
robotics

Review

Reinforcement Learning for Pick and Place Operations in
Robotics: A Survey

Andrew Lobbezoo * , Yanjun Qian and Hyock-Ju Kwon

����������
�������

Citation: Lobbezoo, A.; Qian, Y.;

Kwon, H.-J. Reinforcement Learning

for Pick and Place Operations in

Robotics: A Survey. Robotics 2021, 10,

105. https://doi.org/10.3390/

robotics10030105

Academic Editors: Giuseppe Carbone

and Alessandro Di Nuovo

Received: 28 July 2021

Accepted: 6 September 2021

Published: 13 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

AI for Manufacturing Laboratory, Department of Mechanical and Mechatronics Engineering, University of
Waterloo, Waterloo, ON N2L 3G1, Canada; y32qian@uwaterloo.ca (Y.Q.); hjkwon@uwaterloo.ca (H.-J.K.)
* Correspondence: ajlobbez@uwaterloo.ca

Abstract: The field of robotics has been rapidly developing in recent years, and the work related to
training robotic agents with reinforcement learning has been a major focus of research. This survey
reviews the application of reinforcement learning for pick-and-place operations, a task that a logistics
robot can be trained to complete without support from a robotics engineer. To introduce this topic, we
first review the fundamentals of reinforcement learning and various methods of policy optimization,
such as value iteration and policy search. Next, factors which have an impact on the pick-and-place
task, such as reward shaping, imitation learning, pose estimation, and simulation environment are
examined. Following the review of the fundamentals and key factors for reinforcement learning,
we present an extensive review of all methods implemented by researchers in the field to date.
The strengths and weaknesses of each method from literature are discussed, and details about the
contribution of each manuscript to the field are reviewed. The concluding critical discussion of the
available literature, and the summary of open problems indicates that experiment validation, model
generalization, and grasp pose selection are topics that require additional research.

Keywords: reinforcement learning; Markov decision process; policy optimization; robotic control;
simulation environment; pose estimation; imitation learning

1. Introduction

Robotic arms have been used in industry for years to automate repetitive, strenuous,
and complex tasks in which speed and precision are critical. The difficulty with the
conventional control of robotic arms is that they require individual programming on a task-
by-task basis with no margin for error. As a result, task programming requires extensive
effort by a robotics engineer or tedious online manipulation by skilled robot operators with
the control pendant [1–3].

1.1. Robotics Background

With traditional robotic control strategies, motion planning is founded on forward
and inverse kinematics. The forward kinematics combine the direct measurement of all
joint orientations with the lengths of linkages connected to the joints to determine the
end-effector position. Similarly, inverse kinematics establish the values of joint positions
required to place the end effector at a new location with a new orientation. The Jacobian
of the forward kinematics and the inverse Jacobian for the inverse kinematics are used to
determine the velocity of the end effector at different points over the motion path [4,5].

Typically, an engineer does not directly develop the code to apply the forward and
inverse kinematics to complete each robotic task. Instead, graphical or text-based program-
ming environments implement interpreters and compilers to translate basic commands or
position controls to the robot in its native language [3,6]. The programming environment is
determined by the interfaces provided by the supplier and the choice between online and
offline programming [7].

Robotics 2021, 10, 105. https://doi.org/10.3390/robotics10030105 https://www.mdpi.com/journal/robotics

https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-5159-277X
https://orcid.org/0000-0003-1354-0391
https://doi.org/10.3390/robotics10030105
https://doi.org/10.3390/robotics10030105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/robotics10030105
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics10030105?type=check_update&version=1

Robotics 2021, 10, 105 2 of 27

Online programming is traditionally used in industry to allow skilled operators to
teach basic motion trajectories and operations to the robot using teach-pendant control
interfaces or manual robotic arm positioning. There are many difficulties associated with
online programming, such as robot downtime, range in pendant interfaces, and lack of
dynamic control to handle changes in the environment. Online programming is only usable
for basic tasks with high repeatability. Reprogramming is required for any minor variances
in the workspace, limiting the applicability for this type of programming [7,8].

