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Abstract: In the design of educational robots, it appears to be undecided as to whether robots should
show social behaviors and look human-like or whether such cues are insignificant for learning.
We conducted an experiment with different designs of social robots built from the same materials,
which is unique in robotics research. The robots rehearsed multiplication tables with primary school
children in Hong Kong, which is a user group not easily or often accessed. The results show that
affective bonding tendencies may occur but did not significantly contribute to the learning progress
of these children, which was perhaps due to the short interaction period. Nonetheless, 5 min of
robot tutoring improved their scores by about 30%, while performance dropped only for a few
challenged children. We discuss topics, such as teaching language skills, which may be fostered by
human likeness in appearance and behaviors; however, for Science, Technology, Engineering, and
Mathematics (STEM)-related subjects, the social aspects of robots hardly seem to matter.

Keywords: robot tutelage; social robots; multiplication; experience design

1. Introduction

Due to the current COVID-19 pandemic, learners worldwide have come to rely on
online teaching and media applications for their education. Nonetheless, the United
Nations fear knowledge deficits, learning losses, and gaps in the learning process as a
result of a lack of face-to-face interactions ([1], p. 4, 23). Therefore, the United Nations
(UN) have pled for different methods of content delivery, such as hybrid learning that is
flexible and quasi-individualized ([1], p. 25): “We should seize the opportunity to find new
ways to address the learning crisis and bring about a set of solutions previously considered
difficult or impossible to implement” ([1], p. 4). If every child had a robot tutor at home,
would this—to some extent—make up for missing out on human interaction?

A few years ago, robot teachers were mere science fiction, however, at present,
a number of schools have come to include some form of robot education. This varies
from educational programs such as Science, Technology, Engineering, and Mathematics
(STEM), in which young children learn to build and program robots (see, e.g., [2,3]), to
humanoids that teach children mathematics or language (see, e.g., [4,5]). Multiple studies
have shown that robots can be beneficial for learning outcomes. A recent review has
pointed out that the appearance, behavior, and different kinds of social roles of the robot
may positively (or negatively) affect learning outcomes [6].

It seems that people learn better from instructions forwarded by a social robot than by
a tablet with the same programs and voice (e.g., [7]). Pupils apparently learn significantly
more from their robotic tutors than from a tablet or no robot at all [8,9].
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Common understanding has it that in human-human teaching, warm, social, and
personal teachers are more successful in advancing the level of study performance of their
pupils (e.g., [10-12]). In human teacher—student relationships, a teacher should not just offer
theoretical instructions and correct mistakes but also support students personally while
creating a healthy relationship (e.g., [10,13,14]). Hamre and Pianta [15] have emphasized
that a positive relationship with a teacher makes a child more willing to take on an academic
challenge or work on their social-emotional development.

Many researchers have expected to find that robots that show more personalized,
pro-social behaviors also render better learning results (see, e.g., [16-20]). However, robot
researchers have attempted various forms of social interaction and communicative behav-
iors but, as a result, obtained a blend of advantageous and unfavorable effects on learning
(see, e.g., [6,21]). It seems that individual differences, such as educational ability levels, are
sensitive to the level of a robot’s social behaviors: Certain students seem to flourish with a
more neutral approach ([21], p. 6, [22]).

Another aspect affecting the so-far mixed results may be the topic that is taught.
Robots (as tutors) are employed more frequently in non-STEM subjects such as language
(e.g., [23,24]). In language-related topics, such as vocabulary learning or remembering story
lines, social behaviors seem to be more beneficial for learning than neutral styles of teaching.
For example, when reading aloud narration from a picture book that features fictional
characters, facial expressions were shown to be important in bringing the characters to life,
such that the children performed better in terms of story recall and target vocabulary [25].
In teaching vocabulary during a storytelling game, cuddly toy robots that appealed to the
child’s oral language skills were more successful than robots that did not [16].

In arithmetic and mathematics teaching, such social aspects may play less of a role
(e.g., [22,26]). For STEM-related topics, a robot’s social behaviors, such as greeting, follow-
ing gaze, motivational feedback, and humanoid appearance, do not seem to matter too
much (see, e.g., [12,26]) or may even exert adverse effects (see, e.g., [27]). Moreover, robots
appear to be successful at maintenance rehearsal and repeated exercise (see, e.g., [28,29]). In
other words, if students are to practice multiplication tables as a kind of remedial teaching,
the social behaviors of the robot tutor may be insignificant or even distracting [21,27].

Yet, in the on-screen community of virtual tutors and avatars, researchers have re-
ported positive effects of building rapport while learning STEM. For example, a virtual
agent was most successful in supporting STEM learning when it showed rapport behav-
ior [30]. Although learners were not aware of the increased rapport, the agent that showed
rapport fostered better performance [30]. Arroyo, Royer, and Park Woolf [31] reported
that during basic math operations, their adaptive Wayang Tutoring System—embodied by
an affective learning companion—improved the working memory and math fluency (the
speed to recover or compute answers) of students.

Considering the theory of affective bonding [32], one would also expect that stronger
bonding of the learner with the robot enhances learning performance. The affective bond
would be fed by the relevance of the robot to the task (here, learning multiplication) and
by the robot’s “affordances” or action possibilities (cf. [33]) to execute that task. On the
more affective side, emotional bonding can be nurtured by use of a realistic, human-like
embodiment and human-like behaviors (cf. anthropomorphism).

In the design literature, the importance assigned to realistic anthropomorphic de-
sign can hardly be overstated (see, e.g., [34,35]). For instance, Moshkina, Trickett, and
Trafton [36] reported that more humanlike features in a robot, such as a voice, a face, and
gestures, invoked more engagement with its audience. Nonetheless, Li, Rau, and Li [37]
suggested that a robot’s appearance may exert different levels of likeability, engagement,
trust, and satisfaction, depending on the individual’s cultural background. From their
empirical work, Paauwe, Hoorn, Konijn, and Keyson [38] concluded that the perceived
realism of a robot’s embodiment played a modest role in intentions to use the robot and
feeling engaged with it. In robot design, realism is not always key [39].
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As factory machines can hardly be altered and university laboratories lack the funds
and equipment to build several versions of one robot by themselves, it is often quite a
challenge to compare different hardware designs in robot studies. We solved this issue by
using Bioloid robot kits, creating a rather unique ensemble of robots that were comprised
of the same materials but were different in design. In this way, we were able to see whether
the representational variations of a robot—that is, as an animal, a human being, or “just
like a machine”—are conducive to learning arithmetic, avoiding the confounding factor of
a different make and style of the apparatus.

Our objective in this paper is to investigate if robots can have beneficial effects on
learning arithmetic tasks without worrying too much about social, relational, or anthro-
pomorphic issues, thus facilitating the roll-out of tutoring robots in an inclusive manner
and at lower costs. To study the effects of robot tutoring on learning a STEM-related
task such as rehearsing multiplication, we varied different forms of human-likeness in
the design of the robot (cf. [34]). Our initial hypothesis (H1) was that—similar to most
of the research community—we expected positive effects of a more humanlike design on
rehearsing multiplication.

As our H2, we presumed that working with a robot tutor would potentially be
more beneficial for lower-ability pupils than for advanced students. For below-average
students, larger progress may be achieved, whereas the added value may be minimal for
the high performers.

From Konijn and Hoorn [32,40], one can infer that robot tutoring improves learning
multiplication better when the child emotionally bonds with the robot tutor. Bonding
is stimulated when the robot’s design looks and behaves similar to a human and, in the
perception of the child, is experienced as high in anthropomorphism, relevance, realism,
and affordances. Therefore, H3 supposed that building rapport or establishing an emotional
bond with the robot would lead to better task performance, perhaps in a mediating or
moderating manner. As a control, we queried the social role that the robot played for
these children (cf. [41]) and how appealing (“beautiful”) and new they felt their robot
tutors were.

Next, we describe the materials and methods we used, which were followed by
statistical analyses of the learning outcomes and experiential factors. We conclude with a
discussion of the results and our final conclusions.

2. Materials and Methods
2.1. Participants and Design

After obtaining approval from the institutional Ethical Review Board, parental con-
sent letters were distributed through two Hong Kong primary schools. Due to strict
time planning by the schools and as parents picked up their children early, eventually,
75 students were able to participate in at least one session with a robot tutor and com-
pleted the pre- and post-tests (N = 75; Mg, = 8.4, SD g, = 0.82, range: 7-10, 44% female,
Hongkongers). For more details on the study demographics, consult the technical report in
Supplementary Materials.

We planned for all pupils to participate in three robot tutoring sessions spread over
three weeks (within-subjects). However, due to the tight time schedules of the schools, not
every pupil could participate in every session. Children from the S.K.H. Good Shepherd
Primary School only participated in one session. This number, plus those from the Free
Methodist Bradbury Chun Lei Primary School (who also took one session), resulted in
48 children participating only once. Those who participated twice (n = 13), and thrice
(n = 14) were all from Chun Lei (those participating twice or thrice were different children).
For a complete overview of the participatory division, consult the technical report in
Supplementary Materials.

