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Abstract: There is considerable interest in multirobot systems capable of performing spatially dis-
tributed, hazardous, and complex tasks as a team leveraging the unique abilities of humans and
automated machines working alongside each other. The limitations of human perception and cogni-
tion affect operators’ ability to integrate information from multiple mobile robots, switch between
their spatial frames of reference, and divide attention among many sensory inputs and command
outputs. Automation is necessary to help the operator manage increasing demands as the num-
ber of robots (and humans) scales up. However, more automation does not necessarily equate
to better performance. A generalized robot confidence model was developed, which transforms
key operator attention indicators to a robot confidence value for each robot to enable the robots’
adaptive behaviors. This model was implemented in a multirobot test platform with the operator
commanding robot trajectories using a computer mouse and an eye tracker providing gaze data used
to estimate dynamic operator attention. The human-attention-based robot confidence model dynami-
cally adapted the behavior of individual robots in response to operator attention. The model was
successfully evaluated to reveal evidence linking average robot confidence to multirobot search task
performance and efficiency. The contributions of this work provide essential steps toward effective
human operation of multiple unmanned vehicles to perform spatially distributed and hazardous
tasks in complex environments for space exploration, defense, homeland security, search and rescue,
and other real-world applications.

Keywords: multirobot; teleoperations; human–robot interfaces; eye tracking; human performance

1. Introduction

Researchers have long sought to enable multiple robots working together as a team [1–10]
to perform distributed tasks such as area exploration, search, and surveillance [11–19] and
complex tasks in hostile conditions such as the assembly of structures in orbit, lunar, and
planetary environments [20–26]. Advances in sensing, computing, and materials may make
fully autonomous multirobot systems possible in certain circumstances. However, many ap-
plications will demand human supervision and intervention to satisfy safety requirements,
overcome technical limitations, or authorize critical actions. Human operators will be
expected to perform tasks such as approving targets and resolving navigational impasses
for manned-unmanned teams with robotic or optionally manned vehicles. Near-term
teams of robots and humans will benefit from the unique advantages of human cognition,
reasoning, ingenuity, and soft skills. Even after significant advances, humans will likely
often retain a vital role as the authority ultimately responsible for safety and operating
within established constraints.

Human interaction with multiple mobile robots involves information from many
sources, multiple frames of reference, and competing tasks. Factors affecting single robot
control via video-based interfaces include restricted fields of view, difficulty ascertaining
orientations of the environment and robot, unnatural and occluded viewpoints, limited
depth information, time delay, and poor video quality [27]. Increasing the number of
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robots multiplies these challenges, with each robot having potentially unique and dynamic
orientations, camera perspectives, and sensory frames of reference. The demands of
multitasking can overload the operator and limit the scalability of human–robot interaction
as the number of robots increases [28–33].

Increasing automation does not necessarily improve performance. Our group’s prior
user study measured search task performance with four robots operated at each of three
levels of autonomy [34,35]. Automation and augmented reality (AR) graphics were in-
tended to allow the participant to focus on higher-level tasks. With a fixed number of
robots, successively higher levels of robot autonomy were expected to improve perfor-
mance. However, the results revealed performance might decrease as autonomy increases
past some threshold. We observed that many operators over-relied on automation and that
operator inattention might have contributed to the unexpected drop in performance.

In this paper, we hypothesize that measuring attention and incorporating it as feedback
in the system can mitigate these factors and improve performance. This work describes a
robot confidence model which varies robot behavior in response to indicators of operator
attention and the results of a user study that demonstrate its utility. The term robot
confidence is used here as a metaphor to describe the mapping of attention-related inputs
to robot behaviors. This research contributes techniques of incorporating operator attention
as feedback to enable effective and efficient control of multiple semiautonomous mobile
robots by a human operator.

2. Background
2.1. Robot Confidence

Concepts related to confidence are often linked to human trust in autonomy and
allocation of control or how a human operator uses available autonomy levels. Operator
confidence typically refers to the self-assurance of a human in their ability to perform a
task or trust in a robot’s ability to function autonomously. Research includes the impact
of transparency and reliability on operator confidence [36]. Models estimating human
self-confidence have been developed for purposes such as automatically choosing between
manual and autonomous control [37].

Research related to robot confidence is typically aimed at altering human trust in
autonomy or allocating control authority. A common objective is convincing the operator
to shift the allocation of control toward autonomy or manual operation as appropriate
to optimize performance. For example, a robot may provide visual feedback indicating
its self-confidence to influence the operator’s trust [38]. Alternatively, a model of robot
confidence might be used to directly distribute authority, such as setting shared-controller
gains to amplify or attenuate inputs from a teleoperator and ultrasonic sensors [39]. Other
research includes a robot expressing its certainty in performing policy learned from a
human teacher [40–42] and modeling a robot’s confidence in a human co-worker [43] or
its ability to predict human actions in a shared environment [44]. A similar concept is
algorithm self-confidence applied, for example, to a visual classification algorithm [45].