Offline programming is the alternative control technique. This approach involves
skilled programmers interacting with graphical program environments and/or text-based
programming languages to develop control strategies for the robotic arm. Offline program-
ming has the advantages of reducing downtime (and the associated downtime cost) and
allowing the implementation of advanced control strategies [3,7,8]. The disadvantages
of offline programming include the requirement for programmers to have experience
with generic or controller specific languages, and/or the graphical model based control
environment selected by the manufacturer [3,7].

Due to the difficulties with both the online and offline approaches, robotic implemen-
tation in small and medium-sized labor-dependent enterprises in industry has been slow.
The earliest forms of electric robotic arms driven with forward and inverse kinematics were
developed in the early 1970s [9]. Nearly 50 years since this development, only 33.96% of
small and medium firms have implemented any form of robotics, a value which is 35.64%
less than large firms (statistic taken in 2015) [10]. Automation improves productivity and
reduces labor costs [10], which puts small and medium-sized enterprises at a significant
disadvantage. The barrier for small companies to incorporate robotics is the high cost of im-
plementing and reprogramming robots and the inability of robots to handle environments
that change dynamically [11].

To reduce difficulty with the implementation of robotics in factory settings, reinforce-
ment learning (RL) is becoming a popular alternative to task-specific programming. The
goal of RL in robotics is to enable the agent (the robotic arm) to complete basic operations
without direct command programming, and to handle changes in the task without requir-
ing reprogramming. The logistics action of pick-and-place is an obvious example of a task
which a robotic agent should be able to perform with RL.

To complete pick-and-place, a robotic arm must select a target object from a cluttered
or isolated location and place the object at a specified position with a particular orientation
(Figure 1) This generic task is applicable for various sorting applications which traditionally
require human labor. Of the papers published on the topic of pick-and-place with RL
(Section 8), implementations differ drastically. To date, no single approach has been
selected as the industry standard.

Robotics 2021, 10, x FOR PEER REVIEW 2 of 28

environment is determined by the interfaces provided by the supplier and the choice be-
tween online and offline programming [7].

Online programming is traditionally used in industry to allow skilled operators to
teach basic motion trajectories and operations to the robot using teach-pendant control
interfaces or manual robotic arm positioning. There are many difficulties associated with
online programming, such as robot downtime, range in pendant interfaces, and lack of
dynamic control to handle changes in the environment. Online programming is only usa-
ble for basic tasks with high repeatability. Reprogramming is required for any minor var-
iances in the workspace, limiting the applicability for this type of programming [7,8].

Offline programming is the alternative control technique. This approach involves
skilled programmers interacting with graphical program environments and/or text-based
programming languages to develop control strategies for the robotic arm. Offline pro-
gramming has the advantages of reducing downtime (and the associated downtime cost)
and allowing the implementation of advanced control strategies [3,7,8]. The disad-
vantages of offline programming include the requirement for programmers to have expe-
rience with generic or controller specific languages, and/or the graphical model based
control environment selected by the manufacturer [3,7].

Due to the difficulties with both the online and offline approaches, robotic imple-
mentation in small and medium-sized labor-dependent enterprises in industry has been
slow. The earliest forms of electric robotic arms driven with forward and inverse kinemat-
ics were developed in the early 1970s [9]. Nearly 50 years since this development, only
33.96% of small and medium firms have implemented any form of robotics, a value which
is 35.64% less than large firms (statistic taken in 2015) [10]. Automation improves produc-
tivity and reduces labor costs [10], which puts small and medium-sized enterprises at a
significant disadvantage. The barrier for small companies to incorporate robotics is the
high cost of implementing and reprogramming robots and the inability of robots to handle
environments that change dynamically [11].

To reduce difficulty with the implementation of robotics in factory settings, reinforce-
ment learning (RL) is becoming a popular alternative to task-specific programming. The
goal of RL in robotics is to enable the agent (the robotic arm) to complete basic operations
without direct command programming, and to handle changes in the task without requir-
ing reprogramming. The logistics action of pick-and-place is an obvious example of a task
which a robotic agent should be able to perform with RL.

To complete pick-and-place, a robotic arm must select a target object from a cluttered
or isolated location and place the object at a specified position with a particular orientation
(Figure 1) This generic task is applicable for various sorting applications which tradition-
ally require human labor. Of the papers published on the topic of pick-and-place with RL
(Section 8), implementations differ drastically. To date, no single approach has been se-
lected as the industry standard.

Figure 1. Pick-and-place of color-coded square blocks with the Franka Emika Panda robot.

