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Abstract: Unintentional vascular damage can result from a surgical instrument’s abrupt movements
during minimally invasive surgery (laparoscopic or robotic). A novel real-time image processing
algorithm based on local entropy is proposed that can detect abrupt movements of surgical instru-
ments and predict bleeding occurrence. The uniform nature of the texture of surgical tools is utilized
to segment the tools from the background. By comparing changes in entropy over time, the algo-
rithm determines when the surgical instruments are moved abruptly. We tested the algorithm using
17 videos of minimally invasive surgery, 11 of which had tool-induced bleeding. Our preliminary
testing shows that the algorithm is 88% accurate and 90% precise in predicting bleeding. The average
advance warning time for the 11 videos is 0.662 s, with the standard deviation being 0.427 s. The
proposed approach has the potential to eventually lead to a surgical early warning system or even
proactively attenuate tool movement (for robotic surgery) to avoid dangerous surgical outcomes.

Keywords: minimally invasive surgery; bleeding prediction; abrupt tool movement detection;
entropy; segmentation; computer vision; image processing

1. Introduction

Adverse events leading to potentially preventable harm to patients prolong hospital
stays and increase healthcare costs [1,2]. Many of the adverse events in the hospital setting
are associated with surgery [1]. Many factors can create safety concerns during minimally
invasive surgery. One of the primary sources of human errors in minimally invasive
surgery is associated with the accidental movements of surgical tools. In robotic surgery,
the surgeon operates in a master–slave mode and controls the robot’s arms using hand
controllers [1,3]. Unlike open surgery, robotic and laparoscopic surgery lack full haptic
feedback and depth information. This indirect and haptically disconnected form of surgery
(via small surgical ports) can lead to unintended or dangerous and abrupt movements of
instruments. In addition, sometimes it is difficult to accurately adjust the level of force
acting on the steering arms. This lack of control can lead to sudden movements of the
surgical instruments. Risky movement of surgical instruments near to critical tissues can
result in unexpected bleeding and tissue damage during surgery. This has motivated us
to create a warning system to alert surgeons about risky movements for both robotic and
laparoscopic surgery. We view this as an important step towards a visually intelligent
surgical assistant that will mitigate the risks associated with surgery.

Spontaneous bleeding and tissue damage can be prevented by linking the risky
movement of surgical instruments as part of a routine procedure (excluding suturing,
which requires rapid movement of tools) with the potential for unexpected bleeding and
tissue damage. This information can help surgeons to reduce risky movements of the
surgical tools. Currently, there are no systems that can provide the surgeon with real-time
information about how he or she is using surgical instruments.
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Current surgical practice and the commercial market are focused on managing compli-
cations caused by human factors and improper use of instruments (such as tissue damage or
alteration) after they occur. With this approach, potentially life-threatening situations can-
not be proactively avoided and can lead to higher costs for the health care system. Instead,
our proposed system uses images and algorithms to prevent unsafe movements before
damage occurs. Although simple motion tremor filtering is available on clinical robotic sys-
tems, as far as we know, there are currently no methods that can help the surgeon to avoid
and mitigate risky movements (e.g., that may lead to bleeding) of surgical instruments.

Evaluating the skill of the surgeon has the potential to be used in real-time. There is an
increased interest in creating quantitative methods for the evaluation of surgical skills. Re-
cently, new prospects for objective and automated evaluation systems have emerged with
technical advancements such as robotic-assisted minimally invasive surgery (RMIS) [2].
With the advent of new technologies such as robotic surgical systems and medical simula-
tors, researchers have developed tools for analyzing surgical movements to differentiate
surgeons’ level of technical skill [4]. Most approaches to tracking surgical movements fall
into one of three methods: (1) structured classification of people, (2) descriptive statistics,
or (3) statistical language modeling of surgical movement [4]. In general, the techniques
currently used to control the movement of surgical instruments include measuring the
surgeon’s kinematics and hand strength [5,6] and virtual and physical simulators [7,8]. Our
approach uses available videos of undesirable events (bleeding in our case) to determine
and predict the tool movements that may have caused this event.

