Wu Shan Shen Cha (Malus asiatica Nakai. Leaves)-Derived Flavonoids Alleviate Alcohol-Induced Gastric Injury in Mice via an Anti-Oxidative Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wu Shan Shen Cha-Derived Flavonoids Extraction
2.2. Determination of the Flavonoid Extract Purity
2.3. Establishment of the Animal Model
2.4. Pathological Examination of Gastric Specimens from Mice
2.5. Determination of Total Superoxide Dismutase, Glutathione Activities and Malondialdehyde Content in Serum and Gastric Tissues in Mice
2.6. Quantitative Polymerase Chain Reaction Assay
2.7. Statistical Analysis
3. Results
3.1. Content of Wu Shan Shen Cha-Derived Flavonoids
3.2. Determination of Gastric Injury in Mice
3.3. Determination of the Volume and pH of the Gastric Fluid in Mice
3.4. Histopathological Examination of the Stomach in Mice
3.5. Measurement of Total Superoxide Dismutase, Glutathione and Malondialdehyde Levels in the Serum and Stomach Tissues of Mice
3.6. Cu/Zn-Superoxide Dismutase, Mn-Superoxide Dismutase, and Catalase mRNA Expression in Stomach Tissues of Mice
3.7. Cyclooxigenase-2, eNOS, nNOS and iNOS mRNA Expression in Stomach Tissues of Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grønbaek, M.; Becker, U.; Johansen, D.; Tønnesen, H.; Jensen, G.; Sørensen, T.I. Population based cohort study of the association between alcohol intake and cancer of the upper digestive tract. BMJ 1998, 317, 844–847. [Google Scholar] [CrossRef]
- Balusikova, K.; Kovář, J. Alcohol dehydrogenase and cytochrome P450 2E1 can be induced by long-term exposure to ethanol in cultured liver HEP-G2 cells. Vitr. Cell. Dev. Boil. 2013, 49, 619–625. [Google Scholar] [CrossRef]
- Salim, A.S. Protection against stress-induced acute gastric mucosal injury by free radical scavengers. Intensiv. Care Med. 1991, 17, 455–460. [Google Scholar] [CrossRef]
- Bafna, P.; Balaraman, R. Anti-ulcer and anti-oxidant activity of Pepticare, a herbomineral formulation. Phytomedicine 2005, 12, 264–270. [Google Scholar] [CrossRef]
- Zima, T.; Fialová, L.; Mestek, O.; Janebová, M.; Crkovská, J.; Malbohan, I.; Stípek, S.; Mikulíková, L.; Popov, P. Oxidative stress, metabolism of ethanol and alcohol-related diseases. J. Biomed. Sci. 2001, 8, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhao, X.; Li, G.; Fu, L. In vitro antioxidant and antimutagenic effects of Wu Shan Shen Cha aqueous extract. J. Changshu Inst. Technol. 2014, 28, 75–77. [Google Scholar]
- O’Reilly, J.D.; Mallet, A.I.; McAnlis, G.T.; Young, I.S.; Halliwell, B.; Ab Sanders, T.; Wiseman, H. Consumption of flavonoids in onions and black tea: Lack of effect on F2-isoprostanes and autoantibodies to oxidized LDL in healthy humans. Am. J. Clin. Nutr. 2001, 73, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Ishikawa, T.; Hosoai, H.; Suzukawa, M.; Ayaori, M.; Hisada, T.; Sawada, S.; Yonemura, A.; Higashi, K.; Ito, T.; et al. Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein. Biochem. Pharmacol. 1999, 58, 1695–1703. [Google Scholar] [CrossRef]