Figure 1. Pick-and-place of color-coded square blocks with the Franka Emika Panda robot.

1.2. Related Work

A broad-scale generalized strategy for implementing pick-and-place with RL in
robotics is needed before this technique can be implemented at scale. Mohammed and

Robotics 2021, 10, 105 3 of 27

Chua [12], Liu et al. [13], and Tai et al. [14] have all written review papers focused on RL in
robotics; however, these papers have a broad range of focus in terms of robotic agents used
and the task completed.

1.3. Scope of Review

This survey provides a holistic review of RL in robotics as it relates to the pick-and-
place task. The fundamental formulation of RL is reviewed, and the elements unique to the
robotics application are analyzed in detail. A comprehensive list of papers published on
the topic are presented, and a critical analysis on the state of research is conducted. The
section breakdown is as follows.

Section 2 reviews the fundamental framework for RL, as it can be found in the Markov
decision process. After introducing the framework, this section examines the aspects of
the robotics application that makes the problem difficult to solve. Section 3 discusses the
applicable value function and policy search approaches to policy optimization. The mathe-
matical formulation for each approach is presented and explained. Section 4 investigates
the intuition behind reward shaping and highlight some critical techniques developed in
the past 30 years. Section 5 explains inverse reinforcement learning and its value in deter-
mining complex underlying reward functions. Section 6 explores the intuition behind pose
estimation, discussing both gripper and target object pose. Section 7 assesses the choices for
simulation environment and reviews how this choice affects the end testing accuracy for
robotic pick-and-place. Section 8 performs an extensive audit of the available publications
related to RL pick-and-place, with the goal of providing direction for individuals working
on this problem in the future. Section 9 includes a brief discussion on open problems.

2. RL Formulation

The goal for completing a pick-and-place operation without task-specific program-
ming is to allow the agent to independently perform actions in the environment, then learn
the optimal strategy for its future tasks based on its experiences [15]. The learning process
is analogous to a child learning to walk. A child must first attempt the motions of moving
limbs, rolling over, and crawling, before it can complete the target action of walking. The
child’s behavior is driven by rewards from its environment after the completion of each
task. Positive affirmation from the child’s parents is an example of an environmental
reward which would drive the walking behavior.

2.1. Markov Decision Process

The Markov decision process (MDP) is the underlying formulation for learning with
these reinforcement iterations [15]. The MDP encourages specific behaviors and discour-
ages others by feeding rewards or punishments to the agent based on the agent’s action
in the environment. The agent selects an action based on its policy function for available
actions a ∈ A(s) in each state s ∈ S . In the deterministic case, the same action a is always
taken in state s, and the policy is denoted as π(s). For an agent operating in a stochastic
environment, the policy defines the probabilities of selecting each possible action given
a state. The policy for the stochastic case is denoted as π(a|s) [15]. The primary goal for
RL is to find the optimal policy π∗(a|s). The optimal policy can be found through the
implementation of the value function approach [16] or directly through a policy search
(both discussed further in Section 3) [17].

The goal of the policy function is to optimize the expected return G, the (weighted)
sum of all discounted returns before the final time step. At time step t, the expected return
is expressed as [15].

Gt =
T

∑
k=t+1

γk−t−1Rk (1)

where T is the total time step, Rk is the reward for each step, and γ is the discounting
parameter, a number between 0 and 1, which discounts future rewards. Figure 2 depicts
the standard MDP for a robotic arm.

Robotics 2021, 10, 105 4 of 27

Robotics 2021, 10, x FOR PEER REVIEW 4 of 28

𝐺௧ = 𝛾ି௧ିଵ𝑅்
ୀ௧ାଵ (1)

where 𝑇 is the total time step, 𝑅 is the reward for each step, and 𝛾 is the discounting
parameter, a number between 0 and 1, which discounts future rewards. Figure 2 depicts
the standard MDP for a robotic arm.

Figure 2. Agent-environment interaction in the MDP.

Again, the intuition behind the MDP can be understood with the analogy of a child
learning to crawl. The policy function is analogous to the child’s thought process before
attempting an action. The child’s policy is dependent on the reward it receives for com-
pleting the action and is the most significant factor which drives learning.