To test our hypotheses, we administered an experiment with the between-subjects
factors of robot design (3) and advancement level (4), in order to measure their effects
on the within-subjects scores, in terms of the multiplication test, before and after robot
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tutoring. We also examined the mediating or moderating effects of affective bonding with
the robot on learning multiplication. We invited the children to participate in three sessions
with the tutoring robot.

The participants (N = 75) were randomly distributed over three different robot designs
(between-subjects): Humanoid (n = 21), Puppy (n = 27), and Droid (n = 27; see Figure 1). A
Chi-square test of independence checked for the distribution of age over robot types, but
no significant relationship was found ()(2(6) =1.76,p =0.94).

(b)

Figure 1. Robotis Bioloids: (http://www.robotis.us/robotis-premium/) Humanoid (a), Puppy (b), and Droid (c).

Boys and girls were distributed over the robot design conditions, as follows: Humanoid
(15 males, 6 females), Puppy (15 males, 12 females), and Droid (12 males, 15 females). The
strict time scheduling of the schools caused an unequal distribution of gender over the three
robots; however, this did not result in a significant effect ()(2(2) =3.49,p =0.174).

To determine the advancement level of the pupils, we took the average baseline score
(N =75, M =37.16, SD = 12.88) established in the pre-test and categorized the children into
four groups for further exploration. Those who scored lower than one standard deviation
below average (baseline < 22.28) were categorized as “Challenged” students (n = 11).
Those between one negative standard deviation and the average were categorized as
“Below average” (22.8 < baseline < 37.16; n = 34). Those between average and one positive
standard deviation were categorized as “Above average” (37.16 < baseline < 52.04; n = 19),
while those beyond one positive standard deviation were categorized as “Advanced”
students (baseline > 52.04; n = 11). No significant effect of unequal distribution was found
between advancement level and robot design (x?) = 1.73, p = 0.943). For more details, see
the technical report in Supplementary Materials.

2.2. Procedure

At the Free Methodist Bradbury Chun Lei Primary school, the experiment took place
during three weeks on every Tuesday. The S.K.H. Good Shepherd Primary School had time
for only one session. In class, the topic and procedure were introduced, and pupils took a
5 min multiplication pre-test consisting of 147 equations (Table 1, Figure 2). One week later,
after class, the pupils from Chun Lei were asked to wait in the corridor before entering the
experiment classroom (Figure 3).
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Table 1. Overview of dependent variables.

Variable Name

Description

Number of Items

Abbreviation and Value

Learning variables

The scores in the pre-test, which established baseline. Pupils multiplied 1- or

Baseline (from pre-test) 2-digit numbers with 2-digit numbers in the range 1-99 (the most difficult 147 Base [0, 147]
equation being 23 x 67).
Final score (from Final multiplication score based on multlplymg a 1- or 2-digit number with a 147 FinMSco [0, 147]
post-test) 2-digit number.
; . Difference between pre-test baseline and post-test final score, which was also . .
Learning gain calculated as difference-score of FinMSco minus baseline. 147 Fin_min_Base [0, 147]
Gain percentage The percentage of Fin_min_Base compared with baseline. Per_Fin_min_Base [min, max]
Experiential variables
Human_like = [1, 6]
Representation What does the robot look like to the participant? 3 Animal_like =[1, 6]
Machine_like = [1, 6]
Friend = [1, 6]
Classmate = [1, 6]
Teacher =[1, 6]
Social role What does the robot feel like to the participant? 7 Acquaintance = [1, 6]
Stranger = [1, 6]
Machine =[1, 6]
Other =[1, 6]
. What is the social-affective relationship between the participant and robot _
Bonding tutor? [32,40] 5 Bon_1...5=][1,6]
Anthropomorphism Does the participant attribute human traits or emotions to robot tutor? [32,40] 4 Anth_1...4=]1,6]
Perceived realism Does the robot tutor feel like a real creature or is it a fake? [38,42] 4 Real 1...4=1[1,6]
Perceived relevance Is the robot tutor significant for doing the multiplication exercise? [32,40] 4 Rel 1...4=11,6]
Perceived affordances What can I do with the robot (in view of the multiplication exercise)? [32,40] 4 Aff 1...4=11,6]
Engagement Level of involvement with the robot 5 Eng 1...5=[1,6]
Use intentions Want to use the robot again? 3 Use_Int_1..3=11, 6]
Controls
Novelty To what extent is the robot tutor new to the participant? 1 Nov_1=[1, 6]
Aesthetics To what extent is the robot attractive to the participant in terms of appearance? 1 Aest_1=11, 6]
Gender 1 Gender = [Male, Female]
Age 1 Age =[7,10]

A3 b AL i‘i{-iE!!l‘

T T AR m .

7

L

Figure 2. Set up for pre- and post-test.
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Figure 3. Waiting area at Chun Lei.

Those from Good Shepherd were taken out of class one at a time by one of the research
assistants and entered the experiment room upon arrival. When one of the pupils of either
school entered the room, they were brought by one of the assistants to the table where the
robot stood (Figure 4). With the three Bioloid robots available, three children were tutored
simultaneously, such that they did not disturb each other.

Experimental set-up: Humanoid (left), Puppy (middle), and Droid (right).

The assistant explained that the robot would ask a question and that the pupil could
answer through the number pad and pressing Enter (Figure 4). All interactions, tests, and
questionnaires were recorded in Cantonese. The robot started the session by asking if the
pupil was ready. Upon confirmation, the multiplication program started, automatically
drawing 147 equations randomly from various multiplication tables. The equations con-
sisted of one-digit numbers times two-digit numbers (see Table 1). Questioning went on
for 5 min, after which the program thanked the child, reported on the number of correct
answers, and dismissed the pupil from the session. After one and after two weeks, the
same procedure was repeated (at Chun Lei).

The three assistants that operated the robots sat behind a curtain. In this way, the pupil
had the illusion that the robot was fully autonomous while, for some functions, someone
was pressing buttons on a remote control. The answers that participants typed in on the
number pad could be read by the assistant. When the answer was correct, the assistant
pressed a button that triggered positive feedback, such as clapping or nodding; when the
answer was incorrect, the assistant pressed the button that triggered feedback about the
mistake, such as shaking the head or head scratching (£ NEE o ALEAE ) o “I am sorry.
That is not right”).
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Each time the pupils completed their sessions, they took another multiplication test as
a post-test (once, twice, and thrice). The same procedure as in the pre-test was used. After
the post-test, the pupils filled out a questionnaire about their experiences with the robot.
At Chun Lei, the questionnaire was a homework assignment, while the pupils from the
Good Shepherd completed the questionnaire in class.

2.3. Apparatus and Materials

The Humanoid, Puppy, and Droid robots (Figure 1) were built from three identical
Bioloid Premium DIY kits and programmed on the same CM530 computer (http://www.
robotis.us/robotis-premium/). To tease out bonding tendencies, we put comparable eyes
on the three machines (Figure 1), such that each robot would “look” at the participants.
Attached to the Bioloids were Rockbox Cube Fabrig Army (59 x 59 x 59 mm, Bluetooth 4.0,
1 channel mono 3 W) front speakers (Fresh ‘n Rebel, Rotterdam, Netherlands), which were
connected to a self-written speech engine in Node.js (a Javascript framework) that ran
independently of the robot software.

Trials consisted of pre-recorded Cantonese male speech (23 years of age) of multi-
plication equations—for instance, “5 times 12?”—and the child’s input was followed by
various feedback, such as “I'm sorry, that is incorrect” or “Well done, that’s correct.” Trials
were composed from separate audio files of the numbers 1 to 99, of the words “times” and
“equals”. Then, the program would randomly select a number audio file, followed by the
“times” audio file, followed by another random number audio file, followed by the “equals”
audio file.

The speech program kept track of the pupil’s answers, while the motoric functions of
the robot were controlled remotely, as the speech program in Node.js was incompatible with
the Robotis+ code language of the robot (https:/ /nodejs.org/en/about/). Therefore, a wire-
less Bluetooth receiver was attached to the robot’s computer, which communicated with a
wireless controller (Figure 5). The associated code can be found in Supplementary Materials.

(a)

(b) (c)

Figure 5. Wireless Bluetooth receiver (a), wireless controller (b), and number pad (c).

Pupils could input their answers on a numeric keyboard or number pad (OS indepen-
dent, plug-and-play, 124 x 81 x 21 mm, USB 2.0 powered with type A-plug; see Figure 5)
(Gembird, Almere, Netherlands). Apart from audio feedback, a correct answer was rewarded
by the Humanoid clapping its hands, the Puppy nodding its head, or the Droid moving up
and down. For negative feedback, the Humanoid scratched its head, the Puppy shook its
head, and the Droid wiggled from left to right.