- Kasaoka, S.; Kiriyama, S.; Hase, K.; Morita, T. Green tea flavonoids inhibit the LDL oxidation in osteogenic disordered rats fed a marginal ascorbic acid in diet. J. Nutr. Biochem. 2002, 13, 96–102. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant Activity of Anthocyanins and Their Aglycons. J. Agric. Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, Z.; Chang, X.; Zhang, C.; Rong, G.; Gao, X.; Zeng, Z.; Wang, C.; Chen, Y.; Rong, Y.; et al. Protective effect of the total flavonoids from Apocynum venetum L. on carbon tetrachloride-induced hepatotoxicity in vitro and in vivo. J. Physiol. Biochem. 2018, 74, 301–312. [Google Scholar] [CrossRef]
- Huang, A. Advances in research of pharmacological action of flavonoids. Auhui Agri. Sci. Bull. 2007, 13, 71–72. [Google Scholar]
- Qian, Y.; Zhang, J.; Fu, X.; Yi, R.; Sun, P.; Zou, M.; Long, X.; Zhao, X. Preventive effect of raw Liubao tea polyphenols on mouse gastric injuries induced by HCl/ethanol via anti-oxidative stress. Molecules 2018, 23, 2848. [Google Scholar] [CrossRef] [PubMed]
- Mota, C.S.; Freitas, R.B.; Athayde, M.L.; Boligon, A.A.; Augusti, P.R.; Somacal, S.; Rocha, M.P.; Bauermann, L.F. Effect of Vernonia cognata on oxidative damage induced by ethanol in rats. Hum. Exp. Toxicol. 2011, 30, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Tang, W.; Xu, H.; Jiang, M.D.; Zhou, J.; Mo, B.; He, Q.W. Clinical analysis of alcoholic liver cirrhosis in 62 cases. Med. J. Nat. Defend. For. Southwest China 2013, 23, 380–382. [Google Scholar]
- Taylor, B.; Rehm, J. Moderate Alcohol Consumption and Diseases of the Gastrointestinal System: A Review of Pathophysiological Processes. Dig. Dis. 2005, 23, 177–180. [Google Scholar] [CrossRef]
- Mathews, S.; Xu, M.; Wang, H.; Bertola, A.; Gao, B. Animals Models of Gastrointestinal and Liver Diseases. Animal models of alcohol-induced liver disease: Pathophysiology, translational relevance, and challenges. Am. J. Physiol. Liver Physiol. 2014, 306, G819–G823. [Google Scholar] [CrossRef] [PubMed]
- Asfar, S.; Abdeen, S.; Dashti, H.; Khoursheed, M.; Al-Sayer, H.; Mathew, T.; Al-Bader, A. Effect of green tea in the prevention and reversal of fasting-induced intestinal mucosal damage. Nutrition 2003, 19, 536–540. [Google Scholar] [CrossRef]
- Yi, R.; Wang, R.; Sun, P.; Zhao, X. Antioxidant-mediated preventative effect of Dragon-pearl tea crude polyphenol extract on reserpine-induced gastric ulcers. Exp. Ther. Med. 2015, 10, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Kuo, K.-L.; Weng, M.-S.; Chiang, C.-T.; Tsai, Y.-J.; Lin-Shiau, S.-Y.; Lin, J.