2.2. RL for Pick-and-Place in Robotics
RL formulated around the basic MDP appears to be intuitive and straightforward;

however, robotic training has specific nuances. The primary impediments include the
high dimensionality, continuous action space, and extensive training time.

Most robotic arms implement 6 degrees of freedom as this is the minimum freedom
required to reach any position in space at any angle [18]. The freedom of movement makes
the task complex, as all pick-and-place actions require the control of the torque and veloc-
ity of each joint of the agent. Additionally, the robot operates in a complex environment
with a continuous operational space. Rather than having discrete state choices, the agent
in this problem has infinitely many states to explore. The method of limiting the number
of actions and states to a tractable set becomes a choice that affects the training time, test
accuracy, and repeatability [19].

Many RL algorithms have been developed for the application with simple agents and
environments. OpenAI (https://gym.openai.com/, accessed on 15 August 2021) has at-
tempted to standardize the benchmarking environments for RL by creating open access
simulations for testing control strategies. Cartpole is an example of a classic control prob-
lem found on OpenAI, in which the agent can make a command (left or right) and receive
a low dimensional feedback signal (position and angular velocity) [20]. Compared to this
simple benchmark, robotic arm manipulation is foundationally more difficult. The high
dimensionality of robotic arms drives the need for complex reward functions to promote
smooth motions and minimize training time [21]. Even with complex reward functions,

Figure 2. Agent-environment interaction in the MDP.

Again, the intuition behind the MDP can be understood with the analogy of a child
learning to crawl. The policy function is analogous to the child’s thought process before at-
tempting an action. The child’s policy is dependent on the reward it receives for completing
the action and is the most significant factor which drives learning.

2.2. RL for Pick-and-Place in Robotics

RL formulated around the basic MDP appears to be intuitive and straightforward;
however, robotic training has specific nuances. The primary impediments include the high
dimensionality, continuous action space, and extensive training time.

Most robotic arms implement 6 degrees of freedom as this is the minimum freedom
required to reach any position in space at any angle [18]. The freedom of movement makes
the task complex, as all pick-and-place actions require the control of the torque and velocity
of each joint of the agent. Additionally, the robot operates in a complex environment with
a continuous operational space. Rather than having discrete state choices, the agent in
this problem has infinitely many states to explore. The method of limiting the number
of actions and states to a tractable set becomes a choice that affects the training time, test
accuracy, and repeatability [19].

Many RL algorithms have been developed for the application with simple agents
and environments. OpenAI (https://gym.openai.com/, accessed on 15 August 2021) has
attempted to standardize the benchmarking environments for RL by creating open access
simulations for testing control strategies. Cartpole is an example of a classic control problem
found on OpenAI, in which the agent can make a command (left or right) and receive a
low dimensional feedback signal (position and angular velocity) [20]. Compared to this
simple benchmark, robotic arm manipulation is foundationally more difficult. The high
dimensionality of robotic arms drives the need for complex reward functions to promote
smooth motions and minimize training time [21]. Even with complex reward functions,
the type of object picked, and the pose (orientation and position) of the target object affects
the probability of task completion [22].

Due to the high dimensionality and continuous action space, the agent requires exten-
sive training to learn the optimal policy. Online training is costly because of the required
human supervision, robotic wear, danger of damaging the robot, and lack of available
training robots. The costs associated with online training drives the need for simulation
training [16]; however, simulation training often has a low test accuracy. The fundamental
problem with simulation training is that the knowledge trained in the simulation must

https://gym.openai.com/

Robotics 2021, 10, 105 5 of 27

be transferred to the real world. Any inaccuracies in modeling physical parameters such
as shapes and weights of objects handled, lighting, or friction coefficients will cause test
accuracies to be lower than training accuracies [23].

3. Policy Optimization

Finding the optimal policy for a RL problem involves value iteration or policy search.
With both policy optimization techniques, the solution process changes depending on if the
approach is model-based or model-free. Additionally, the exploration-exploitation tradeoff
significantly influences the speed of solution convergence.

The model-based technique implements an understanding of the environment through
prior learning or through state-space search to create an approximation of the transi-
tion probabilities between states given actions p(s′|s, a)) (also commonly formulated as
T(s′|a, s)). The model-free (direct) design has no explicit representation of the system
dynamics. Instead, the model-free technique learns the value function directly from the
rewards received during training [15,24,25]. For RL in robotics, most approaches are model-
free, since creating a perfect model of all transition probabilities in a continuous space
is intractable.