The program terminated after 5 min, counted the number of correct answers and,
based on the results, played “Well done” or “I'm sorry.” Then, it thanked the child for its
participation and asked them to leave the room.
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2.4. Measures

Table 1 offers a synopsis of the variables investigated in this study. The full record of
variables can be found in Supplementary Materials. Table 1 has two types of dependent
measures that are theoretically relevant: learning and experience. Additionally, several
control variables are tabulated as well.

Learning variables were derived from pre- and post-tests, in which the pupils solved
147 equations drawn from the range [1, 99], with the second number always having
two digits (e.g., 3 x 12 or 15 x 31). In the analysis, our main focus is on the Learning gain
(the absolute difference between pre- and post-test) and Gain percentage (learning gain
relative to a child’s baseline knowledge).

We created the measure of Gain percentage because, for example, five more correct
answers after robot tutoring may be a relatively big gain for those who performed poorly
before but a small gain for those who already performed at a high level (cf. ceiling effect).
Then, Percentage_Fin_min_Base was calculated as Fin_min_Base divided by the baseline
(Table 1).

The experiential variables were measured by a 43-item paper-and-pencil structured
questionnaire, which was filled out after pupils completed their tutoring session(s) (see
Appendix A). Indicative and counter-indicative Likert-type items were scored on a 6-point
rating scale (1 = totally disagree, 6 = totally agree). The counter-indicative items on the
questionnaire were recoded into new variables, after which we calculated Cronbach’s «
for all scales, which was followed by Principal Component Analysis (PCA). From the
remaining items, we calculated Cronbach’s & again.

Representation. To check the manipulation with the three different robot designs,
participants rated to what degree they felt the design of their robot represented a human
being, an animal, or a machine. All three dimensions were rated for each robot. In addition,
they evaluated the Social role of the robot (e.g., a friend or a teacher).

Bonding was measured with 5 items (bond, interested, connected, friends, under-
stand). Two examples of indicative items are “I felt a bond with the robot” and “The robot
understands me” (Cronbach’s « = 0.88).

Anthropomorphism contained 4 items (machine, human-like voice, human-like reaction,
human-like interaction). Two examples are “It felt just like a human was talking to me”
and “I reacted to the robot just as I react to a human.” Only these two items were left after
psychometric analysis by Spearman—Brown correlation (r = 0.68, p = 0.000).

Perceived realism was based on the studies of [38,42]. This scale had 4 items (real
creature, like real, feels fabricated, real conversation), two examples of which are: “The
robot resembled a real-life creature” and “It was just like real to me.” Psychometric analysis
indicated three items for sufficient reliability (Cronbach’s o = 0.75).

Perceived relevance was based on [42] and consisted of four items (important, help,
useless, need). Two examples are “The robot was important to do my exercises” and “The
robot is what I need to practice the multiplication tables” (with the four items, Cronbach’s
o =0.73).

Perceived affordances was also based on [42] (immediately clear, took a while, puzzled).
Two examples are “I understood the task with the robot immediately” and “The robot was
clear in its instructions.” These two items achieved sufficient reliability (r = 0.61, p = 0.000).

Engagement was included, in addition to bonding, and was measured based on two
scales by [38,42]. Engagement was constructed from 5 items (like, dislike, feeling uncom-
fortable, fun). Examples are “I like the robot” and “I felt uncomfortable with the robot”
(Cronbach’s o = 0.79).

Use intentions were also based on [42]. It consisted of 3 items (use again, another time,
help again), an example being “I would use the robot again.” These items were deemed
only sufficient for group comparisons (Cronbach’s o« = 0.63).

Control variables were single items pertaining to novelty (“Have played with robots
before”), aesthetics (“The robot looked beautiful”), age, and gender.



Robotics 2021, 10, 16

9 of 24

Principal Component Analysis

In the 7- and 5-factor solutions, the divergent validity of the questionnaire items was
weak, and the only scale having good measurement quality overall, clearly distinguishable
from other components, was bonding (5 items, Cronbach’s « = 0.88), which was thus
the experiential measure used for further analysis. For in-depth PCA analysis, consult
Supplementary Materials.

3. Results
3.1. Preliminary Analyses

Before entering the main analysis, in order to examine our hypotheses, we ran a num-
ber of preliminary tests to validate our manipulation and monitor confounding variables,
the statistical details of which can be found in the Technical Report of Supplementary
Materials. Here, a summary of results will suffice.

We checked the robot design manipulation and found that pupils judged their robots as
not significantly different in their machine-likeness; however, the robots were differentiated
according to their representation of a human being or an animal. The Humanoid was
rated as more human-like and the Puppy was more animal-like; whereas, for the Droid,
no significant differences were noted. Thus, all robots were machine-like, with the Droid
as the starting point, while the Puppy added an animalistic and the Humanoid a more
human-like impression.

We also asked the pupils if they viewed the robot as a classmate, a teacher, a tutor,
and other social roles. The different social roles were not significant for human-likeness or
animal-likeness, but they were significant for machine-likeness (F (30 246) = 1.75, p = 0.012),
indicating that students perceived a machine-like robot as a machine.

To check for possible confounding effects of non-theoretical variables, we ran several
tests of school, gender, and age on performance. Girls carried out more multiplications
correctly during the pre-test (but not on the post-test after robot intervention, as we shall
see later). The effects of school and gender, while significant on the detailed level (¢-test),
were spurious when more factors were added (F-test). Age showed a positive correlation
with performance; however, this relation dissolved after robot intervention.

The interaction between advancement level and number of sessions was not signif-
icant (F = 0.668). More robot-tutoring sessions did not improve learning performance.
Notwithstanding that there was not much difference among the groups that took one, two,
or three tutorial sessions, we wanted to know how large the learning gain was within each
group. We conducted three paired samples t-tests of sessions on baseline score versus
FinMSco, representing the gain in absolute numbers and in percentages (see Table 2).

Table 2. Mean improvement after robot tutoring once (N = 75), twice (n = 13), or thrice (n = 14).

Number of MEaseline MEinMsco t Sig. (2-tailed)  MFiy_min_Base®  MPper_Fin_min_Base"
Sessions =1 39.71 48.13 tus) = —5.66 0.000 8.42 21.20%
Sessions = 2 35.38 43.06 te) = —-3.13 0.007 7.68 21.70%
Sessions = 3 28.64 39.18 ta = —294 0.015 10.54 36.80%

a Fin_min_Base = FinMSco—Baseline ? Per_Fin_Min_Base = Fin_min_Base/Baseline.

Those who worked once with the robot improved, with 8.42 more answers answered
correctly (21.20%). Those who had two sessions had a 7.68 improvement (21.73%) compared
to baseline. Those who interacted thrice had a 10.54 improvement (36.83%) compared to
baseline. Although the three tutoring sessions seemed to have a better effect, at face value,
later in the paper, we see that one-way ANOVA pointed out that the differences among the
number of sessions were not statistically significant.
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3.2. Learning Effects

H1 expected positive effects of robot design on learning, with a significant advantage
for Humanoid. H2 assumed differences in learning as a function of advancement level of
the students, with the challenged students gaining significantly more from robot tutoring.

To test H1 and H2, we ran a General Linear Model repeated measures of robot design
(3) x advancement level (4) (between-subjects) on the (within-subjects) number of equations
correctly solved before (baseline) and after (final score) robot tutoring (N = 75). Note that
this was the score in absolute numbers, not the percentage of gain relative to baseline.

Our key finding was a significant and moderately strong main before-after effect on
the absolute number of multiplication problems solved correctly (V = 0.50, F(q 43, = 62.43,
p =0.000, rypz = 0.50). The mean score, Mg;,,;; = 45.73 (SD = 17.40) was significantly larger
than Mpseline = 37.16 (SD = 14.88) (t(74) = 7.19, p = 0.000), the mean difference being 8.57
more equations solved correctly after one session of robot tutoring, regardless of robot
design or advancement level.

Multivariate tests also showed a significant second-order interaction among robot de-
sign, advancement level, and before-after score (V = 0.22, F(5 63, =2.99, p = 0.012, 17p2 =0.22).
Inspection of the mean scores showed that the largest difference was established for Chal-
lenged pupils working with the Humanoid (Mpgseline = 16.33, SD = 6.03; Mpj,,;; = 41.67,
5D =17.93), while a small reverse effect was found for Advanced pupils working with the
Droid (Mpgsetine = 69.33, SD = 5.52; Mgj,51 = 68.00, SD = 18.61). However, a paired-samples
t-test showed that the effect for Challenged pupils working with the Humanoid (1 = 3)
was not significant (not even preceding Bonferroni correction; ¢ = 3.51, p = 0.072), which
was probably due to the large SDs and lack of power. No other main or interaction effects
were significant (Supplementary Materials), except for the main effect of advancement
level, which was an obviously trivial finding. H1 and H2 were refuted for learning gain in
absolute numbers of correctly answered multiplication problems.