Skills analysis creates descriptive statistics using recorded system movements or
forces acting on the operating environment. Standard metrics include instrument kine-
matics [9,10], the economy of motion, maximum forces and torques [6,11], tissue damage,
repetition of movement, and path following [9,12–15]. Most systems also use time metrics
such as completion time or time spent in various surgical workspaces [16–18].

Researchers are also building competency analysis models that apply hidden Markov
models (HMM) to simulate routes and predict skill levels [19]. In this paper, the instrument
tip movement was monitored with a Polaris six-DOF infrared tracker while performing
a minimally invasive surgery view rotation task. In their work, Nagy and her colleagues
tried to recognize gestures using optical character recognition and HMM in a technique
called demo programming [20]. By analyzing specialists who perform a task several
times, the system calculates the optimal path from these demonstrations. The University
of Washington performed hierarchical problem decomposition [16]. Another approach
to automatic motion detection is the HMM-support vector machine hybrid model for
segmenting the control task into a wedge inside and outside the network [21]. A hybrid
classifier was used to segment the capture task using force and torque data in four states.

The Imperial College Surgical Assessment Device uses an A.C. electromagnetic sys-
tem with passive receivers connected to the back of the arm at the middle axis of the
third metacarpal bone [22]. When the hand moves, a current is generated in the trackers.
This current is used to determine the position of the hand/translator. Forester et al. em-
ployed continuous kinematic data decomposition into a series of superimposed gestures
represented by strings (a bag of words). They measured comparative numerical statistics, al-
lowing them to detect discriminatory gestures by their relative frequency of occurrence [23].
Based on the SAX-VSM algorithm, the proposed approach treats the surgical movement
as a continuous multidimensional time series. It begins with sampling the data into a
sequence of letters (i.e., strings) using the symbolic aggregate (SAX) approach. In turn, SAX
sequences are split into several consecutive letters through a sliding window. The relative
frequencies of these subsequences, i.e., the number of cases in a particular sequence or set
of sequences, are then used to identify discriminatory patterns that characterize a specific
surgical movement.

Several promising new areas of research have emerged for tool tracking, including
tracking methods for devices with visible, color-coded markers based on crosshairs [24]
and patterns of appearance [25]. Speidel et al. proposed a computer vision approach for
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instrument screening in minimally invasive surgery based on endoscopic sequences [26].
In the proposed method, the instruments were not modified, and the validation was
performed on the sequences obtained during the actual intervention. The paths generated
by the tools provide information that can then be used to interpret surgical gestures.

A recent review paper [26] compared computer vision approaches for tool segmenta-
tion. Most of these techniques are based on utilizing the video frame’s textural features
to identify the surgical tools within the surgical scene. Different approaches were com-
pared in that paper for performing texture analysis, including the transform methods,
model-based methods, statistical techniques, and structural methods. In the common
types of transform methods, the image’s texture properties are extracted based on the
Fourier [27], Gabor [28], or Wavelet transforms [29]. In model-based approaches, sophisti-
cated mathematical models (such as fractal or stochastic models) represent the texture in
an image [26]. The statistical methods are based on representations of texture employing
properties driving the distribution and dependency of grey-level values in the image [30].

In [31,32], the authors reviewed several different bleeding detection approaches, in-
cluding color techniques, texture techniques, pixel-level analysis, contour extraction, edge
detection, and segmentation. The complexity of these algorithms makes them usable only
for static non-real-time analysis. These techniques were only applied to capsule endoscopy.
Most of these techniques are computationally very expensive and cannot be employed
simultaneously for both tool and bleed detection. Our entropy-based segmentation tech-
nique [32] builds on the structural methods where mathematical morphology is utilized as
the core tool for analysis [30]. This method is computationally efficient and can simulta-
neously be used for both tool detection and bleeding detection/prediction. The detection
algorithm is also not dependent on the color or distinct markers on the tool for segmenting
and tracking the tool. This method makes it more resilient to lighting conditions.