Finding the policy for the agent always involves a tradeoff between searching random
actions to find the optimal policy and greedily selecting the optimal action to improve
rewards. In RL, ε is the variable used to represent the probability of not taking the reward-
maximizing action during exploration [15]. To ensure that the whole action space is
explored, the agent traditionally implements some form of on- or off-policy learning. On-
policy learning improves the current policy marginally by selecting the optimal action
for the majority (1− ε) of actions and selecting a random action with a probability (ε) for
the rest. Off-policy learning applies two policies; the target policy, which is the policy
being learned about, and the behavior policy, which is the policy that drives behavior for
learning [15].

In the following sections, the value function and policy search approaches are ex-
plained, and different search techniques inside each methodology are reviewed [25].

3.1. Value Function Approach

The value function approach is based on dynamic programming (DP). DP is a strategy
of breaking up a complex problem into a sequence of successive sub-problems which can be
iteratively solved. Implementing DP for RL requires an understanding of value functions.

3.1.1. Value Functions

Value functions are founded on the understanding that each state has an associated
value dependent on the reward achieved in that state and that state’s potential to be a step in
achieving future rewards with the agent’s current policy. A reward is often only received in
a specific goal state, so positions proximal to the goal state have the highest value. The value
function is found by breaking down the problem into successive sub-problems following
the sequence of states. The Bellman equations in Equations (2) and (3) are established to
solve for action-value function qπ , and state value function υπ respectively [15].

qπ(s, a) = ∑
s′ ,r

p
(
s′, r
∣∣s, a

)[
r + γυπ

(
s′
)]

(2)

υπ(s) = ∑
a

π(a|s)∑
s′ ,r

p
(
s′, r
∣∣s, a

)[
r + γυπ

(
s′
)]

(3)

In stochastic reinforcement learning, randomness in the system implies that taking
an action a from state s does not always result in the same final state s′. The transition
dynamics (or transition probability) of the environment p(s′, r|s, a) is used to represent the
probability of reaching state s′ and receiving a reward r given that action a is taken in state
s [15]. Using this formulation, the action-value function qπ(s, a) given in Equation (2) can

Robotics 2021, 10, 105 6 of 27

be understood as being equal to the summation of the transition probabilities of reaching
all possible states (s′) multiplied by the value (r + γυπ(s′)) of each possible state (s′).

The state-value function given in Equation (3) can be understood similarly. The pri-
mary difference between the two formulations is that the state-value function (Equation (3))
incorporates action selection. The probability of selecting action a is dependent on the
stochastic policy π(a|s). Based on this understanding, the value of a given state is equal to
the summation over all actions of the probability of selecting a particular action multiplied
by the state value function qπ(s, a).

In reinforcement learning, state- and action-value functions are implemented for
finding the optimal policy with Bellman’s optimality equations. The optimal state value
function υ∗ and optimal action-value function q∗ are found by maximizing the probability
of choosing the actions which lead to states yielding values larger or equal to those from
all other policies [15].

υ∗(s) = max
a∈A(s)

∑
s′ ,r

p
(
s′, r
∣∣s, a

)[
r + γυ∗

(
s′
)]

(4)

q∗(s, a) = ∑
s′ ,r

p
(
s′, r
∣∣s, a

)[
r + γ max

a′
q∗
(
s′, a′

)]
(5)

For finite discrete actions and states, lookup tables can be used to pick appropriate
actions for each state to form the optimal policy. For pick-and-place operations in robotics,
determining Bellman’s optimality equations is difficult because the space of all states is
continuous. Typically the Monte Carlo (MC) or temporal difference (TD) approaches [16]
are used. Both approaches are founded on dynamic programming (DP).

3.1.2. Dynamic Programming

DP is a model-based strategy that creates internal models for transition probabilities
and rewards to calculate the value function. A primary assumption of DP is that the models
perfectly represent reality, which is unrealistic for continuous spaces. Even though it cannot
be directly applied for RL in robotics, DP is the framework for understanding the MC
and TD techniques [15]. DP consists of two fundamental approaches: policy iteration and
value iteration.