Learning Gain (Difference Scores)

GLM repeated measures accounts for multiple sources of variance and, therefore, was
the strictest test on our hypotheses. To assess if nothing was gained at all from robot design
or advancement level, we included fewer sources of variance in our analysis, considering
that if lenient tests did not render significant effects either, we could dismiss robot design
and advancement level from our theorizing altogether.

Therefore, we calculated the difference score from the final mean score (FinMSco)—
baseline score = Final_minus_Baseline (Fin_min_Base). While 64 pupils gained from robot
tutoring, there were 11 (about 15%) who did not perform better, but worse, after robot
interaction (Fin_min_Base = —1 to —35). Ten of the worst performers came from the
categories Below Average and Challenged, the remaining one coming from the Advanced
category. In Figure 6, we show a four-quadrant scatterplot with pre-test baseline as the
x-axis and post-test final score as the y-axis. The bottom right quadrant contains students
who scored high on the pre-test (e.g., 65) but low on the post-test (e.g., 30). The bottom
left quadrant has students who did not score too high on either the pre-test (e.g., 10) or the
post-test (e.g., 21). These are the students who only learned a little. The top right quadrant
contains students who scored high on both the pre-test (e.g., 78) and the post-test (e.g., 79).
They too learned a little, but at a higher level. The top left quadrant shows students who
scored low on the pre-test (e.g., 17) but high on the post-test (e.g., 51), showing the largest
learning gains.
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Figure 6. Quadrant analysis for gains and losses (semicolon-separated).

For H1 on Robot Design, we ran a GLM univariate ANOVA of robot design (2) x
school (2) x gender (2) on Fin_min_Base with age as a covariate (N = 75). The only
significant effect was the interaction of robot design x school (2) (F262) = 3.33, p = 0.042).
Yet, a two-tailed independent samples t-test indicated that the main effect of school on
Fin_min_Base was not significant (¢73y = —0.17, p = 0.86). The robot design factor had
three levels: Humanoid (n =21, M =9.47, SD =1.72), Puppy (n =27, M =9.50, SD = 1.83),
and Droid (n =27, M = 6.81, SD = 1.96). Therefore, we ran three two-tailed independent
t-tests on Fin_min_Base; however, no significant effects were observed (Humanoid-Puppy:
tue) = —0.52, p = 0.96; Humanoid—-Droid: ty) = 0.84, p = 0.40; Puppy-Droid: fsp) = 1.01,
p = 0.32). Therefore, neither robot design nor school had a significant effect on learning
gains, as measured by Fin_min_Base.

We conjectured that, perhaps, certain robot designs exercised negative effects on
learning. Therefore, we re-ran the analyses on the group that performed worse after robot
tutoring. However, robot design and school, again, did not exert significant effects on
Fin_min_Base. Overall, the effects of schools, gender, and robot designs neither improved
nor worsened the children’s learning, as measured through the difference scores.

For the 64 children (about 85%) that did show learning gains after robot intervention,
we ran a paired samples t-test on baseline versus FinMSco, in order to see how much those
children gained. The difference between baseline (1 = 64, M = 37.98, SD = 1.91) and
FinMSco (n = 64, M = 49.14, SD = 2.05) was highly significant (¢43, = —11.20, p = 0.000). On
average, those who learned from the robot performed more than one-third better compared
to baseline. Although most children learned significantly from robot tutoring, the various
robot designs did not significantly differentiate the learning effects, therefore countering
H1.
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Although robot design did not exact significant effects on learning, perhaps the experi-
ence of the design as human-like, animal-like, or machine-like would, allowing yet another
chance for H1 to come to expression, albeit in a more perceptual manner. To check the
effects of the perceptions of the children with respect to their robot on learning, we carried
out regression analyses of human-like, animal-like, and machine-like on Fin_min_Base.
However, no significant relationship was established (human-like: t = —0.47, p = 0.640;
animal-like: t = —0.52, p = 0.610; machine-like: ¢ = —0.50, p = 0.620). With gain percentage
as dependent (Table 1: Per_Fin_min_Base), significant effects remained absent (human-like:
t = —0.26, p = 0.800; animal-like: t = —1.16, p = 0.250; machine-like: t = —0.71, p = 0.480).

Combined with the results of the section on learning effects, students perceived the
robot as we expected; however, their perception had no effect on learning—not in absolute
numbers of correct answers and not as a percentage of improvement from the baseline.
Although overall learning gains were achieved, the design of the robot embodiment or
what it represented to the children did not matter, thus rejecting H1.

For H2 on advancement level, we ran a one-way ANOVA of advancement level on
the difference score Fin_min_Base, but none of the effects were significant (F(371) = 1.58,
p = 0.202). No matter how well or poorly children performed initially, it did not affect their
learning gain on average.

As stated under measures, we devised another measure from the notion that children
may not have gained differently in absolute numbers, as 8.57 more multiplication problems
correct is a relatively stronger gain for a poor performer than for an excellent student. Then,
learning gain was calculated using the percentage of gain (Fin_min_Base) in relation to
the baseline (Per_Fin_min_Base = Fin_min_Base/Baseline). With this measure, we ran a
one-way ANOVA of advancement level on Per_Fin_min_Base for N = 64, excluding those
with a learning loss. This time, we did find significant effects (F(3 ¢9) = 12.66, p = 0.000)
(even with worse performers included, the effect was significant (Supplementary Mate-
rials)). On average, the gain percentage (Per_Fin_min_Base) increased with the decrease
of advancement level (r = —0.53, p = 0.000) (Advanced: n =10, M = 0.17 (17%), SD = 0.11;
Above Average: n =19, M = 0.22 (22%), SD = 0.14; Below Average: n = 25, M = 0.35 (35%),
SD = 0.28; Challenged: n = 10, M = 0.90 (90%), SD = 0.61).

To scrutinize the individual contrasts, we carried out six two-tailed independent ¢-tests
of advancement level with Bonferroni correction (Challenged—Below Average, Challenged-
Above Average, Challenged-Advanced, Below Average-Above Average, Below Average-
Advanced, Above Average-Advanced) on Per_Fin_min_Base. The percentage of learning
gain (Per_Fin_min_Base) of pupils that were Challenged (n = 10, M = 0.90, SD = 0.61) was
significantly higher than those who were Below Average (n = 25, M = 0.35, SD = 0.28),
Above Average (n =19, M =0.22, SD = 0.14), or Advanced (n =10, M =0.17, SD = 0.11)
(Challenged-Below Average: t33) = 3.68, p = 0.001; Challenged—-Above Average: fo7) = 4.69,
p = 0.000; Challenged-Advanced: t1g) = 3.73, p = 0.002). Yet, the differences among Below
Average, Above Average, and Advanced pupils were not significant (see Supplementary
Materials). The effects were caused by the Challenged pupils (n = 10), indicating that if
weak students benefited, they benefited relatively more (90% improvement on baseline)
from robot tutoring than others. Calculated as the relative improvement to their individual
baselines, H2 could not be rejected for Challenged students, but it could be rejected for the
other groups.

3.3. Summary of Findings for Learning

1. Prior to robot intervention, pupils performed better with age and girls did better, in
terms of baseline performance, than boys. After 5 min of robot interaction, these differ-
ences disappeared (main before-after effect on the absolute number of multiplications
solved correctly: V = 0.50, F(q ¢3) = 62.43, p = 0.000, rypz =0.50).

2. Most children (/85%) learned from the robot, while a small group (~15%) performed
worse (one-way ANOVA of advancement level on percent difference score for N = 64,
excluding pupils with learning loss: F(3 ¢9) = 12.66, p = 0.000).
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3. Those who learned from the robot had an average of more than one-third gain
after tutoring (difference between baseline—M = 37.98—and final score—M = 49.14:
t(63) = —1120, p= 0000)

4. The weakest students that gained from robot tutoring did so in percentage of gain
(90%), not in absolute numbers, compared to their earlier achievements (signifi-
cant t-tests for percent learning gain only with inclusion of Challenged students:
tes) =3.68, p = 0.001; t(o7) = 4.69, p = 0.000; t(18) = 3.73, p = 0.002. All other contrasts
were not significant)

5. School, gender, design of the robot, the number of times these children were tutored,
nor the experience of novelty of the robot were influential for learning through robot
tutoring (i.e., none of the control variables had significant effects on learning or they
caused trivial findings).

3.4. Experience

Although we utilized a range of psychometric scales in our questionnaire to measure
different dimensions of affect (i.e., engagement, bonding, anthropomorphism, perceived
realism, relevance, perceived affordances, and use intentions), none but bonding achieved
convergent and divergent measurement reliability (Supplementary Materials). Therefore,
we decided to work with the only clear-cut case we had—bonding—and not to make ad
hoc decisions.

