 237, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, X.; Xu, Y.; Shen, H.; Kong, X.; Xu, H. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J. Clean. Prod. 2019, 210, 366–375. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of United Nations (FAO). Agriculture, Food and Water. 2003. Available online: http://www.fao.org/3/Y4683E/y4683e00.htm (accessed on 18 May 2019).
- Prisenznakova, L.; Nosalova, G.; Hromadkova, Z.; Ebringerova, A. The pharmacological activity of wheat bran polysaccharides. Fitoterapia 2010, 81, 1037–1044. [Google Scholar] [CrossRef]
- Philippoussis, A. Production of Mushrooms Using Agro-Industrial Residues as Substrates. In Biotechnology for Agro-Industrial Residues; Springer Science & Business Media: New York, NY, USA, 2009; pp. 163–196. [Google Scholar]
Field | Application/Product | Role as/in | References |
---|---|---|---|
Enzymes | Enzyme production by solid-state fermentation (SSF) and submerged fermentation (SmF) | Substrate for enzymes production | [5] |
As an inducer for enzymes | Complex substrate | [9,10,11] | |
Production of protease, amylase, and glucoamylase | Nitrogen source | [5] | |
Metabolites | Bacitracin Cyclosporine-A Gibberellic acid | Cheap raw material | [12,13,14] |
Biofuel | Bioethanol Biobutanol Biohydrogen | Lignocellulosic material | [15,16,17,18,19,20,21] |
Heavy metals removal | Removal of, Hg (II), Cd (II) Pb (II), Cu (II), Cr (VI), Ni (II) | Biosorbent material, lignocellulosic substrate | [22,23,24] |
Health | Minimizes the risk factor for various illness: Diabetes, colon cancer, hypertension, coronary heart disease | Fiber source, strong antioxidant activity, bioactive agents that inhibit colon carcinogenesis | [25,26,27,28,29,30,31] |
Food | Enrich the nutritional and physical properties of bread and baked products; | Nutritional and physical properties | [32,33,34,35] |
Feed additive | The stock material for animal feed preparations | High starch content, indispensable amino acids, high content of non-starch polysaccharides |
Fermentation Method | |
---|---|
SSF | SmF |
Produced enzymes | Produced enzymes |
Xylanase [39,40,41] | |
Alkaline protease [42,43] | |
Phytase [44,45,46,47] | |
l-xylosidase [39] | Ferulic acid esterase [48] |
α-amylase [41] | Carboxymethyl cellulase [49] |
Pectinase [41] | Laccase [50,51] |
l-glutaminase [52,53,54,55,56] | |
Milk-clotting enzyme [57] | |
Polygalacturonase (PG) [58] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katileviciute, A.; Plakys, G.; Budreviciute, A.; Onder, K.; Damiati, S.; Kodzius, R. A Sight to Wheat Bran: High Value-Added Products. Biomolecules 2019, 9, 887. https://doi.org/10.3390/biom9120887
Katileviciute A, Plakys G, Budreviciute A, Onder K, Damiati S, Kodzius R. A Sight to Wheat Bran: High Value-Added Products. Biomolecules. 2019; 9(12):887. https://doi.org/10.3390/biom9120887
Chicago/Turabian StyleKatileviciute, Agne, Gediminas Plakys, Aida Budreviciute, Kamil Onder, Samar Damiati, and Rimantas Kodzius. 2019. "A Sight to Wheat Bran: High Value-Added Products" Biomolecules 9, no. 12: 887. https://doi.org/10.3390/biom9120887
APA StyleKatileviciute, A., Plakys, G., Budreviciute, A., Onder, K., Damiati, S., & Kodzius, R. (2019). A Sight to Wheat Bran: High Value-Added Products. Biomolecules, 9(12), 887. https://doi.org/10.3390/biom9120887