Policy iteration is a DP approach that consists of policy evaluation and policy im-
provement subtasks [26]. Policy evaluation is used to update the value of each state based
on the current policy, transition probabilities, and the value of the following states [15].

υk+1(s) = ∑
a

π(a|s)∑
s′ ,r

p
(
s′, r
∣∣s, a

)[
r + γυk

(
s′
)]

(6)

Policy evaluation is completed by calculating the υk(s) (Equation (6)) for all states
with an arbitrarily initiated policy. After an infinite number of exploratory steps (k→ ∞),
the transition probabilities between states given actions p(s′, r|s, a) and the state-values
υk(s) can be determined. Policy improvement then greedily selects the best action that
can be taken in each state based on these newly found transition probabilities and state
values [15,16]. Policy improvement is solved by implementing qπ(s, a) as shown [15]

π′(s) .
= argmax

a
qπ(s, a) (7)

where argmax over actions involves taking the action which maximizes the value for
each state. The new choice of action indicates the agent’s policy in the next round of
policy iteration. The process of policy iteration in DP consists of iterating between policy
evaluation and policy improvement until the policy stops changing. At this point, the
policy is assumed to be optimal [26].

Robotics 2021, 10, 105 7 of 27

Value iteration is an alternative to policy iteration, which can be used effectively by
combining policy evaluation and improvement into one step. Value iteration is formulated
as [15]

υk+1(s)
.
= max

a ∑
s′ ,r

p
(
s′, r
∣∣s, a

)[
r + γυk

(
s′
)]

(8)

with this formulation, the policy evaluation step is stopped after one iteration, and the
policy for each state can be updated dynamically.

3.1.3. Model-Free Techniques

Techniques that are not model based can incorporate the DP strategy by using sample
transitions and rewards to learn approximate value functions. Learning the value functions
without complete probability distributions for all transitions requires exploration to ensure
all states are visited, and non-greedy policies are investigated.

The Monte Carlo (MC) averaging returns approach is a model-free technique that
requires no prior knowledge. The model only requires experience through interaction with
the environment. MC completes various actions in each state, and the average returns for
each action are used as the expected action reward. After many iterations, the solution will
converge to the actual underlying value for each action [16].

MC approaches implement a combined on- and off-policy technique. The state values
for MC are determined during off-policy environmental interaction where sample trajec-
tories are explored. After the state values are determined, the policy is found during the
on-policy policy improvement step of policy iteration. During this step, the greedy policy
is found by taking the value-maximizing actions for the values learned during off-policy
exploration [15].

The Temporal Difference (TD) approach is equivalent to an incremental implemen-
tation of MC. TD updates the estimates of the state-value function based on individual
experiences without waiting for the outcome of the entire sample trajectory as opposed
to MC. TD uses the difference between the old estimate of the value function and the
experienced reward and new state to update the value function after one step, as shown
in [15,25,26]:

V(st)← V(st) + α[Rt+1 + γV(st+1)−V(st)] (9)

Here, α is the learning rate, a real number between 0 and 1 (usually 0.1 or smaller).
This form of TD is referred to as the TD(0) algorithm.

State Action State Reward (SARSA) is a TD model which is used to update the action-
value function (Q(s, a)) [16]. SARSA implements on-policy TD control, implying that the
action value is updated after each exploration step [15,25].

Q(st, at)← Q(st, at) + α ∗ [Rt+1 + γQ(st+1, at+1)−Q(st, at)] (10)

Operating on-policy means that the action space is only explored due to the ε −
greedy aspect of on-policy search [15]. Due to its lack of off-policy exploration, SARSA
does not have the same convergence guarantees as to the MC approach.

Q-learning is a method which is very popular in reinforcement learning research [15,25,26].
Q-learning is the off-policy equivalent of SARSA, formulated as: [15]

Q(st, at)← Q(st, at) + α ∗
[

Rt+1 + γ max
a

Q(st+1, a)−Q(st, at)
]

(11)

The use of off-policy TD allows Q-learning to perform updates to the value function
regardless of the action selected [25]. This choice guarantees the convergence of Q(st, at) if
the learning rate α is well defined [15].

Value function approaches are intuitive; however, they often struggle to converge due
to the high dimensionality of robotic state space, the continuous nature of the problem,
and the bootstrapped approaches used to estimate the value function quickly. Another

Robotics 2021, 10, 105 8 of 27

issue with the value function approach is that random exploration of the agent can result
in mechanical damage due to range and torque limitations [27].