H3 expected that emotional bonding with the robot would positively affect the learn-
ing outcomes in a mediating or moderating way. To examine H3, we once more ran the
previous GLM repeated measures of robot design (3) x advancement level (4) (between-
subjects) on the (within-subjects) number of equations correctly solved before and after
robot tutoring, but now with mean bonding as the covariate. However, mean bonding
exerted no significant main or interaction effects on the multiplication scores, and the
earlier pattern of results was not altered (Supplementary Materials).

To allow the presumed relation between bonding and learning to occur more easily, we
ran a two-tailed bivariate correlation analysis between Mp,,,; and Fin_min_Base (r = 0.007,
p = 0.951) and between Mp,,,; and Per_Fin_min_Base (r = —0.076, p = 0.531). Neither
were significant.

Therefore, H3 was rejected. Bonding tendencies were independent of the design of
the robot or the advancement level of the children. The level of bonding with a robot tutor
seemed not to have any substantial correlation with learning, not in absolute numbers nor
in relative gain.

To check whether any of the non-theoretical variables affected the level of learning
and bonding, we conducted multivariate analysis of robot design, advancement level,
school, and gender on Fin_min_Base and Mp,,; and on Per_Fin_min_Base and Mg,
with age, novelty, and aesthetics as covariates. However, the only significant effect that
included bonding was that aesthetics covaried with Mp,4 (F(1,71) = 13.21, p = 0.001); that is,
a robot that was experienced as “prettier” raised stronger bonding tendencies. For further
statistical details, consult Supplementary Materials.

Effects on Bonding

We ran a univariate analysis of variance (ANOVA) of robot design and advancement
level directly on mean bonding. Not all children who took the multiplication test also filled
out the questionnaire; therefore, N = 70. The intercept was significantly different from zero,
such that bonding tendencies did occur (F(; 53 = 194.76, p = 0.000, 17,,2 =0.77). However,
none of the main effects or interactions were significant (F < 1; see Supplementary Materials).
Neither robot design nor advancement level exerted significant effects on bonding.

As an extra exploration, we conducted an ANOVA of robot design (3) x advancement
level (4) x school (2) x gender (2) on the grand averages of Mp,,,;, showing that only the
difference in school was significant (F(j 34y = 4.57, p = 0.04). We ran an independent samples
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t-test of school on Mp,,,;, showing that bonding at good shepherd was significantly higher
than at Chun Lei ((g) = 2.99, p = 0.004). Theoretically, this is an irrelevant finding.

We then ran three t-tests with sessions as the grouping variable (once-twice, once—
thrice, and twice-thrice). The effects on Mp,,; of once and thrice and that of twice and
thrice were not significant (once-thrice: ts4) = 1.31, p = 0.20; twice-thrice: fg) = 0.97,
p = 0.34). However, the difference between once and twice was significant for Mp,,,; (once—
twice: t(g0) = 3.01, p = 0.004), even if « was corrected to 0.017 (with respect to Bonferroni).
Apparently, mean bonding was lesser upon second encounter (Mp,,31 = 3.60, SD = 1.64;
Mpongz = 2.19; SD = 1.70), which was due to Chun Lei pupils alone. The insignificant
difference with those encountering the robot thrice might indicate a ceiling effect.

We wondered if the high bonding upon first encounter was due to a novelty effect,
wearing off after multiple encounters. Therefore, we correlated Mp,,; with Novelty and
found that the correlation was significant but not very strong (r = 0.31, p = 0.01). Children
from Chun Lei saw the robot more often, such that the lesser novelty may have led to
lower rates of bonding. Mp,,,; also correlated with aesthetics (r = 0.56, p = 0.000), indicating
that the experience of “prettier” led to stronger bonding tendencies, as supported by the
covariance analysis above.

3.5. Summary of Findings for Experience
With respect to the experience of the robot tutor as a social entity, we found the following:

1. The pupils perceived the robot as intended (manipulation successful; significant
t-tests for ratings on human-likeness and animal-likeness, not on machine-likeness).

2. The social role they attributed to the robots had no significant effect on their per-
ceptions of human-, animal-, or machine-likeness, except that the role of “machine”
indeed raised significant machine-likeness, which was a trivial finding (different
social roles not significant for human-likeness and animal-likeness, solely for machine-
likeness: F(30246) = 1.75, p = 0.012).

3. From a design perspective, the Bioloids, to these children, were basically all machines
similar to the Droid, while the Puppy added animal-like features to that basic frame,
and the Humanoid added human-like features to it. However, the type of robot
(humanoid, animal, or machine) did not affect the bonding tendencies (mean bonding
as a covariate did not evoke significant main or interaction effects on the multiplication
scores in GLM repeated measures of robot design and advancement level).

4. Only the bonding scale was psychometrically reliable; all other measures for these
children seemed to be related to that experience or were confusing (cf. Cronbach’s o
in combination with Principal Component Analysis).

5. Bonding had no significant relation with learning gains. After 5 min of robot training,
the children improved their skills regardless of the quality of the established relation-
ship: The bonding intercept was significant (F(j 55y = 194.76, p = 0.000, 1y =0.77), but
there were no significant effects on learning, see bullet 3.

6. The Good Shepherd children experienced more bonding with their robot tutor than
Chun Lei pupils, maybe owing to a novelty effect (trivial finding: #(g) = 2.99, p = 0.004).

7. Stronger perceptions of the robot’s attractiveness (“beautiful”) were associated with
stronger bonding tendencies (mean bonding correlated significantly with aesthetics:
r=0.56, p = 0.000)

4. Discussion and Conclusions

We found that 5 min of robot tutoring improved the learning of multiplication regard-
less of the design of the robot or the advancement level of the pupils. This result countered
our hypothesis H1: that a more anthropomorphic design would enhance performance. It
also countered H2, regarding different effects for advancement level when dealt with as the
absolute number of equations solved correctly. However, H2 was not refuted when seen as
the relative gain pupils obtained from robot tutoring, as compared to their earlier achieve-
ments; then, the more challenged children (1 = 10) gained relatively more than the others.
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H3, which considered that a child learns more while developing a stronger emotional bond
with the robot tutor, was also disconfirmed. While rehearsing multiplication equations in
this study, learning and bonding seemed to be two different strands of processing, both
happening but not affecting each other significantly.

Thus, our conclusion is very straightforward: Apparently, children improved, in terms
of their multiplication table performance, after 5 min of exercise with a robot. More sessions
were unnecessary. Initial differences between gender, age, or school disadvantages were
compensated for, and the novelty of the method had no significant effect on learning. The
type of robot or its social role (teacher, peer, friend) did not matter, either (cf. [43]): A more
human-like machine did not improve performance, a teacher role was no better than a peer,
and the level of emotional bonding of the child with the tutoring machine (e.g., as it is new
and beautiful) had no significant effect on their learning outcomes.

This is good news for teaching practice (cf. [1]), as cheap and simple robots of whatever
kind may help the larger part of pupils gain more than 33% better scores with little time
and financial investment. The weakest pupils should be treated with caution: Many may
have a 90% progress, but some challenged and under-average children may be set back by
robot tutoring. For different reasons, challenged as well as certain advanced students can
be easily distracted and may experience learning difficulties (see, e.g., [44]).

The theory of affective bonding [32,40] was not supported. For the children of the
study, the different conceptualizations of affordances, relevance, realism, and anthropo-
morphism seemed to be diffuse, except for the notion of bonding (I felt connected to the
robot”); such bonding may be present but was not influential for rational performance.

Robots are not human beings (cf. [43]). It may be that a warm relationship with a
human teacher makes a child want to work harder and may improve their social-emotional
development (e.g., [10,13-15]). In project-based learning, social interaction is important, as
it is classroom-oriented and requires the student to actively explore real-world challenges
and cases, providing multiple perspectives. Our robot merely helped, one-to-one, with
the maintenance rehearsal of arithmetic equations that have one specific answer. For a
simple drill such as quickly practicing multiplication with a little robot, warm relationships
did not seem to be necessary, perhaps because the interaction was so short. According to
Serholt and Barendregt [45], it may be that children do not develop bonds with robots in
the human sense but engage in a different sort of relationship; what this relationship is
needs further study.

Our work coincides with the results of Hindriks and Liebens [26]: that social behavior
during a maths task is not conducive to learning. Moreover, for certain challenged pupils,
the effects we found were even counterproductive. It seems that matching the robot’s
appearance with its task is insignificant, despite some individual preferences for specific
robot appearances in some tasks [21,37,46,47]. Our robots were successful at maintenance
rehearsal and repeated exercise (e.g., [28,29]); during the remedial teaching of a strongly
rational task, the bonding aspects of the robot appeared to be unimportant.