Other works have modeled aspects of human cognition enabling robots to self-assess
and adapt their behaviors [46–48]. The authors in [49] proposed an artificial neural network-
based model of emotional metacontrol for modulating sensorimotor processes, and used
intrinsic frustration and boredom to intervene in a visual search task. The authors in [50]
modeled curiosity in an intrinsic motivation system used to maximize a robot’s learning
progress by avoiding unlearnable situations and shifting its attention to situations of
increasing difficulty.

2.2. Human Interaction with Multiple Robots

Automation is necessary for a human operator to effectively control multiple robots.
Research often focuses on how many robots can be operated [31] and methods to do so
efficiently [28,32]. General approaches to address operator overload due to multitasking
include redesigning tasks and interfaces to reduce demands, training operators to develop
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automaticity, improve attention management, and automating tasks and task manage-
ment [51]. Research toward interaction with multiple semiautonomous robots includes
task switching and operator attention allocation [52–54], such as identifying where an
operator should focus and influencing the operator’s behavior accordingly via visual cues
in a graphical user interface [55]. Other work includes determining which aspects of a
given task are most suitable for automation [16], measuring and influencing operator trust
in team autonomy [19], using intelligent agents to help human operators manage a team
of multiple robots [13], and augmented reality interfaces to integrate information from
multiple sources and project it into a view of the real world using a common frame of
reference [35,56,57].

2.3. Understanding the User’s Intent

Dragan et al. [58] address the fundamental problem of teleoperation interfaces being
limited by the inherent indirectness of these systems. The report discusses intelligent
and customizable solutions for the adverse effects of remote operations. They state that
the decision on what assistance must be provided to operators must be contextual and
dependent on the prediction of the user’s intent. Their main recommendation is that a
robot learns specific policies based on examples. Chien, Lin, and Lee [52] proposed a
hidden Markov model (HMM) to examine operator intent, and performed offline HMM
analysis of multirobot interaction queuing mechanisms. Several groups [59–61] (including
our own) have used eye-gaze tracking to determine the user intent for zooming the cam-
era. Eye-gaze data clusters can be used as inputs into a classification algorithm (such as
one based on linear discriminant analysis) to determine the user intent for zooming the
camera. Similarly, [59] uses simultaneous eye-gaze displays of multiple users to show their
mutual intent.

Goldberg and Schryver [60] developed an off-line method for predicting a user’s
intent to change or maintain the zoom (i.e., magnification/reduction) and gave cam-
era zoom control as an example application. Latif, Sherkat, and Lotfi [62,63] proposed
a gaze-based interface to drive a robot and change the on-board camera view. Zhu,
Gedeon, and Taylor [64] developed a gaze-based pan and tilt control that continually
repositioned the camera viewpoint to bring the user’s fixation point to the video screen
center. Kwok et al. [59] applied eye-gaze tracking to allow control of two bimanual surgical
robots by independent operators.

2.4. Eye Tracking for Human–Robot Interaction

Many metrics have been proposed for evaluating the performance of human–robot
teams [53,65,66]. However, operator awareness, intent, and workload are influenced by var-
ious factors linked to task conditions, human perception, and cognition, which make these
challenging to define and measure. Established methods are typically subjective [67–74].
A number of physiological indicators can be observed, including many related to eye
movements that are measurable using non-invasive techniques [69,75,76].

Attention is a cognitive function and thus is difficult to measure directly. Eye track-
ing technology enables physiological measurements linked to various aspects of human
cognition, including attention [77–81]. The role of eye movements and visual attention in
reading, scene perception, visual search, and other information processing has long been
studied [82–85]. Eye gaze describes the point where a person is looking. A fixation is a
relatively stable visual gaze at an area of interest. A saccade is a rapid ballistic movement to
a new area of interest. The detection of fixations and saccades from raw eye movement data
was a principal focus of early work toward eye-tracking for human–computer interaction
(HCI) [60,86–90]. Advances in video-based eye tracking [91,92] and automatic fixation
and saccade detection [93] have inspired applications for human–computer interaction
(HCI) [94,95].

Gaze-directed pointing is the archetype of interactive eye-tracking use cases and
core motivation for fundamental work such as fixation and saccade detection [93]. Overt
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attention directed at a user interface element is a strong indicator of user intent to in-
teract with that element. Spatial input is a highly intuitive use of eye-tracking for in-
teractive systems. Considerable research has been conducted toward gaze-based point-
ing [77–79,82,86,87,94,96]. Interactive applications include hands-free user input for the
disabled [96,97], camera control [60–64,98,99], and automotive applications [100–103]. Tech-
niques have been developed to teleoperate a robot using eye gaze, including an interface
to drive a robot and change the view of an on-board camera [62,63]. The user interface
featured graphical overlays for control elements. Gaze input commands were activated by
either dwell-time or a foot clutch, enabling hands-free teleoperation.