There are different morphological methods proposed to extract texture features from
an image. For simple segmentation of an image into textured and non-textured regions,
Dinstein et al. suggested using the difference between maximum and minimum intensities
in a pixel neighborhood [33]. Karu et al. also suggested a similar concept of counting the
number of local extremes (texture primitives) to identify texture regions [34]. Since this
method does not consider the contrast of texture primitives, it can be susceptible to noise.
Other approaches use standard deviation to characterize the smoothness of textures [35].
A local binary patterns approach was developed as a texture extraction technique by
Ojala et al. They proposed adding a descriptor based on variation for texture classification
purposes [36]. In [37], they proposed an amplitude modulation function that can capture
texture contrast locally. Although each of the above techniques can be used to discern
between textured and non-texture areas, individual characteristics cannot be differentiated
from the texture information.

Several feature extractors were suggested to allow texture characteristics to be differ-
entiated. Verbeek et al. proposed a method that uses the difference between the closing and
opening of textured regions to differentiate individual step and ramp edges from texture
edges [38]. A common drawback of these types of techniques is that they extend or blur
the boundaries of texture regions, thereby preventing accurate localization of the edges of
the texture. Zingman et al. introduced a morphological texture contrast descriptor that
does not suffer from the above disadvantages [39].

Our paper proposes a new approach to detecting a surgical instrument’s sharp move-
ment during surgery based on local entropy. Here, the ultimate goal is to detect the abrupt
movement in surgical tools. This is performed through deriving the kinematic information
of the instrument by analyzing the video data of the surgery. Our algorithm tracks surgical
instruments by detecting a homogeneous area formed by surgical instruments, calculates
the dynamics of these areas as a classification parameter for detecting sudden movements
of surgical instruments, and uses it as a prediction parameter to predict bleeding due to the
adverse movement of surgical instruments. Measuring the homogeneity of different areas
of a video frame is the core function of our algorithm and is based on entropy. The entropy
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filter is a morphological technique used to create and render the texture distribution of
images. Morphological methods modify each pixel in the image based on the value of
other pixels in its neighborhood. Morphological methods rely only on the relative ordering
of pixel values, not on their numerical values. As a result, the morphological methodology
is more robust to noise than traditional differential methods [40]. Detection accuracy is also
improved by using the information in different frames. Here, we present the design of the
algorithm as well as the method used to evaluate its accuracy.

2. Materials and Methods

In this paper, we developed an entropy-based real-time texture segmentation algo-
rithm for monitoring and extracting the uniform texture of a surgical scene in order to
analyze the surgical tools’ movement and potentially warn the surgeons about abrupt
movements that may lead to unintentional bleeding during the surgery. The algorithm
measures the local entropy of the video image [32]. Local entropy is used as a quantitative
parameter to determine the uniformity of the sub-section of an image and measures unifor-
mity near each pixel. It is calculated using Shannon’s entropy [41]. Any video captured
from a video camera (controlled by a robot or a human) can be used with this prediction
algorithm. In general, the surgical instrument’s texture tends to be uniform and forms a
more uniform visual area in the surgical scene than the surrounding tissue. This distinctive
factor is used in this article to segment the surgical scene according to the homogeneity of
different regions. It tracks the change in entropy over time to detect sudden movements
of surgical instruments and their location in the 2D surgical video. The inputs for this
algorithm are video frames from the surgical scene. The output is the video frame number
in which there is a sudden movement of the surgical instrument within a video segment
that may lead to future bleeding. The algorithm tracks the scene of the operation, detects
sudden movement of surgical instruments, and finds and flags instruments exhibiting
sudden movements that could lead to bleeding based on past observation of these types
of events.

2.1. Entropy-Based Algorithm

The algorithm consists of the following six steps:

Step 1: First, a new frame is read from the surgical video source and converted from RGB to
grayscale to remove the hue and saturation components while preserving the light element.
Step 2: A two-dimensional K × K moving window is applied to the grayscale image. The
entropy of the local image in the window is calculated to generate an entropy map of this
frame in grayscale.
Step 3: The grayscale entropy map is binarized by giving a zero value (black) to heteroge-
neous areas.
Step 4: The original RGB video frame is segmented by masking it with a binary image to
highlight uniform color areas.
Step 5: Then, this masked RGB image is binarized by employing Otsu thresholding [42].
Step 6: After differentiating between heterogenous and homogenous regions through
thresholding, the relative changes in the number of white pixels among certain numbers of
consecutive binarized masked RGB images are computed.