-K. Comparative Studies on the Hypolipidemic and Growth Suppressive Effects of Oolong, Black, Pu-erh, and Green Tea Leaves in Rats. J. Agric. Chem. 2005, 53, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.; Abdulla, M.A.; Raman, J.; Phan, C.W.; Kuppusamy, U.R.; Golbabapour, S.; Sabaratnam, V. Gastroprotective effects of Lion’s mane mushroom Hericium erinaceus (Bull.:Fr.) Pers. (Aphyllophoromycetideae) extract against ethanol-induced ulcer in rats. Evid. Based Complement. Alternat. Med. 2013, 2013, 492976. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—A review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Del Pino-García, R.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; García-Lomillo, J.; Muñiz, P. Total antioxidant capacity of new natural powdered seasonings after gastrointestinal and colonic digestion. Food Chem. 2016, 211, 707–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonthius, D.J., Jr.; Winters, Z.; Karacay, B.; Bousquet, S.L.; Bonthius, D.J. Importance of genetics in fetal alcohol effects: Null mutation of the nNOS gene worsens alcohol-induced cerebellar neuronal losses and behavioral deficits. Neurotoxicology 2015, 46, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Hyun, D.; Jenner, P.; Halliwell, B. Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J. Neurochem. 2001, 78, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Kosenko, E.A.; Tikhonova, L.A.; Alilova, G.A.; Montoliu, C.; Barreto, G.E.; Aliev, G.; Kaminsky, Y.G. Portacaval shunting causes differential mitochondrial superoxide production in brain regions. Free. Radic. Boil. Med. 2017, 113, 109–118. [Google Scholar] [CrossRef]
- Suo, H.; Zhao, X.; Qian, Y.; Sun, P.; Zhu, K.; Li, J.; Sun, B. Lactobacillus fermentum Suo Attenuates HCl/Ethanol Induced Gastric Injury in Mice through Its Antioxidant Effects. Nutrients 2016, 8, 155. [Google Scholar] [CrossRef]
- Li, N.S.; Luo, X.J.; Zhang, Y.S.; He, L.; Liu, Y.Z.; Peng, J. Phloroglucinol protects gastric mucosa against ethanol-induced injury through regulating myeloperoxidase and catalase activities. Fundam Clin. Pharmacol. 2011, 25, 462–468. [Google Scholar] [CrossRef]
- Liu, H.B.; Huang, X.D.; Liu, M.H.; Shanguan, J.Y. Significance of NOS expressions in gastric carcinoma. Med. J. Nat. Defend. For. Northwest China 2002, 23, 115–117. [Google Scholar]
- Ignarro, L.J.; Byrns, R.E.; Sumi, D.; De Nigris, F.; Napoli, C. Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide. Comp. Toxicogenomics 2006, 15, 93–102. [Google Scholar] [CrossRef]
- Mahmoud, Y.I.; El-Ghffar, E.A.A. Spirulina ameliorates aspirin-induced gastric ulcer in albino mice by alleviating oxidative stress and inflammation. Biomed. Pharmacother. 2019, 109, 314–321. [Google Scholar] [CrossRef]
Gene | Sequence |
---|---|
Cu/Zn-SOD | Forward: 5′–AACCAGTTGTGTTGTCAGGAC–3′ |
Reverse: 5′–CCACCATGTTTCTTAGAGTGAGG–3′ | |
Mn-SOD | Forward: 5′–CAGACCTGCCTTACGACTATGG–3′ |
Reverse: 5′–CTCGGTGGCGTTGAGATTGTT–3′ | |
CAT | Forward: 5′–GGAGGCGGGAACCCAATAG–3′ |
Reverse: 5′–GTGTGCCATCTCGTCAGTGAA–3′ | |