More subtle than gaze-based control, the human eye is a unique window into per-
ception and cognition processes. Eye gaze has been used as a proxy for attention [77–79].
The authors in [80] modeled dynamic operator overload based on the operator’s attention
to a critical situation associated with impending failure. The response time before initial
fixation represented delayed attention. The number of fixations on an object represented
the allocation of attention. Fixation has been applied as a measure of attention allocation
for an online predictive model of operator overload during supervisory control of mul-
tiple unmanned aerial vehicles (UAVs) within a simulation environment [81]. A logistic
regression model, developed to predict vehicle damage when an operator failed to correct
a collision course, was applied to generate real-time alerts. The model was a function of the
delay prior to allocating visual attention to the vehicle, how much attention was diverted
away from the vehicle once attended, and how much time remained before the collision
will occur. Fixation has also been used to measure situation awareness [104,105], operator
fatigue [106], and workload [75,76,107–110].

2.5. Augmented Reality for Human–Robot Interfaces

Human control of multiple mobile robots requires considerable divided attention,
integrating information from many sources, and switching between multiple frames of
reference. Projecting sensed data onto the real-world scene, at the point of observation or
the point being observed, may help alleviate the cognitive burden of mentally integrat-
ing information from various sources. Augmented reality (AR) is the registration and
visual integration of computer-generated graphics and real-world environments [111,112].
Demonstrated techniques include overlaying sensed data onto individual robots via wear-
able head-up display [56] and superimposing arrows on 20 robots to create a gradient
toward a target location [57].

Telerobotic systems very often rely on real-time video from the perspective of or
external to the robot. One challenge of teleoperation is limited visuospatial perspective. AR
techniques such as color-coded orientation cues that visually map controller input axes (on
the joystick hardware) to end effector axes (on the display) can improve telemanipulator
navigation, with significant reductions in trajectory distance, deviations from the ideal
path, and navigation error [113].

AR can also reduce visual search and mental integration demands. During traditional
neuronavigation, a surgeon must mentally transform two-dimensional medical imaging
data into three-dimensional structures and project this information on her or his view
of the patient. Systems for augmented neuronavigation can perform transformations by
computer and display composite video with models of structures of interest projected on
the surgical site, resulting in significantly lower task time and fewer errors [114].

3. Materials and Methods
3.1. Robot Confidence Model

A discrete robot confidence model was developed to dynamically adapt the behavior
of a robot in response to operator attention directed at the robot or its activities. For this
work, robot confidence is a value that increases upon attention to the robot and decreases
over time while the operator does not attend the robot. Figure 1 contains a diagram
summarizing the major elements of the model. Each indicator of operator attention in x
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has a corresponding weight in p which can be used to bias the inputs. The maximum value
u of the weighted inputs is computed to establish the highest estimate of attention given
the inputs. Robot confidence ck at the current timestep k is a function of the maximum
weighted input (u), the confidence at the preceding timestep, and a constant minimum
confidence value. The previous confidence value is decreased by a constant decrement
value before taking the maximum value of these inputs. Similar to the calculation of u, the
maximum value is again taken to yield the highest confidence given all inputs, feedback,
and constraints. The computed confidence value is then used to adapt robot behaviors
according to predefined rules.
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The key features of this model are the aggregation of weighted attention indicators
as a maximum value, a second maximum for the actual confidence value calculation, and
the decremented previous confidence value. It should be noted that confidence at any
given time might exceed the maximum weighted input (u) if the decremented previous
confidence is higher. That is, confidence can only decrease by at most cd, even when
u has a lower value than the decremented confidence (ck−1 − cd). In other words, a
sudden drop in attention does not result in an immediate dramatic reduction in confidence.
Instead, confidence gradually decreases over time. Additionally, note the confidence value
continues decreasing during long periods of inattention but does not drop below the
minimum value cmin.

Figure 1 acknowledges that robot behaviors observed by the operator may influence
attention. Although this could be exploited to create a second feedback loop by, for example,
exercising exaggerated or unexpected motions or flashing visual alerts, our implementation
of the model sought to avoid overtly influencing attention in order to minimize external
factors affecting overall system performance.

For n binary indicators of operator attention in x and corresponding parameters in
p, Equation (3) computes a maximum weighted input u, where p ◦ x is the element-wise
product of x and p. Equation (4) defines robot confidence ck at timestep k, where cd is a
confidence decrement subtracted from the previous confidence value ck−1 and cmin is a
minimum confidence value.

x = [x1 . . . xn] (1)
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p = [p1 . . . pn] (2)

u = max(p ◦ x) = max([p1x1 . . . pnxn]) (3)

ck = max(u, ck−1 − cd, cmin) (4)

Figure 2 illustrates an implementation of the model. The diagram shows how con-
fidence value changes during a notional sequence of inputs. This example has an input
vector x = [x1 x2] with two binary indicators of attention x1, x2 ∈ [0, 1] and two associated
weight parameters p = [p1 p2] = [25 10], a confidence decrement cd = 10, and minimum
value cmin = 0.
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value cmin, and decrement cd.

Starting with initial robot confidence c0 = 0, Figure 2 depicts the following sequence
of events:

1. At timestep 1, Equation (3) with model input x = [0 0] results in a maximum con-
fidence input of u = max([p1x1 p2x2]) = max(25·0, 10·0) = 0. Equation (4) then
yields robot confidence c1 = max(u, c0 − cd, cmin) = max(0, 0− 10, 0) = 0. Here,
we see the maximum value prevents confidence values below cmin.