The total number of white pixels in the current frame is determined and compared
to the previous frame. This information is used to locate surgical instruments and derive
kinematic characteristics (such as speed, acceleration, and jerk) of non-red homogeneous
areas. Here, speed means a change in the number of non-red pixels in two successive
frames. Acceleration is defined as a change in speed, and the jerk is defined as a change in
acceleration. The increase in the number of white pixels in this binarized image correlates
with lower entropy areas belonging to surgical tools. After tracking the surgical instruments
using local entropy, the jerk of non-red areas is used to detect the abrupt movement of the
surgical instruments, which can cause bleeding. If this jitter change exceeds a specified
threshold, the frame is marked as “abrupt”.
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Figure 1 shows a masked RGB image generated by our surgical scene software in
recorded video and the entropy change resulting from surgical motion in two consecutive
frames. As you can see, the amount of non-red inside the surgical frame increased due to
the change in the position of the surgical instrument. The right-hand side images show
the areas where the surgical instrument is present. It should be mentioned that during
surgery, various types of bleeding can be encountered which may be different from the
type of bleeding that is demonstrated in Figure 1. The basis of the prediction algorithm
relies on the segmentation of the bloody regions and tools in each frame based on setting a
range of red and non-red pixels. Different bleeding detection algorithms were covered in
our previous paper [32].
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Figure 1. The figure depicts the change in the binarized entropy map due to the movement of
the surgical instrument. The surgical instruments including the surgical robotic arm located at the
right-hand side of the scene and the black arm is the suctioning tool.

The entropy map consists of three types of areas: homogeneous areas formed by
surgical instruments, blood spots (during bleeding), and heterogeneous (non-uniform)
areas due to the textured nature of human internal tissues. The entropy filter assigns the
highest grayscale value—255 (white)—to these heterogeneous areas (belonging to tissues),
and assigns the lowest grayscale values to the homogeneous regions. The RGB masked
frame includes three groups of pixels: black pixels, which are textured tissue; red pixels,
which represent areas of blood; and non-red pixels that belong to homogeneous regions
formed by the presence of surgical instruments. This lower entropy is delineated and
placed in the video frame that precedes the first dynamic frame for rendering [32].

In our algorithm, we use local entropy to quantify and represent the uniformity of
small areas within each frame. More specifically, for a square region of K pixels by K pixels,
Ψr, its local entropy, LE(Ψr), is defined by [43]:

LE(Ψr) =
K

∑
i=0

K

∑
j=0

pij log2

(
pij

)
, (1)

where pij is the standard number of pixel intensities [i,j] in the local K × K histogram of
this frame. The entropy map is presented as a grayscale image with higher intensity for
less uniform areas (with more information) and lower intensity for more uniform areas
(with less encoded information).
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Local entropy can be used to estimate the degree of greyness in a histogram. This local
entropy is associated with the variation shown in the K × K window and represents one of
the textural features of the tissue. The local entropy map calculation leads to an entropy
map for each video frame. The entropy map of the generated image is a greyscale on which
different areas of the video frame are displayed, with different degrees of homogeneity. In
the context of screening for surgical instruments, regions where surgical instruments are
available will experience lower values of local entropy. This is because the area covered by
the tool is more uniform due to its uniform texture.

2.2. Deriving the Dynamics of Surgical Tools

In general, it can be observed that the regions of the surgical scene that include tissues
have a higher degree of variety. They are less uniform than the bloody areas and surgical
instruments areas. This is due to the textured nature of tissues. The other type of site
with less uniformity is the boundaries between organs and/or kinds of tissues. The local
entropy of pixels of these regions is higher. These non-uniform areas can be masked out
utilizing Otsu thresholding [42]. In the case of more uniform organs such as the liver and
heart, although they have lower entropy, they can be distinguished from uniform areas
formed by surgical tools based on their color. The uniform areas that belong to the tools
can be extracted through this distinction.