3.2. Policy Search Approach

Policy search (PS) is an approach to policy optimization which has recently shown
potential in robotics as an alternative to the value function approach [16]. PS is a valuable
tool in robotics due to the scalability with dimensionality, a vital issue with the value func-
tion approach [28]. Research has shown that PS is better than value function approaches
for tasks that are finite horizon and are not repeated continuously [27].

PS does not approximate a policy as the value function does, i.e., by learning values
of actions, then acting to optimize rewards based on these expected values. Instead,
policy search implements a parameterized policy that can select the optimal action without
reviewing the value function [15]. θ, the variable representing the policy parameters, could
be understood intuitively as weights of the deep neural network that influences the policy
for a value function [15,27] The formulation for the linear case is [27]

πθ(s) = θT Φ(s) (12)

where Φ(x) is the basis function representing the state, and the policy parameters θ deter-
mine the choice of action in each state [27].

PS has the goal of learning the policy parameters that optimizes the performance
measure J(θ), the expected cumulated discounted reward from a given state [27]. This
reward is formulated as [15]

J(θ) .
= vπθ

(s) (13)

wherein vπθ
is the true value function for policy πθ .

To maximize the cumulative reward, the optimal policy can be found using the policy
gradient method [15], which implements gradient ascent by

∇J(θ) ∝ ∑
s

µ(s)∑
a

qπ(s, a)∇θπ(a|s, θ) (14)

where µ(s) is the on-policy probability distributions for policy π.
Like the value function approach, the policy search approach can be implemented

with model-free and model-based techniques [16]. The model-free technique uses online
agent actions to create trajectories from which to learn. This technique has the advantage
of not needing to learn an accurate forward model, which is often more challenging to
learn than the policy itself. The model-based technique is more sample conservative,
as the agent creates internal simulations of the dynamics of the model based on a few
observations from the online model. The agent then learns the policy based on these
internal simulations [27]. The online model-free technique has been implemented more
in research due to its ease of use; however, model-based approaches have shown better
ability to generalize to unforeseen samples [27].

Inside of policy search, several methods have been developed and implemented in
robotics, including REINFORCE, Actor-Critic, Deterministic Policy Gradient, and Proximal
Policy Optimization.

3.2.1. REINFORCE

REINFORCE is a MC based policy gradient method that uses vector samples (episodes)
filled with state, action, reward triples found with the policy πθ to approximate G, the return
as defined in Equation (1). The algorithm updates the policy parameters incrementally
with [15]

θ ← θ + α γtG ∇ ln πθ(at|st, θ) (15)

Robotics 2021, 10, 105 9 of 27

where ∇ ln πθ is equal to [15]

∇ ln πθ =
∇π(at|st, θ)

π(at|st, θ)
(16)

The intuition behind this formulation is that the policy parameter vector θ is shifted
in the direction of the steepest ascent with positive return G, to improve the policy πθ after
each step.

REINFORCE is a valuable policy search method that creates a state value function
and has guaranteed convergence; however, it tends to converge slowly compared to other
bootstrapped methods.

3.2.2. Actor-Critic Methods

The one-step advantage actor-critic (A2C) is analogous to the TD methods introduced
above, which do not involve offline policy improvement steps. A2C implements the notion
of δt, the difference between the expected value and actual value for a given state and
state-value weighting w [15].

δt = Rt+1 + γv̂(st+1, w)− v̂(st, w) (17)

The difference parameter can be used each step to update the state-value weighting w
and the policy parameter θ with the equation [15].

w← w + αwδ ∇v̂(s|w) (18)

θ ← θ + αθδ ∇ ln πθ(a|s, θ) (19)

The calculation for the policy and difference parameter is completed after each incre-
mental exploration step in the search space.

Another common actor-critic approach seen in the literature is asynchronous ad-
vantage actor-critic (A3C) [29]. A3C has the same formulation as A2C, with the slight
difference of allowing multiple agents to asynchronously explore different policies in paral-
lel. This approach reduces the need for experience replay to stabilize learning in time and
improve stability.