2. At timestep 2, input x = [1 0] results in u = max(25·1, 10·0) = 25 and robot confi-
dence c2 = max(25, 0− 10, 0) = 25.

3. At timestep 3, input x = [1 1] results in u = max(25·1, 10·1) = 25 and robot confi-
dence c3 = max(25, 25− 10, 0) = 25. Note that multiple instances of the same input
u at consecutive timesteps sustain confidence but do not increase it.

4. At timestep 4, input x = [0 1] results in u = max(25·0, 10·1) = 10 and robot con-
fidence c4 = max(10, 25− 10, 0) = max(10, 15, 0) = 15. Here, we see the new
confidence value is the decremented value (c3 − cd) = 15 because this is still greater
than the weighted sum u.

5. At timestep 5, input x = [0 0] results in u = max(25·0, 10·0) = 0 and robot confidence
c5 = max(0, 15− 10, 0) = 5.

6. At timestep 6, input x = [0 1] results in u = max(25·0, 10·1) = 10 and robot confi-
dence c6 = max(10, 5− 10, 0) = 10. Note that confidence does not increase by the
value of the maximum weighted input (10). Instead, it only increases by 5 to reach a
value of 10.
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This example highlights several key features of the model. First, multiple simultaneous
indicators of attention are not cumulative. The indicator with the highest weighted value
takes precedence. Second, consecutive instances of the same indicator are not cumulative.
Confidence is sustained at the same value until the indicator is no longer present or another
indicator takes precedence. Lastly, confidence decreases at most cd per timestep and never
drops below the floor value cmin. In other words, confidence never decreases by more than
cd even when the inputs would otherwise yield a lower confidence value.

The model uses a maximum-value approach to aggregate indicators of attention
and update the confidence value. The weighted maximum in Equation (3) for input ag-
gregation avoids the problem of multiple indicators influencing confidence more or less
depending on whether they are registered simultaneously. The maximum in Equation (4)
to update the confidence value prevents consecutive indicators from having a cumula-
tive effect, especially for high-frequency indicators such as fixations. Thus, the model
accommodates indicators that might occur simultaneously but at different and potentially
variable frequencies.

For example, the indicators implemented for the user study described later are eye
gaze fixations and direct input commands from the operator. A single fixation duration
could be less than 100 ms, and multiple fixations are likely between operator commands,
which might occur seconds or minutes apart. In addition, multiple fixations are likely
during periods of focused attention, but the number and duration of fixations can vary.
These could be a relatively small number of long fixations or a higher number of short
fixations. Individual operator differences and the design of fixation detection algorithms
also contribute to variability in fixation counts and durations.

3.2. Multirobot Test Platform with Eye Tracking

A multirobot test platform was developed to implement and test the robot confidence
model described above. The platform consisted of four semiautonomous robots in a flat,
unobstructed environment, an operator control station, and a camera mounted above the
operating environment that supplied video to the control station. Figure 3 shows the control
station which the operator used to command and observe the robots. The display showed
video of the test environment with graphics superimposed to provide information about
the robots, tasks, and user input. The user inputted robot trajectories using a computer
mouse (not shown). An ET1000 (The Eye Tribe ApS, Copenhagen, Denmark ) eye tracker
with a reported accuracy of 0.5◦–1◦ was mounted below the display and used to obtain
eye-gaze data at 60 Hz for online estimation of screen coordinates where the operator
directed their attention. Video S1 in the Supplementary Material highlights the robots as
shown by the operator display (0:02), the operator in contact with forehead and chin rests
to stabilize head position and orientation (0:12), and the eye tracker located below the
display (0:24).