A strong point of our study was the comparability of the three robot designs. It is
quite hard to compare existing factory robots of different makes, telling which design
elements are responsible for the differences in user responses. Our basic design, materials,
and general appearance of the robots was similar but differentiated in representation: It is
a rather unique finding that the children recognized the basic design of all three robots as a
machine with human features added for the humanoid and animal characteristics for the
puppy. Unexpectedly, these representational variations were not conducive to learning,
which brings us to the limitations of this study.

Field studies add to ecological validity and plausibility, yet at the cost of methodolog-
ical soundness. The time schedules of schools and parents left us with 75 children that
could participate in but one session; therefore, the insignificant progress after the second
and third session may have been due to a lack of power. Effects of the advancement level
(i.e., weaker or stronger pupils) may have also been disturbed by the small numbers in the
study. Working with children, in itself, already yields nosier data than with adults, which
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may have drowned some effects of taking multiple sessions, the mix-up of psychometric
constructs (e.g., anthropomorphism, realism), or the effects on bonding. It may be argued
that 5 min of interaction is too short to become attached to a machine. Additionally, our
robots were not actually “teaching” but, rather, rehearsing content materials or taking
tests. The robot simply gave feedback (correct/incorrect) to the child, and the only social
behavior exhibited was the gesture performed.

Future Outlook and Research Directions

Due to severe budget cuts and fewer teachers, education faces a lack of human
resources to serve an increasingly larger number of pupils with a wider variety of individual
needs. Owing to changes in care systems (i.e., in Europe), children with special needs are
often integrated into regular—rather than special—schools (see, e.g., [48]; for the situation
in Hong Kong, see [49]. Migration causes new mixes of children from diverse backgrounds,
with cultural and educational differences. The current pandemic has led to a demand
for novel teaching solutions in order to make up for learning loss [1]. These transitions
demand ways of teaching that differ from class-wise instructions [1]. As is, the teaching
level converges to the middle, whereas children learn most if the instructions match their
level of proficiency [50].

Social robots may provide support, which probably has far-reaching implications for
classroom instruction and organization. For example, repetitive tasks may be performed
by the robot, while the teacher focuses on special cases or develops and teaches advanced
topics. This actually asks the teachers to recalibrate their profession. In the near future,
teachers may have to consider working in teams that consist of synthetic colleagues.
However, before the role of these new robot colleagues can be outlined, we must understand
how a robot’s (limited) capabilities can match not only the teaching needs of pupils but
also those of teachers. In this respect, moral deliberations on robots in education should
be proliferated (e.g., [51]).

Our results suggest that a robot does not have to be fancy, in terms of looks or behavior,
to help children to increase their performance quickly in arithmetic rehearsal tasks. In this
study, weak pupils benefited strongly from robot instruction, with the exception of a few
challenged children. Robot teachers in motion pictures and comic books do not have to
remain mere science fiction. Educators and parents may apply a simple and cheap machine
equipped with the proper software in order to make up for knowledge deficits and gaps in
the learning process without having to fear the lack of face-to-face interaction. This makes
robot tutoring even more feasible in the context of the COVID-19 pandemic.

Hence, we may consider to scale-up or sustain a STEM education program based on
robotics, as children might not be able to attend lessons in classrooms and need to learn
from home, through online lessons, during lockdowns. Social robots may be one way
to influence and change education, as asked for by the UN [1], beyond its intended use
purpose of “robot tutoring” alone, in order to allow for safe learning from home. However,
the social construct of a robot still is that of a mechanical worker fit for low-quality jobs
(Figure 7, (1)). Then, as a future research direction, we may investigate how the mutual
shaping of education and technology will transform the way we teach. Next follows a
number of hypotheses to pursue.

The current social norm is still that affective tasks, such as nursing and teaching,
should not be left to machinery. However, as increasingly fewer people are available
in education and children must stay at home, the real teacher has less and less time,
particularly for pupils who need special attention (2). Technologists have offered solutions
by developing social robots that can take over (at least, the simple) school lessons, as we saw
in our study (3). Indeed, these pupils are moving forward and, however undifferentiated,
if they regard the robot as sociable and nice, they develop a positive attitude (4). Teachers
observe this and may worry that their jobs are being taken from them (we have heard such
stories), which is an initially negative attitude (5).
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Figure 7. Mutual shaping of robot technology, teachers, pupils, and parents.

In turn, the technologists may now adapt the functionality in such a way that the
robot performs supporting tasks and does not replace the teacher (6). Now, the teacher is
satisfied that they can pay attention to special cases (7), while the robot carries out the more
tedious maintenance rehearsal. Responsibilities become differently distributed. The role of
the teacher becomes more focused on individual coaching and less on “mass education” (8).
Parents see that students move forward and that their children are happy with their robot
(9). Therefore, in society, the social construct of a robot is expected to change from a low-
skilled mechanical worker to a kind assistant that can “teach” (10). Moreover, the children
that were taught by robots enter society with yet another preconception of robots: as a
teacher and as a personal friend but without the moral pitfalls of teacher—pupil friendships.
Moreover, these children know from their own experience the “dos and don’ts” of robot
tutoring; therefore, some of them may become more sophisticated robot researchers and
designers than we are today.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2218-658
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Appendix A

Structured questionnaire on the experience of a tutoring robot (English translated from
Cantonese). Variable names (between brackets) were left out from the original questionnaire.

What did the robot look like to you? The more circles you fill in, the more you agree with the statement. Only one circle
filled in means you don’t agree at all, all circles filled in means you totally agree.

Pas NBFURACE G AN 2 YRR 1018 B U VR R B B Rt © FUE— (8 B USRI 2R FE - RITE

(Bl B ZR A VR AEw T 0 ARFRAR A+ 4038 R 3E Bk
[Representation]
The robot looked like a . ..
s NEERE ...
1. Machine
I

OO0O000O

S00000

3. Animal

#$Y

OO0O000O

[Social Role]

What did the robot feel like to you? To me the robot felt like a . ..

(choose one answer that suits you best)
IREBEE Ftkas AWe ? B > e ANE—1E ...
(B — 8RR AEIERY)
4.  Friend
i3

OO0O000O

5. Classmate

500000

6. Teacher
ZHil

OO0O000O

7. Acquaintance

A

OO0O000O
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10.

Stranger

FEAEN

OO00000O

I;gl%a%%:hine
OO00000O

Other ...

OHO000

How did you feel about your connection with the robot? The more circles you fill in the more you agree with the
statement.

TRBEIS IR BRI AR B (R SRR TE 2 B2 1) R Pl QSR VR e [ 3 P A e

[Engagement]
The robot . ..
EEERRA .

11.

12.

13.

14.

15.

I like the robot
TEMRE A
0]0]0]0]0]0

The robot gave me a good feeling
ERBUER R
OO0000OO

I felt uncomfortable with the robot
B as N2 TR ANET IR
OO0O000O0O

It was fun with the robot

Pas NIt I

OO00000O

I dislike the robot
BTAERERRA

OO00000O

[Bonding]

16.

17.

18.

19.

I felt a bond with the robot
TG 8 N A B
OO0O000O0O

I felt like the robot was interested in me
T B R AT FA
OO0O000O0O

I felt connected to the robot

Ho e J R
OO000O0O

I want to be friends with the robot

HABMH AR N AT

OO00000O



Robotics 2021, 10, 16 20 of 24

20. The robot understands me
T NG I=E57

OO0O000O

What did you think about your interaction with the robot? The more circles you fill in the more you agree with the
statement.

REIFIRIRAE AR A\ B BB B 2 Bk % nY B B ARARERFE -
[Anthropomorphism]
21. To me the robot was a machine

BB A LE— i
OO000O0

22. It feltjust like a human was talking to me
000000

23. Ireacted to the robot just as I react to a human

FEE A AT 7
OO000O0

24. It differed from a human-like interaction
IR A\ IR —1E

OO0O000O

[Perceived Realism]

25. The robot resembled a real-life creature
BEas AL A&y —iF
OO0O0O00OO

26. It was just like real to me
I as NI B
OO0O0O00OO

27. The robot was fabricated
b s NI HAE

OO0O000O

28. It felt just like a real conversation

A5 A T
OO000O0

[Relevance]

29. The robot was important to do my exercises

W ) R
OO000O0

30. The robot helped me to practice the multiplication tables
tae NF BRI HLRSITRIER

OO0O000O

31. The robot was useless for rehearsing the multiplication tables
HE AR ARG ) TIER

OO0O000O
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32. The robot is what I need to practice the multiplication tables
o B A N BB ST IRIER

OO0O000O

[Perceived Affordances]

33. Tunderstood the task with the robot immediately
000000

34. The robot was clear in its instructions
Phas ARTE R TE M

OO0O000O

35. It took me a while before I understood what to do with the robot
FFE— SN E B AR A RAE

OO0O000O

36. Ipuzzled to understand how to work with the robot

o THka A0 RER R BEn

OO0O000O

[Use Intentions]
For the next time practicing multiplications, I would . ..