This idea was used to monitor surgical instruments and analyze their dynamics dur-
ing surgery as follows. First, we calculated the local entropy of each frame, which is the
grayscale image. Then we masked the original video frame with a binary entropy map
that extracts uniform areas from the original RGB frame and darkens them; heterogeneous
regions belong to the patient’s tissues. This is called a masked RGB frame. Areas with
non-red pixels inside an RGB masked frame were used to localize the tool. The temporal
variation of the number of non-red pixels in this masked RGB frame was used to char-
acterize the kinematics of these uniform non-red areas, and especially to compute their
dynamics. The speed of a non-red homogeneous region, vΨNR , which is the change in the
area of non-red pixels and the movement of centroid of the largest uniform region in two
consecutive frames over time, is formulated as follows:

vΨNR = LH[ΨNR, n] − LH[ΨNR, n− 1], (2)

aΨNR= vΨNR [n]− vΨNR [n− 1], (3)

jΨNR
= aΨNR [n]− aΨNR [n− 1], (4)

where aΨNR is the acceleration of uniform region ΨNR, jΨNR
is the jerk of uniform region

ΨNR, and LH[ΨNR, n] is the local entropy of the region ΨNR in frame n.
To analyze the movements of surgical tools in real time, our algorithm monitors the

change in the entropy map distribution. It watches the local entropy maps of the previous
stage for each frame over a certain period. Regions with a high degree of homogeneity
were found on the local entropy map. For quantitative purposes, we binarized the entropy
map by employing Otsu thresholding [42]. Then we computed the change in the number
of non-zero (non-black) pixels to measure the change in uniform areas.

An important aspect of this stage of the algorithm is determining the threshold and
evaluating the level of change in uniformity of non-red areas by calculating the rate of
change in non-red pixels in two consecutive frames. Comparing the gross time entropy
of two successive frames can lead to high sensitivity to small changes in local uniformity.
That causes large fluctuations in the relative change in the number of non-red pixels and
low robustness when detecting sudden false movements of surgical instruments. For
this purpose, our algorithm uses a moving average low pass filter with window size as a
function of the human response time, usually 0.25 s (algorithm parameter). This method is
used to smooth the relative change in several previous frames preceding the current frame.
The threshold for detecting sudden movements of surgical instruments in calculating the
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entropy of time is proportional to the ratio between the image size and the size of the
neighborhood used to generate the entropy map:

TETh = α× w× h
AL

, (5)

where TETh is the threshold of relative change in the number of red pixels, w is the width
of the input image, h is the height of the image, and AL is the window area used for
computing the local entropy. α is a coefficient whose value is empirically determined
through running the algorithm over a certain number of videos.

Based on our observation of recorded surgical videos, the sudden movement of
surgical instruments precedes unexpected bleeding in many cases. The detection and
localization of sudden movements of surgical instruments are based on the number of
non-red pixels in the RGB masked frame using global thresholding [44]. Once a sudden
motion is detected over several frames, the system can alert the surgeon of impending
dangerous movements associated with the occurrence of bleeding. The warning is based
on the correlation we found between the improper movement of the surgical instruments
and the formation of bleeding.

2.3. Tuning of Parameters in the Algorithm

Several parameters must be selected for the algorithm to work correctly. These are
detailed below. We obtained sample values for these parameters from a dataset of five
test videos, but these must be tuned for a specific application. We tested various sets of
parameters and selected those that minimized the algorithm’s bleeding prediction error.

First, the appropriate window size for computing local entropy (i.e., K × K) must be
selected, which is typically between 7 × 7 and 15 × 15 pixels [45]. Due to the small size
of the features in arterial bleeding, we chose a window size of 9 × 9 for this application.
Second, the coefficient α in Equation (5) is an empirical coefficient that can be derived from
a training dataset. For our five training video datasets, we found that a value of 0.01 for
α worked well. This value meant that if the relative increase in the number of red pixels
between two consecutive frames was more than one percent of the total number of pixels
within the frame, our algorithm recognized it as a bleeding frame.