Figure 4 summarizes how the test platform was used to implement and test the
confidence model. The eye tracker seen in the left panel (Figure 4a) provided gaze data
which were processed to estimate operator attention directed at specific robots. These data
and direct operator interaction with robots via command input were used to compute a
confidence value for each robot. This value increased in response to attention directed at
a robot and decreased over time while the operator attended to other objects. The center
panel (Figure 4b) shows a visual representation of the confidence value. The platform
could superimpose a light green arc on the robots to communicate confidence values to the
operator; however, this graphic was not employed for the study presented here. The arc
would gradually shorten to indicate decreasing confidence during periods of inattention to
the robot, as depicted in the series of three time-lapsed images from top to bottom within
the panel. The behavior of a robot changed according to its confidence value. A user study
was conducted to measure search task performance and efficiency in relation to confidence
and behavior changes, represented by the right panel (Figure 4c).
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Figure 4. (a) Operator attention on each robot was estimated online using a multirobot test platform
equipped with eye-gaze tracking; (b) Each robot’s confidence value (depicted by the green arc in the
figure for illustrative purposes) increased in response to attention and decreased over time while
the robot operated autonomously and unattended by the operator. The robot’s behavior is adapted
according to its level of confidence; (c) Search task performance and efficiency were measured under
various conditions, and relationships were observed between these measures and robot confidence.
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Figure 5 shows the robots within the test environment (left) and the presentation of
this environment augmented with superimposed graphics via the operator display (right).
The robots were 23 cm (9 in) wide and 25.4 cm (10 in) long. Independently driven rubber
tracks enabled differential steering, including pivot turns (i.e., turning in place). Design
details are available at https://github.com/lucas137/trackedrobot. The AprilTag visual
fiducial system [115,116] was used to estimate the location and orientation of the robots in
the test environment using video frames from the overhead camera. These data were used
to identify operator interactions with specific robots, predict collisions, and superimpose
graphics. A solid black circle was drawn on the robots as a high-contrast background
for additional color-coded graphics, including a smaller solid light gray circle indicating
the robot’s navigation status. The operator defined robot trajectories by inputting one
or more waypoints which the robot automatically maneuvered to visit. The platform
predicted robot collisions based on their trajectories, suspended the motion of robots just
prior to the collision, and changed the color of the robots’ status graphic from light gray
to orange. The robots remained suspended until the operator canceled or redefined one
of the trajectories to resolve the collision. Software-defined obstacles were used to create
navigation constraints. These virtual obstacles were drawn on the operator display as solid
black rectangles. The platform did not allow the operator to input waypoints that would
result in a trajectory crossing an obstacle. A continuous obstacle was placed around the
perimeter of the test environment to prevent the operator from defining trajectories outside
this space.
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Figure 5. The control interface software processed video from a camera mounted above the test
environment (top-left), robot command input from the operator (top-right), and the screen coordinates
of the operator’s gaze point from the eye tracker mounted below the operator display (bottom-right).
The software projected graphics in relation to objects in the test environment, presented the resulting
composite video via the operator display, computed confidence values for each robot based on
operator attention, and issued commands to the robots according to motions requested by the
operator, robot confidence, and behavior rules.

The platform had two trajectory input modes. The operator initiated the primary
input mode by left-clicking a robot and then inputted waypoints by moving the mouse
to each desired waypoint and using a single click to add it to the trajectory. The input
was concluded by double-clicking to add the final waypoint. The robot then immediately
executed the trajectory until it reached the final waypoint, or the operator canceled execu-
tion. The operator could cancel execution by clicking the robot, which stopped all motion
and discarded the remaining unfinished trajectory. A trajectory being inputted could be
discarded prior to execution by right-clicking anywhere on the screen. Inputted trajectories

https://github.com/lucas137/trackedrobot
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were drawn with a thin white line from the robot’s location to its current destination
waypoint and between each subsequent waypoint. This provided the operator a visual
representation of the remaining path during execution. During trajectory input, a thicker
line and a circle at each waypoint were drawn. A light blue circle at the mouse cursor
location indicated the pending waypoint that would be added upon a single or double
click. Invalid pending waypoints were drawn yellow, and a yellow box was drawn around
the obstacle the proposed trajectory would violate.

The second trajectory input mode provided the operator a means to orient the robot
and move in tight quarters. The operator initiated this input by clicking a robot, holding the
mouse button, and dragging the mouse to a destination waypoint. The robot immediately
executed a pivot turn to face the destination and then moved in a straight line until either
the robot reached it or the operator released the mouse button. If the destination was behind
it, the robot pivoted to align its back with the destination and then moved backward to
reach it. Otherwise, the robot pivoted to align its front and moved forward. If the operator
moved the mouse while still holding the mouse button, the destination changed accordingly.
The robot pivoted again as needed to face the new destination before resuming its motion
toward it. As the robot always pivoted first, the operator could reorient the robot at its
current location by picking a destination in the desired direction and releasing the mouse
button when the robot achieved its new orientation but before it started moving toward
the destination.

The robot confidence model was implemented with two indicators of operator atten-
tion (x): operator eye gaze fixations on the robot and operator input commands to the robot.
For both indicators, the weighed maximum parameter value was 240 (i.e., p = [240 240]).
The confidence decrement was cd = 1 and the minimum value cmin = 0. Each robot’s confi-
dence value was updated at approximately 60 Hz, when data samples from the eye tracker
were processed to determine fixations. Operator input was processed at approximately
24 Hz, the test platform video display framerate.

Three robot behavior modes were defined with rules affecting a robot’s velocity
according to its confidence value while operating autonomously:

• Velocity boost;
• Velocity drop;
• Constant velocity (control).

In velocity boost mode, a robot moved faster than the nominal baseline velocity during
periods of high confidence. Similarly, velocity drop mode reduced robot speeds during
periods of low confidence. Robot speed was not affected by confidence in constant velocity
mode, which served as a control for comparing performance in the other modes.

3.3. Experiment

A user study was conducted to measure search task performance and efficiency with
respect to the 3 behavior modes (velocity boost, velocity drop, and constant velocity).
Figure 6 contains a video frame from the control interface with added labels to point out
features of the study. The task was to find multiple targets distributed within the test
environment. The positions of these targets were software-defined, similar to the obstacles
described above, but were hidden until located by the user. A robot “detected” a target
when it was positioned within a configured distance, faced the target within ±45◦, and
had no obstacles between it and the target. As seen at the top of Figure 6, a green line was
drawn to indicate a target detection. The line started at the robot and went through the
target to a point beyond it. The length of this line was constant to avoid revealing the exact
target location.