TIRGR)FIER IR, T ...
37. use the robot again
FHIXHAEA

OO0O000O

38. use another tool, like a tablet

ER AR TR

OO0O000O

39. want this robot to help me again
LY YN RIS

OO0O000O

Then, some final questions
The more circles you fill in the more you agree with the statement.

BRJGLN AR B (CR AR -
[Novelty]

40. I played with robots before
AU A

OO0O000O

[Aesthetics]
The robot looked ...
s NS ...

41. Beautiful

OO0000

[Demographics]
42. Tama...

HE—ME ...
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O Boy 5
) Girl Z#%

43. How old are you 75K ?

Thank you for all the help. See you next time!
AR EB - PR TRER -

References

1.  UN. Policy Brief: Education during COVID-19 and Beyond. United Nations. Available online: https://www.un.org/
development/desa/dspd/wp-content/uploads/sites/22/2020/08/sg_policy_brief_covid-19_and_education_august_2020
.pdf (accessed on 30 August 2020).

2. Gomoll, A.; Sabanovi¢, S.; Tolar, E.; Hmelo-Silver, C.E.; Francisco, M.; Lawlor, O. Between the social and the technical: Negotia-
tion of human-centered robotics design in a middle school classroom. Int. J. Soc. Robot. 2017, 10, 309-324. [CrossRef]

3.  STEMex. STEMex Learning Centre. 2019. Available online: https://stemex.org/about/ (accessed on 9 December 2019).

4. Chang, C.W.,; Lee, ]. H.; Chao, P.Y;; Wang, C.Y.; Chen, G.D. Exploring the possibility of using humanoid robots as instructional
tools for teaching a second language in primary school. J. Educ. Technol. Soc. 2010, 13, 13-24.

5. Nuse, L.P. Humanoid Robot Takes Over as Teacher. Available online: http:/ /sciencenordic.com/humanoid-robot-takes-over-
teacher (accessed on 30 September 2017).

6. Belpaeme, T.; Kennedy, J.; Ramachandran, A.; Scassellati, B.; Tanaka, F. Social robots for education: A review. Sci. Robot. 2018,
3, eaat5954. [CrossRef] [PubMed]

7. Mann, J.A,; MacDonald, B.A.; Kuo, I; Li, X.; Broadbent, E. People respond better to robots than computer tablets delivering
healthcare instructions. Comput. Hum. Behav. 2015, 43, 112-117. [CrossRef]

8. VanLehn, K. The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol.
2011, 46, 197-221. [CrossRef]

9.  Brown, L.; Kerwin, R.; Howard, A.M. Applying behavioral strategies for student engagement using a robotic educational agent.
In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13-16 October
2013; pp. 4360-4365. [CrossRef]

10. Hattie, J. The applicability of Visible Learning to higher education. Scholarsh. Teach. Learn. Psychol. 2015, 1, 79-91. [CrossRef]

11. Tiberius, R.G,; Billson, ].M. The social context of teaching and learning. New Dir. Teach. Learn. 1991, 67-86. [CrossRef]

12.  Saerbeck, M.; Schut, T.; Bartneck, C.; Janse, M.D. Expressive robots in education: Varying the degree of social supportive behavior
of a robotic tutor. In Proceedings of the 28th International Conference on Human Factors in Computing Systems (CHI “10),
Atlanta, GA, USA, 10-15 April 2010; ACM: Atlanta, GA, USA, 2010; pp. 1613-1622. [CrossRef]

13.  Frymier, A.B.; Houser, M.L. The teacher-student relationship as an interpersonal relationship. Commun. Educ. 2000, 49, 207-219. [CrossRef]

14. Skinner, E.A.; Belmont, M.]. Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across
the school year. J. Educ. Psychol. 1993, 85, 571-581. [CrossRef]

15. Hamre, B.K,; Pianta, R.C. Early teacher-child relationships and the trajectory of children’s school outcomes through eighth grade.
Child Dev. 2001, 72, 625-638. [CrossRef]

16. Kory-Westlund, ].M.; Breazeal, C.L. A long-term study of young children’s rapport, social emulation, and language learning with
a peer-like robot playmate in preschool. Front. Robot. AI 2019, 6, 81. [CrossRef]

17.  Alves-Oliveira, P.; Tullio, E.D.; Ribeiro, T.; Paiva, A. Meet me halfway: Eye behaviour as an expression of robot’s language.
In AAAI Fall Symposium Series; AAAIL Menlo Park, CA, USA, 2014; pp. 13-15.

18.  Atkinson, R.K;; Mayer, R.E.; Merrill, M.M. Fostering social agency in multimedia learning: Examining the impact of an animated
agent’s voice. Contemp. Educ. Psychol. 2005, 30, 117-139. [CrossRef]

19. Boucher, J.D.; Pattacini, U.; Lelong, A.; Bailly, G.; Elisei, E; Fagel, S.; Dominey, P.E; Ventre-Dominey, ]. I reach faster when
I see you look: Gaze effects in human-human and human-robot face-to-face cooperation. Front. Neurorobot. 2012, 6, 1-11.
[CrossRef] [PubMed]

20. Esposito, J. Negotiating the gaze and learning the hidden curriculum: A critical race analysis of the embodiment of female
students of color at a predominantly white institution. J. Crit. Educ. Policy Stud. 2011, 9, 143-164.

21. Konijn, E.A.; Smakman, M.; Van den Berghe, R. Use of robots in education. In The International Encyclopedia of Media Psychology;
van den Bulck, J., Sharrer, E., Ewoldsen, D., Mares, M.-L., Eds.; Wiley: New York, NY, USA, 2020.

22, Konijn, E.A.; Hoorn, ].F. Robot tutor and pupils’ educational ability: Teaching the times tables. Comput. Educ. 2020, 157, 103970. [CrossRef]

23. Kennedy, J.; Baxter, P; Senft, E.; Belpaeme, T. Social robot tutoring for child second language learning. In Proceedings of the 2016
11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7-10 March 2016;
pp. 231-238. [CrossRef]

24. Vogt, P.; Haas, M.D.; Jong, C.D.; Baxter, P.; Krahmer, E. Child-Robot Interactions for Second Language Tutoring to Preschool

Children. Front. Hum. Neurosci. 2017, 11, 73. [CrossRef]


https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2020/08/sg_policy_brief_covid-19_and_education_august_2020.pdf
https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2020/08/sg_policy_brief_covid-19_and_education_august_2020.pdf
https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2020/08/sg_policy_brief_covid-19_and_education_august_2020.pdf
http://doi.org/10.1007/s12369-017-0454-3
https://stemex.org/about/
http://sciencenordic.com/humanoid-robot-takes-over-teacher
http://sciencenordic.com/humanoid-robot-takes-over-teacher
http://doi.org/10.1126/scirobotics.aat5954
http://www.ncbi.nlm.nih.gov/pubmed/33141719
http://doi.org/10.1016/j.chb.2014.10.029
http://doi.org/10.1080/00461520.2011.611369
http://doi.org/10.1109/SMC.2013.744
http://doi.org/10.1037/stl0000021
http://doi.org/10.1002/tl.37219914509
http://doi.org/10.1145/1753326.1753567
http://doi.org/10.1080/03634520009379209
http://doi.org/10.1037/0022-0663.85.4.571
http://doi.org/10.1111/1467-8624.00301
http://doi.org/10.3389/frobt.2019.00081
http://doi.org/10.1016/j.cedpsych.2004.07.001
http://doi.org/10.3389/fnbot.2012.00003
http://www.ncbi.nlm.nih.gov/pubmed/22563315
http://doi.org/10.1016/j.compedu.2020.103970
http://doi.org/10.1109/hri.2016.7451757
http://doi.org/10.3389/fnhum.2017.00073

Robotics 2021, 10, 16 23 of 24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

Kory-Westlund, ].M.; Jeong, S.; Park Hae, W.; Ronfard, S.; Adhikari, A.; Harris, P.L.; DeSteno, D.; Breazeal, C.L. Flat versus
expressive storytelling: Learning and retention of a robot’s narrative. Front. Hum. Neurosci. 2017, 11, 643—648. [CrossRef]
Hindriks, K.V.; Liebens, S. A robot math tutor that gives feedback. In Social Robotics. ICSR 2019. Lecture Notes in Computer
Science; Salichs, M., Ge, S.S., Barakova, E.I, Cabibihan, ].-]., Wagner, A.R., Castro-Gonzalez, A., He, H.S., Eds.; Springer: Cham,
Switzerland, 2019; Volume 11876, pp. 601-610. [CrossRef]

Kennedy, J.; Baxter, P.; Belpaeme, T. The robot who tried too hard: Social behaviour of a robot tutor can negatively affect child
learning. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, Portland,
OR, USA, 2-5 March 2015; ACM: New York, NY, USA, 2015; pp. 67-74. [CrossRef]

Wei, CW.; Hung, I.C.; Lee, L.; Chen, N.S. A joyful classroom learning system with robot learning companion for children to learn
mathematics multiplication. Turk. Online J. Educ. Technol. 2011, 10, 11-23.