Third, the size of the low pass window of the moving median filter was selected. This
filter can reduce the chance of false positives when bleeding is detected. We used a value
of 3, which meant we compared the relative change in the number of red pixels with the
average of the last three samples.

2.4. Data Collection for Algorithm Evaluation

We obtained the recorded videos for testing our algorithm from open sources on the
Internet, including the U.S. National Library of Medicine [46] (video links are available
upon request). The videos showed various surgical procedures, such as midline lobectomy,
right superior line lobectomy, thoracotomy, thoracoscopic lung surgery, and prostatectomy.
Each video showed splash-like bleeding. The significant and inappropriate movement
of surgical instruments and additional force on vascular surfaces [30] caused bleeding.
Although the reasons for the significant and insignificant movement of surgical instruments
are not explained in all these videos and cannot be determined on examination, they are
useful for our development of algorithms for the detection and prediction of bleeding.
Table 1 provides information on the videos.

Podsendkowski et al. categorized surgical instrument movement into two major types:
non-repetitive movements and repetitive movements [47]. Non-repetitive movements
include movements associated with pulling or pushing tissue, grasping and moving
tissue, and the motion of cutting with electrocautery devices. Repetitive movements
include suturing movements, incision movements, and knot-tying movement. To validate
our algorithm, we used 22 recorded videos of minimally invasive surgery (MIS) (5 for
parameter tuning and 17 for testing). All 22 videos included some of the above-mentioned
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movements. We used five videos to tune the parameters of our algorithm. Three of them
contain non-repetitive movements, whereas the other two contain repetitive movements.
Table 1 summarizes the properties of 17 testing video sets.

Table 1. Information about our testing video sets.

Video # Duration
(Seconds)

Frame
Per Second

Resolution
(pixels × pix)

Bleeding Onset
Time (Frame)

1 20.05 60 1280 × 720 230
2 25.12 25 604 × 416 237
3 18.12 25 640 × 480 335
4 32.23 25 1280 × 720 227
5 16.22 25 1280 × 720 94
6 15.22 25 1280 × 720 164
7 25.11 25 1280 × 720 244
8 32.12 25 1280 × 720 479
9 28.14 25 1280 × 720 372

10 26.22 25 1280 × 720 294
11 12.01 25 640 × 360 219
12 14.05 25 854 × 480 No Bleeding
13 33.22 25 1280 × 720 No Bleeding
14 27.05 25 1280 × 720 No Bleeding
15 18.03 25 1280 × 720 No Bleeding
16 16.24 25 640 × 360 No Bleeding
17 17.19 25 604 × 416 No Bleeding

We use the video editing application Adobe After Effects 2020 (Adobe Inc., San
Jose, CA, USA) to manually view the video frames. Our algorithm was implemented in
MATLAB R2019b (MathWorks Inc., Natick, MA, USA). To run the algorithm, we used a
2016 MacBook Pro (Apple Inc., Cupertino, CA, USA) with a 2.8 GHz quad-core Intel Core
i7 processor and 16 GHz DDR3 random access memory clocked at 1600 MHz.

In every recorded video, if a non-red pixel flashes above a certain threshold, our
algorithm classifies the movement as sharp and issues a warning message. For each video
frame, the movements are classified as safe or dangerous. To test the validity of this
classification, we looked at the video frame-by-frame in After Effect 2020 video editing
software to see if this message precedes actual bleeding. We tested this for two seconds
until no other sudden change occurs in the field of view of the surgical camera. We believe
that two seconds is a reasonable reaction time for the surgeon to take practical precautions
to prevent bleeding. The validity of this classification was confirmed by viewing the
video of the operation to determine if the movement is accompanied by bleeding after a
maximum of two seconds.