Video S2 in the Supplementary Material contains annotations noting target detection
(0:07, 0:39, 0:46, 1:17) and target location (1:01, 1:24) events. To localize a target, the user
positioned two robots to detect it, resulting in detection lines intersecting at the target point.
The user then clicked the intersection to get credit for finding the target. This requirement
was designed to simulate a real-world task that must be accomplished using multiple
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robots. A green circle with a light gray border was drawn to indicate a located target (top
of Figure 6). A target could only be located once during the study trial, so this graphic
persisted for the remaining duration of the trial.

The path plan on the left side of Figure 6 shows a robot trajectory inputted by the
user. In addition, small blue circles were drawn to mark the robot’s location at regular time
intervals, as seen on the right side of the figure. These persistent breadcrumbs provided
a history of areas explored in search of targets. Study participants were asked to locate
as many hidden targets as possible during each 5-min trial. A circular light green trial
countdown graphic, seen in the center of Figure 6, shortened until disappearing at the end
of the trial and displayed the number of seconds remaining.
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obstacles, targets, and a countdown timer showing how many seconds remained during a user
study trial.

A within-subjects design was selected to minimize participant-level variations such as
spatial ability [117–119]. Three sets of 11 target locations were used to enable repeated mea-
sures for each robot behavior mode. Targets were randomly selected such that the overall
difficulty of finding targets was roughly equal for all 3 sets. Each participant completed
9 study trials during a single session, 1 trial per combination of robot behavior mode and
target set. Thus, 3 repeated measures for each behavior mode per participant. The pre-
sentation of behaviors and target sets was randomized and presented in counterbalanced
order. Participants were presented with on-screen instructional material, received hands-on
training, and completed self-paced practice exercises to develop proficiency using the test
platform and performing the search task. The platform’s eye tracker was calibrated for
each participant. A smaller number of targets that were easier to find than the 3 study
target sets were used for the training trials to ensure participants would quickly discover
them and gain experience completing the target localization task. In all cases, the number
of discoverable targets was not revealed to participants during the study.

The study collected data for three search task metrics. Search performance was
measured for each trial by recording the ratio of targets detected at least once by any of
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the robots and the ratio of targets located by the study participant. Search efficiency was
computed for each trial by multiplying the ratio of targets located by the average robot
motor speed during the trial. Motor speeds were normalized values ranging from 0 (no
motion) to 1 (maximum speed capable). Thus, all three search task metrics could range
from 0 to 1, with 1 being the best value possible.

3.4. Data Analysis

To understand how the robot behavior modes and other factors were related to
the observed search performance and efficiency, mixed-effects regression models were
constructed to explain the observed data by study trial. Linear mixed-effects models offer
a robust statistic method capable of handling a variety of situations such as unbalanced
data and missing values, and can be extended via generalized linear mixed-effects models
to analyze data with non-normal error distributions [120–124]. Regression analyses were
conducted using R (version 3.6.1) [125]. Linear mixed-effects models were fit by maximum
likelihood using the lmer function of the R package lme4 (version 1.1.21) [126]. The general
form of the R formulas used to specify the models is:

y ~ behavior + confidence + targetset + time + (1|participant) (5)

where behavior is an unordered categorical variable with 3 levels for the robot behavior
modes (velocity boost, velocity drop, constant velocity), confidence is a continuous variable
for average robot confidence value during a given trial, targetset is an unordered categorical
variable with 3 levels identifying which target set was used for the trial, and time is a
continuous variable for time of day in decimal hours.

The explanatory variables for robot behavior mode, confidence value, target set, and
time of day were entered into the model as fixed effects terms. The behavior and confidence
terms were the primary interest, while target set and time of day were included to account
for variations in the data that may be due to these other factors. Both continuous variables,
confidence and time of day, were centered and scaled for model fitting. The model also
included a random effects term with random intercepts by participant to account for
correlation due to repeated measures.

The response variable y is the measure of performance for which the model is fitted.
A total of three models were fitted:

• Ratio of targets detected;
• Ratio of targets located;
• Search task efficiency.

The PBmodcomp function of the pbkrtest package (version 0.4.7) [127] was used to
perform parametric bootstrap model comparisons to test whether each explanatory variable
contributed significantly to the model fit. For each comparison, PBmodcomp compared the
full model with a reduced model which omitted the variable being tested, and reported
the fraction of simulated likelihood ratio test (LRT) values greater than or equal to the
observed LRT value. A total of 30,000 simulations were performed per comparison.

4. Results

Data were collected with 12 healthy volunteers who had normal or corrected-to-
normal vision (three females, nine males; mean age = 28.9, SD = 4.4). Each study session
was approximately 2 h in length, during which all nine study trials were tested with the
same participant, one trial per combination of the within-subject conditions (robot behavior
mode and target set) for a total of 108 samples collected. About 1 h of the session was
spent inducting the participant, conducting practice trials before the study trials, and
receiving feedback from the participant after all trials were completed. The size of the
study was in-part influenced by the two-factor counterbalancing scheme used to balance
both robot behavior and target set, preliminary data collection, and prior studies conducted
by our group.
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Linear mixed-effects models were fitted to explain the observed search task metrics
data while accounting for correlation due to repeated measures with each participant.
Figure 7 shows added variable plots with fitted lines from each mixed-effects model, with
grouping levels for robot behavior mode and target set. Marginal prediction values were
obtained via the predict.merMod function from the lme4 package [126]. The fitted models
have two continuous variables: average robot confidence and time of day. We focused on
confidence as the continuous variable of interest, while holding time at its median value.
Raw confidence values were projected onto the x-axis to show the distribution of data with
respect to fitted values. The y-axes are set to the same scale for comparison.