Huang, I.S.; Hoorn, J.F. Having an Einstein in class. Teaching maths with robots is different for boys and girls. In Proceedings
of the 13th World Congress on Intelligent Control and Automation (WCICA 2018), Changsha, China, 4-8 July 2018; Wang, X.,
Wang, Z., Wu, J., Wang, L., Eds.; IEEE: New York, NY, USA, 2018; pp. 424-427. Available online: https:/ /ieeexplore.ieee.org/
stamp /stamp.jsp?tp=_&arnumber=8630584 (accessed on 25 October 2020). [CrossRef]

Kramer, N.C.; Karacora, B.; Lucas, G.; Dehghani, M.; Riither, G.; Gratch, J. Closing the gender gap in STEM with friendly male
instructors? On the effects of rapport behavior and gender of a virtual agent in an instructional interaction. Comput. Educ. 2016,
99, 1-13. [CrossRef]

Arroyo, I; Royer, ].M.; Park Woolf, B. Using an intelligent tutor and math fluency training to improve math performance. Int. J.
Artif. Intell. Educ. 2011, 21, 135-152. [CrossRef]

Konijn, E.A.; Hoorn, J.F. Media psychological perspectives on the use of communication robots in health care. In The International
Encyclopedia of Media Psychology; van den Bulck, J., Ed.; Wiley: New York, NY, USA, 2020. [CrossRef]

Jamone, L.; Ugur, E.; Cangelosi, A.; Fadiga, L.; Bernardino, A.; Piater, J.; Santos-Victor, J. Affordances in psychology, neuroscience,
and robotics: A survey. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 4-25. [CrossRef]

Syrdal, D.S.; Dautenhahn, K.; Woods, S.N.; Walters, M.L.; Koay, K.L. Looking good? Appearance preferences and robot personality
inferences at zero acquaintance. In AAAI Spring Symposium: Multidisciplinary Collaboration for Socially Assistive Robotics; AAAL
Menlo Park, CA, USA, 2007; pp. 26-28.

Kose, H.; Uluer, P; Akalin, N.; Yorganci, R.; Ozkul, A.; Ince, G. The effect of embodiment in sign language tutoring with assistive
humanoid robots. Int. J. Soc. Robot. 2015, 7, 537-548. [CrossRef]

Moshkina, L.; Trickett, S.; Trafton, J.G. Social engagement in public places: A tale of one robot. In Proceedings of the 2014
ACMY/IEEE international conference on human-robot interaction (HRI "14), Bielefeld, Germany, 3—6 March 2014; ACM: New York,
NY, USA, 2014; pp. 382-389. [CrossRef]

Li, D.; Rau, PL.P; Li, Y. A cross-cultural study: Effect of robot appearance and task. Int. ]. Soc. Robot. 2010, 2, 175-186. [CrossRef]
Paauwe, R.A.; Hoorn, J.F.; Konijn, E.A.; Keyson, D.V. Designing robot embodiments for social interaction: Affordances topple
realism and aesthetics. Int. J. Soc. Robot. 2015, 7, 697-708. [CrossRef]

Van Vugt, H.C.; Konijn, E.A; Hoorn, J.E; Eliéns, A.; Keur, I. Realism is not all! User engagement with task-related interface
characters. Interact. Comput. 2007, 19, 267-280. [CrossRef]

Konijn, E.A.; Hoorn, ].E. Parasocial interaction and beyond: Media personae and affective bonding. In The International Encyclopedia
of Media Effects; Roessler, P., Hoffner, C., van Zoonen, L., Eds.; Wiley-Blackwell: New York, NY, USA, 2017; pp. 1-15. [CrossRef]
Chen, H.; Park Hae, W.; Breazeal, C.L. Teaching and learning with children: Impact of reciprocal peer learning with a social robot
on children’s learning and emotive engagement. Comput. Educ. 2020, 150, 103836. [CrossRef]

Van Vugt, H.C.; Hoorn, ].E,; Konijn, E.A.; De Bie Dimitriadou, A. Affective affordances: Improving interface character engagement
through interaction. Int. ]. Hum. Comput. Stud. 2006, 64, 874-888. [CrossRef]

Onyeulo, E.B.; Gandhi, V. What makes a social robot good at interacting with humans? Information 2020, 11, 43. [CrossRef]
Beckmann, E.; Minnaert, A. Non-cognitive characteristics of gifted students with learning disabilities: An in-depth systematic
review. Front. Psychol. 2018, 9, 504. [CrossRef]

Serholt, S.; Barendregt, W. Robots tutoring children: Longitudinal evaluation of social engagement in child-robot interaction.
In Proceedings of the 9th Nordic Conference on Human-Computer Interaction (NordiCHI “16), Gothenburg, Sweden, 23-27
October 2016; pp. 1-10. [CrossRef]

Imai, M.; Ono, T.; Ishiguro, H. Physical relation and expression: Joint attention for human-robot interaction. In Proceedings of
the 10th IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat. No.01TH8591),
Bordeaux, Paris, France, 18-21 September 2001; Volume 50, pp. 636-643. [CrossRef]

Mutlu, B.; Forlizzi, J.; Hodgins, J. A storytelling robot: Modeling and evaluation of human-like gaze behavior. In Proceedings of
the 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 4-6 December 2006; pp. 518-523. [CrossRef]
Mader, J. How Teacher Training Hinders Special-Needs Students. The Atlantic Daily. Available online: www.theatlantic.com/
education/archive/2017/03 /how-teacher-training-hinders-special-needs-students /518286 / (accessed on 3 March 2017).

Lee, F; Yeung, A ; Tracey, D.; Barker, K. Inclusion of children with special needs in early childhood education. Top. Early Child.
Spec. Educ. 2015, 35, 79-88. [CrossRef]


http://doi.org/10.3389/fnhum.2017.00295
http://doi.org/10.1007/978-3-030-35888-4_56
http://doi.org/10.1145/2696454.2696457
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8630584
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8630584
http://doi.org/10.1109/WCICA.2018.8630584
http://doi.org/10.1016/j.compedu.2016.04.002
http://doi.org/10.3233/JAI-2011-020
http://doi.org/10.1002/9781119011071.iemp0317
http://doi.org/10.1109/TCDS.2016.2594134
http://doi.org/10.1007/s12369-015-0311-1
http://doi.org/10.1145/2559636.2559678
http://doi.org/10.1007/s12369-010-0056-9
http://doi.org/10.1007/s12369-015-0301-3
http://doi.org/10.1016/j.intcom.2006.08.005
http://doi.org/10.1002/9781118783764.wbieme0071
http://doi.org/10.1016/j.compedu.2020.103836
http://doi.org/10.1016/j.ijhcs.2006.04.008
http://doi.org/10.3390/info11010043
http://doi.org/10.3389/fpsyg.2018.00504
http://doi.org/10.1145/2971485.2971536
http://doi.org/10.1109/roman.2001.981955
http://doi.org/10.1109/ichr.2006.321322
www.theatlantic.com/education/archive/2017/03/how-teacher-training-hinders-special-needs-students/518286/
www.theatlantic.com/education/archive/2017/03/how-teacher-training-hinders-special-needs-students/518286/
http://doi.org/10.1177/0271121414566014

Robotics 2021, 10, 16 24 of 24

50.

51.

Leyzberg, D.; Spaulding, S.; Toneva, M.; Scassellati, B. The physical presence of a robot tutor increases cognitive learning gains.
In Proceedings of the Annual Meeting of the Cognitive Science Society, Sapporo, Japan, 1-4 August 2012; Volume 34,
pp. 1882-1887. Available online: https:/ /escholarship.org/uc/item/7ck0p200 (accessed on 17 June 2020).

Smakman, M.; Konijn, E.A. Robot tutors: Welcome or ethically questionable? In Robotics in Education, Advances in Intelligent
Systems and Computing (AISC), 1023; Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R., Obdrzalek, D., Eds.; Springer:
Cham, Switzerland, 2020; pp. 376-386. [CrossRef]


https://escholarship.org/uc/item/7ck0p200
http://doi.org/10.1007/978-3-030-26945-6_34

	Introduction 
	Materials and Methods 
	Participants and Design 
	Procedure 
	Apparatus and Materials 
	Measures 

	Results 
	Preliminary Analyses 
	Learning Effects 
	Summary of Findings for Learning 
	Experience 
	Summary of Findings for Experience 

	Discussion and Conclusions 
	
	References