2.5. Prediction Timing Evaluation

We also calculated the accuracy of the predicted bleeding time of our algorithm
by measuring the advance warning time, which is the difference between the predicted
bleeding time and the frame of the actual bleeding divided by the video frame rate:

Advance Warning (seconds)
= actual bleeding onset time− predicted bleeding onset time

f rame rate o f video( f rames/second)
(6)

3. Results

We use a confusion matrix to show our results (Table 2). The precision and accuracy
of our algorithm can be computed from it.
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Table 2. Confusion matrix for the results of the 17 testing videos.

Predicted

Non-Bleeding Bleeding

Actual
Non-Bleeding 5 1

Bleeding 1 10

Table 3 summarizes the performance of the classification algorithm.

Table 3. Evaluation results of the 17 testing videos.

Measure Result (%)

True Positive 90
False Positive 16
True Negative 84
False Negative 10

Accuracy 88
Precision 90

For those 10 true positive videos in our test dataset, which are the first 10 videos in
Table 1, we measured the early warning time of our algorithm by calculating the difference
between the actual number of the bleeding frame and our algorithm predicted values
(Table 4). The third column in this table is the actual bleed timestamp, as seen by the user
(found in the After Effects section) in the video processing software, and the third column is
the frame number in which the message was issued, at most two seconds before the actual
bleed timestamp. The last column in this table is the notification time of our algorithm. It
should be noted that if the bleed was predicted more than 2 s ago, it is not counted as a
video segment with risky movement. The average warning time of our algorithm is 0.658 s,
with a standard deviation of 0.432 s. This is a reasonable warning time in comparison to
the reaction time of a human surgeon, which is typically 0.367 s [48,49].

Table 4. Prediction timing results of our algorithm on 10 videos that have tool-induced bleeding.

Video # in Table 1 Bleeding Onset
Frame

Bleeding Prediction
Frame

Advance Warning
(Seconds)

1 230 207 0.38
2 237 228 0.36
3 335 322 0.52
4 227 188 1.56
5 94 65 1.16
6 164 158 0.24
7 244 225 0.76
8 479 468 0.44
9 372 364 0.32
10 294 272 0.88

Average: 0.662
Standard

Deviation: 0.427

As an example, Figure 2 shows graphically the entire process of how our algorithm
computes local entropy change to predict bleeding over time for video number 6 in Table 4.
This figure indicates that the number of white pixels in the binarized masked RGB frame
over time. As can be seen, there are spikes on the jerk, which correspond to the sharp
movement of surgical tools. We used the dynamics of homogenous instrument regions
(their velocity, acceleration, and jerk) to extract information about abrupt movements of
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instruments. The first, second, and third rows of Figure 2 represent the velocity, acceleration,
and jerk of the instrument regions (white pixels in Figure 1). The last row also illustrates
a correlation between the spikes on the jerk graph and the occurrence of bleeding. Note
that the frame number where the bleeding occurs (marked with an X) is preceded by high
jerk values.
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4. Discussion

In this work, we show how measuring local information encoded in each video frame
can be used to calculate spatial and temporal entropy, which can be used to detect sudden
movements of surgical instruments and predict bleeding. We collected and analyzed
22 videos of minimally invasive surgery including various types of instrument move-
ments. We used five videos for parameter identification and 17 videos for testing and
evaluating our algorithm. Some of these movements were sudden and caused bleeding.
The movement of the surgical instrument can be controlled by measuring uniform areas
resulting from the presence of the surgical instrument. The detection of sudden changes
within a surgical scene due to sudden movements of surgical instruments can be detected
by measuring changes in encoded data in different regions of individual video frames.
In addition, since our algorithm tracks and analyses the local change in the entropy of
successive video frames, the algorithm is resistant to uniform noise.

Algorithmic detection of abrupt changes associated with sudden movements of sur-
gical instruments can help the surgeons be aware of abnormal movements and prevent
bleeding related to sudden movements of surgical instruments. This article points to the
possible use of a personal assistant with an intelligent vision to assist the surgeon during
MIS. This detection system can be used to attenuate the movement of the robot tools in the
event of a risky movement, hence, potentially preventing unexpected bleeding. Therefore,
the algorithm can be used to help prevent potentially dangerous bleeding complications
and reduce patient harm.