Robotics 2021, 10, x FOR PEER REVIEW 14 of 21 
 

 

   
(a) (b) (c) 

Figure 7. Fitted lines grouped by robot behavior mode and target set from mixed-effects model fits for: (a) ratio of targets 
detected; (b) ratio of targets located; (c) search task efficiency. 

Parametric bootstrap model comparisons were used to test the contribution of each 
explanatory variable to the fitted mixed-effects models. The test statistic was the ratio of 
simulated likelihood ratio test (LRT) values greater than or equal to the observed LRT 
value. p-values less than 0.05 indicated a model term that contributed significantly to the 
model fit (i.e., removing the term from the model significantly decreased the goodness of 
fit). Table 1 summarizes the model comparison results. No main effect of robot behavior 
mode was found for all three metrics (p ≥ 0.32). In other words, whether and which confi-
dence-based behavior (or the control) was used for a given trial does not help account for 
differences in search performance or efficiency. However, a significant main effect of av-
erage robot confidence was observed for targets detected and located (both p < 0.01) as 
well as search efficiency (p < 0.05). 

Table 1. Performance and efficiency mixed-effects model comparisons. 

Term Targets Detected Targets Located Search Efficiency 
behavior 0.25 p = 0.89 2.26 p = 0.35 2.83 p = 0.32 

confidence 10.53 p = 0.0033 ** 12.66 p = 0.0014 ** 7.32 p = 0.013 * 
target set 0.83 p = 0.68 3.63 p = 0.18 5.48 p = 0.074 

time 2.34 p = 0.18 1.53 p = 0.27 0.060 p = 0.83 
* p < 0.05; ** p < 0.01. 

In addition to these principal results, Table 1 shows results for the target set and time 
terms. Although care was taken to select random target locations such that the target sets 
were of equal difficulty, it is reasonable to expect some variation in the data due to differ-
ences between the sets. Time of day was included as a fixed-effects term to account for 
potential variation due to circadian rhythm (e.g., operator fatigue). However, neither tar-
get set or time contributed significantly to any of the model fits (p ≥ 0.074 and p ≥ 0.18, 
respectively). 

5. Discussion 
This work developed a generalized robot confidence model which transforms multi-

ple indicators of operator attention to a single confidence value which can be used to adapt 
robot behaviors. Specifically, we employed confidence as a metaphor relating indicators 
of operator attention and robot behaviors which respond to these indicators, and observed 
correlations between average confidence and three measures of multirobot search perfor-
mance and efficiency. 

Prior works related to robot confidence have focused on the allocation of control be-
tween human and robot [39], influencing operator behavior [38], or otherwise directly 
communicating the robot’s self-assessed state [40–43]. Other work is aimed at intrinsic 
motivations of the robot [49,50] or understanding of its environment [44]. While our 

Figure 7. Fitted lines grouped by robot behavior mode and target set from mixed-effects model fits for: (a) ratio of targets
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The fitted lines for ratio of targets detected (Figure 7a) exhibit less variation than those
for ratio of targets located (Figure 7b) and search task efficiency (Figure 7c). Predicted
values for target set three (dashed line) reflect somewhat lower performance across all
three metrics, perhaps indicating this set of targets was generally more difficult to find than
the other sets. Taking this into consideration, predictions for targets located and efficiency
are noticeably higher for both velocity boost and velocity drop robot behavior modes
versus the control (constant velocity mode). However, these differences appear similar in
magnitude to those by target set. The slopes of the fitted lines indicate potential positive
relationships observed between average robot confidence by trial and all three measures of
performance. The slopes for targets detected and targets located appear similar, and higher
than search task efficiency.

Parametric bootstrap model comparisons were used to test the contribution of each
explanatory variable to the fitted mixed-effects models. The test statistic was the ratio of
simulated likelihood ratio test (LRT) values greater than or equal to the observed LRT value.
p-values less than 0.05 indicated a model term that contributed significantly to the model fit
(i.e., removing the term from the model significantly decreased the goodness of fit). Table 1
summarizes the model comparison results. No main effect of robot behavior mode was
found for all three metrics (p ≥ 0.32). In other words, whether and which confidence-based
behavior (or the control) was used for a given trial does not help account for differences
in search performance or efficiency. However, a significant main effect of average robot
confidence was observed for targets detected and located (both p < 0.01) as well as search
efficiency (p < 0.05).
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Table 1. Performance and efficiency mixed-effects model comparisons.