COX-2 | Forward: 5′–GGTGCCTGGTCTGATGATG–3′ |
Reverse: 5′–TGCTGGTTTGGAATAGTTGCT–3′ | |
nNOS | Forward: 5′–GAGAGGATTCTGAAGATGAGG–3′ |
Reverse: 5′–TTGCTAATGAGGGAGTTGTTC–3′ | |
eNOS | Forward: 5′–TGTTTGTCTGCGGCGATGT–3′ |
Reverse: 5′–GGGTGCGTATGCGGCTTGTC–3′ | |
iNOS | Forward: 5′–CATTGGAAGTGAAGCGTTTCG–3′ |
Reverse: 5′–CACAGAACTGAGGGTACA–3′ | |
GAPDH | Forward: 5′–AGGTCGGTGTGAACGGATTTG–3′ |
Reverse: 5′–GGGGTCGTTGATGGCAACA–3′ |
Group | Area of Gastric Injury (mm2) | Inhibitory Rate of Gastric Injury (%) |
---|---|---|
Normal | 0.00 ± 0.00 e | 100 ± 0.00 c |
Model | 16.57 ± 0.96 a | 0.00 ± 0.00 a |
Ranitidine | 5.00 ± 0.82 d | 69.82 ± 1.64 b |
WSSCFL | 11.57 ± 1.93 b | 30.21 ± 1.67 a |
WSSCFH | 8.57 ± 1.30 c | 48.26 ± 1.51 b |
Group | Gastric Juice Volume (mL) | Gastric Juice pH |
---|---|---|
Normal | 0.03 ± 0.01 b | 3.80 ± 0.45 a |
Model | 0.28 ± 0.09 a | 1.67 ± 0.58 b |
Ranitidine | 0.19 ± 0.06 a,b | 1.80 ± 0.45 a,b |
WSSCFL | 0.21 ± 0.15 a,b | 1.75 ± 0.50 a,b |
WSSCFH | 0.20 ± 0.06 a,b | 1.80 ± 0.45 a,b |
Group | T-SOD (U/mL) | GSH (mg/L) | MDA (nmol/mL) |
---|---|---|---|
Normal | 234.93 ± 10.24 a | 10.10 ± 1.25 a | 14.44 ± 1.78 e |
Model | 189.52 ± 34.80 e | 7.91 ± 0.47 e | 33.64 ± 8.15 a |
Ranitidine | 222.08 ± 17.53 b | 9.55 ± 0.24 b | 15.05 ± 3.95 d |
WSSCFL | 198.02 ± 22.71 d | 8.60 ± 1.48 d | 17.12 ± 4.91 b |
WSSCFH | 218.21 ± 23.63 c | 9.14 ± 3.10 c | 15.56 ± 4.11 c |
Group | T-SOD (U/mg protein) | GSH (mg/g protein) | MDA (nmol/mg protein) |
---|---|---|---|
Normal | 8.38 ± 0.15 a | 4.15 ± 0.58 a | 0.54 ± 0.06 b |
Model | 4.95 ± 0.55 e | 3.55 ± 1.09 b | 1.03 ± 0.23 a |
Ranitidine | 7.17 ± 0.35 b | 3.87 ± 1.51 ab | 0.63 ± 0.13 ab |
WSSCFL | 5.28 ± 0.03 d | 3.74 ± 0.19 ab | 0.71 ± 0.29 ab |
WSSCFH | 6.45 ± 0.63 c | 3.85 ± 0.96 ab | 0.68 ± 0.22 ab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhang, C.; Zhang, J.; Zhao, X. Wu Shan Shen Cha (Malus asiatica Nakai. Leaves)-Derived Flavonoids Alleviate Alcohol-Induced Gastric Injury in Mice via an Anti-Oxidative Mechanism. Biomolecules 2019, 9, 169. https://doi.org/10.3390/biom9050169
Liu B, Zhang C, Zhang J, Zhao X. Wu Shan Shen Cha (Malus asiatica Nakai. Leaves)-Derived Flavonoids Alleviate Alcohol-Induced Gastric Injury in Mice via an Anti-Oxidative Mechanism. Biomolecules. 2019; 9(5):169. https://doi.org/10.3390/biom9050169
Chicago/Turabian StyleLiu, Bihui, Chengfeng Zhang, Jing Zhang, and Xin Zhao. 2019. "Wu Shan Shen Cha (Malus asiatica Nakai. Leaves)-Derived Flavonoids Alleviate Alcohol-Induced Gastric Injury in Mice via an Anti-Oxidative Mechanism" Biomolecules 9, no. 5: 169. https://doi.org/10.3390/biom9050169
APA StyleLiu, B., Zhang, C., Zhang, J., & Zhao, X. (2019). Wu Shan Shen Cha (Malus asiatica Nakai. Leaves)-Derived Flavonoids Alleviate Alcohol-Induced Gastric Injury in Mice via an Anti-Oxidative Mechanism. Biomolecules, 9(5), 169. https://doi.org/10.3390/biom9050169