Some of the limitations of our approach are listed below. First, there are no robust and
open bleeding video databases available. To truly test the algorithm for clinical use, we
need a lot more video frames. Since our algorithm is a computer vision-based technique,
it can only detect bleeding in the camera’s field of view. In addition, lighting can affect
the accuracy of our algorithm. Brightness problems can be solved using additional video
frame pre-processing steps to improve image quality, such as flattening the histogram.
This type of data processing increases computational costs, requiring faster processors
and a possible shift to graphics processing unit (GPU)-based computations. For real-time
imaging, our approach does not account for camera movement. Therefore, we assumed
that the camera must remain relatively motionless during the movement of surgical tools.
This can be corrected by using camera position data from visual simultaneous localization
and mapping (VSLAM) techniques or a robotic kinematic feedback system [50]. In case
the procedure is done robotically, this correction can be performed by extracting kinematic
data provided by the device. Sensor data that indicate forces applied by the tools may
also help prediction algorithms. Potentially, the current draw from the motors of a robotic
system could be used as an indication of applied torque.

In addition, our algorithm’s accuracy is influenced by the size of the neighborhood
window for calculating local entropy and generating an entropy map. A window size that
is too small will result in an inaccurate estimate of the local entropy due to the lack of a
sample, while a window size that is too large will lose local information [51]. Increasing
the window area also affects the computational cost of our algorithm and makes it less
efficient. A mathematical optimization method designed to minimize the computed error
can select an appropriate neighborhood size or other algorithm parameters. In addition,
an automated selection technique will help find different sets of parameters for different
operation types, which may have different optimal parameters. In addition, machine
learning techniques can be used to derive empirical parameters, but this needs a large
amount of data and potentially clinical trials. Camera noise, movement, and surgical
instruments all introduce a certain level of irregularity in each frame, leading to the false
detection of arterial bleeding. In addition, to measure the change in homogeneous areas as
an indicator of sudden movement of surgical instruments, monitoring the movement of
the center of gravity of a homogeneous area and its simultaneous occurrence with jerk and
non-red pixels can be used to increase the accuracy of the algorithm.
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5. Conclusions

In this article, we developed an algorithm to detect sudden movements of surgical
instruments, which is a potential cause of bleeding. Our algorithm supports the analysis
and visualization of surgical instruments within the stream of recorded surgery video
frames. It monitors the change in local entropy between the frames to classify the movement
of surgical instruments as safe or abrupt with the possibility of bleeding. It can be used to
predict bleeding from instrument movement for recorded surgical videos. In addition, we
created a method for measuring the accuracy and precision of our algorithm for different
sets of video signals. Accuracy is measured using a confusion matrix, as it is used as a tool
to evaluate the algorithm’s performance.

The results are promising but still preliminary. There are limitations in the technique,
and many more surgical videos (different procedures, types of bleeding, etc.) are required
to improve the algorithm’s performance. However, with some further work, the algorithm
may be beneficial in clinical applications and is the first step towards a predictive algorithm
that can assist during surgery. As more surgeries are analyzed, tool-induced additional
adverse events can be mitigated using this method. In addition, the algorithm does not
include solutions for clinical scenarios where the abrupt change in the scene is due to an
intentional cut, the release of a tissue held under pressure, or abrupt motion without tissue
contact. Sharp tools can create damage without very abrupt motions. These special cases
can be studied and added as the algorithm evolves. As future work, we intend to create a
bleeding prediction probability-based system that considers the type of tool, the riskiness
of the movement and proximity to critical tissue. This information, in conjunction with the
motion scaling system of the robot, could be used to intelligently attenuate the instruments
and mitigate dangerous outcomes.

6. Patents

A Provisional Patent has been filed by Wayne State University on the subject matter
that is discussed in this paper; Provisional Patent App. on Bleeding Detection: Systems
and Methods for Detecting, Localizing, Assessing, and Visualizing Bleeding in a Surgical
Field, No. 63/082,459 (WSU ID 19-1559).
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