Term Targets Detected Targets Located Search Efficiency

behavior 0.25 p = 0.89 2.26 p = 0.35 2.83 p = 0.32
confidence 10.53 p = 0.0033 ** 12.66 p = 0.0014 ** 7.32 p = 0.013 *
target set 0.83 p = 0.68 3.63 p = 0.18 5.48 p = 0.074

time 2.34 p = 0.18 1.53 p = 0.27 0.060 p = 0.83
* p < 0.05; ** p < 0.01.

In addition to these principal results, Table 1 shows results for the target set and
time terms. Although care was taken to select random target locations such that the
target sets were of equal difficulty, it is reasonable to expect some variation in the data
due to differences between the sets. Time of day was included as a fixed-effects term to
account for potential variation due to circadian rhythm (e.g., operator fatigue). However,
neither target set or time contributed significantly to any of the model fits (p ≥ 0.074 and
p ≥ 0.18, respectively).

5. Discussion

This work developed a generalized robot confidence model which transforms mul-
tiple indicators of operator attention to a single confidence value which can be used to
adapt robot behaviors. Specifically, we employed confidence as a metaphor relating indi-
cators of operator attention and robot behaviors which respond to these indicators, and
observed correlations between average confidence and three measures of multirobot search
performance and efficiency.

Prior works related to robot confidence have focused on the allocation of control
between human and robot [39], influencing operator behavior [38], or otherwise directly
communicating the robot’s self-assessed state [40–43]. Other work is aimed at intrinsic
motivations of the robot [49,50] or understanding of its environment [44]. While our model
of confidence could drive overt feedback to the operator or be applied only to internal
processes of the robot, the implementation presented here is directed at minimally intrusive
adjustment of physical behavior to mitigate the challenges of human interaction with
multiple mobile robots. The online application distinguishes this work from others which
estimated operator attention offline [52] or used human eye gaze for training [128].

Our model produces a confidence value for each robot using a weighted-maximum
to aggregate any number of inputs that may exhibit a high degree of variability, such
as eye gaze fixations near a point of interest, along with a decremented previous value
as feedback and a minimum confidence limit. A maximum-value approach was used to
aggregate attention indicators and update the confidence value (see Equations (3) and (4)).
This approach makes selective use of the available information to determine the confidence
value. Future work might explore more sophisticated methods such as artificial neural
networks and learned behaviors [49,50], hidden Markov models (HMMs) [52], and graph
convolution networks [128].

We implemented the proposed robot confidence model using eye gaze fixation and
user input as indicators of attention, along with adaptive behaviors which were automat-
ically selected at threshold levels of confidence. The resulting system assessed operator
attention in real-time to determine the confidence value of each robot and altered robot
behavior accordingly.

We expected the user study to demonstrate improved search task performance and
efficiency when robot velocity increased or decreased in response to high or low robot
confidence, respectively. Parametric bootstrap comparisons of mixed-effects models found
this confidence-based robot behavior was not significant to models explaining the observed
search task metrics. Instead, we found the by-trial average confidence value contributed
significantly to the models. This finding was evidence of positive relationships with all
three metrics: targets detected, targets located, and search efficiency. This result suggests
the confidence value itself has utility as a predictor of task performance and efficiency.
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Future work might incorporate our confidence model as a real-time predictor of search
task outcomes which can be leveraged to improve effective human supervision of multiple
mobile robots in the field or for training. For example, graphics might be superimposed
on a control interface display to communicate robot confidence to the operator to inform
the allocation of resources and decision making. Our implementation centered on robot
velocity. Future work might examine other robot behaviors, including team behaviors,
adapted according to real-time confidence.

We envision a team of robots that will, through both imitation and reinforcement
learning, automatically create robot behavior policies that improve performance. In this
scenario, the human operator would seamlessly (via observation and interaction) adjust
the robot’s confidence based on its performance. When mission objectives or milestones
are reached, the robot will again be rewarded to boost confidence. Additionally, other
factors can be added to attenuate robot behavior which includes signal time delay, signal
corruption, power degradation, or even terrain constraints. Robot behavior policies such as
“stay in pairs” or “move to be in a camera’s field of view” could automatically be learned
and executed. Robot teams pairing with humans would, over time, become more efficient.

Furthermore, if simulation environments with sufficient resolution could be devel-
oped, robot policies under various configurations and conditions could be learned over
many iterations in simulation. Applications include using duplicate robots in controlled
environments for policy training before execution in the field, for example, training with
terrestrial robots to develop policies for planetary exploration.

6. Conclusions

In this paper, we hypothesize that measuring attention and incorporating it as feedback
in the system can mitigate factors affecting the function of multiple semiautonomous robots
and improve performance. We presented a generalized robot confidence model which
transforms key operator attention indicators to a robot confidence value for each robot to
enable the robots’ adaptive behaviors. This model was implemented using operator eye
gaze fixations and command inputs as the attention indicators, and successfully evaluated
to reveal evidence linking average robot confidence to multirobot search task performance
and efficiency. This work provides essential steps toward effective human operation
of multiple unmanned vehicles to perform spatially distributed and hazardous tasks in
complex environments for space exploration, defense, homeland security, search and
rescue, and other real-world applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/robotics10020071/s1, Video S1: Multirobot test platform overview, Video S2: User interface
with annotations noting target detection and target location events.
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