3.2.3. Deterministic Policy Gradient

Another common implementation is the deterministic policy gradient (DPG) tech-
nique [30]. DPG implements Q-learning updates to determine the action value function as
shown [30].

δt = Rt + γQw(st+1, µθ(st+1))−Qw(st, at) (20)

In this approach, DPG moves the policy in the direction of the gradient of Q for
continuous spaces, rather than selecting the globally optimal Q value in each step [30].

w← w + αwδ ∇wQw(st, at) (21)

θ ← θ + αθ∇θµθ(st) ∇aQw(st, at)
∣∣∣
a=µθ(s)

(22)

Here Qw(st, at) is a differentiable action value function which is used to replace the
true action value function.

3.2.4. Proximal Policy Optimization

Proximal policy optimization (PPO) is a policy gradient technique which was designed
to provide faster policy updates then A2C or DPG. PPO applies the DPG structure, but
updates the policy parameter θ based on a simple surrogate objective function [31]. The
policy update includes a step of minimizing the penalty term associated with the difference
between the surrogate and the original function.

Robotics 2021, 10, 105 10 of 27

3.3. Summary

The methods reviewed are fundamental to the different implementations of RL in
robotics. The choice in policy optimization has a significant impact on the convergence
guarantees and training time required.

4. Reward Shaping

In RL, the allocation of rewards drives the training process because the agent aims to
maximize the reward signal [32]. Reward shaping is the technique that involves modifying
the reward function to help the agent learn faster [33]. An efficient reward function can
accelerate the learning process by introducing background knowledge to RL agents [34].

Traditional RL applications used monolithic goals exclusively [35]. Monolithic goals
seemed to behave perfectly with well-behaved domains with clear reward objectives.
However, as RL problems started to become more complex in the 1990s, this approach was
found to be inadequate for modeling real physical world situations (such as robotics). The
difficulties in recognizing the state information, nondeterministic and noisy environment,
variances in the learning trails required, timeliness of the rewards, and the requirement
of achieving multiple goals can contribute to the failure of monolithic goals for these
applications [35].

To address these challenges, as an improvement to a naïve monolithic single goal
reward function, Mataric proposed a heterogeneous reinforcement function [35]. The
method broke the rewards down into several goals representing the knowledge of the
domains, then grouped these goals with progress estimators. Goal refinement enables the
system to learn through immediate transitionary rewards which can speed up learning and
convergence. The issue with this approach is that the agent can achieve a net positive gain
in reward by running cycles rather than finding the end state [21,32].

To address this, Ng et al. [21] introduced a potential-based shaping algorithm. The
algorithm incorporated a new reward function: R′ = R + F, where R is the traditional
reward and F is the shaping reward function. The shaping reward function F is a function
over states, which should be chosen or constructed [34] based on the domain knowledge
between two states. For example, F could be a function of distance to the goal state, wherein
F increases as the agent selects actions closer to the goal state. Ng et al. proved that the
optimal policy would not change given this new reward function [21].

Adding rewards is advantageous when the rewards represent the actual effect of the
actions, however, adding rewards can also cause errors in the learning process when noisy
reward inputs are given. To find balance between efficiency and effectiveness in RL reward
shaping, Luo et al. proposed a method called Dense2Sparse [36]. By letting the system
receive rewards continuously in the first several learning episodes, the policy is expected
to converge quickly despite the noisy information. The suboptimal policy learned from
the dense reward can be optimized under a noise-free sparse rewarding scheme, where a
positive reward is given only when the task or sub-task is completed. Jang et al. found the
concept of combining sparse and dense reward schemes to be effective with their research
on training a Walker robot with high dimensional continuous action and state spaces [37].

Besides using a predefined change in the reward function, reward shaping can also be
performed dynamically throughout the learning process. Tenorio-González et al. realized
a dynamic reward shaping technique by implementing verbal feedback from a human
observer [38]. The inclusion of human intervention can help the system converge faster
but requires active human participation in the learning process. Konidaris and Barto [39]
developed a method to improve the reward function autonomously. Their work focused
on generalizing the knowledge learned by the agents for small tasks to produce a shaping
function to apply to all rewards. Their experiment showed good performance of the shaped
rewards in a rod positioning scenario.

Reward shaping is a tradeoff between accuracy and speed. A monolithic goal reward
can be a noise-free input, but it is sometimes not practical for complex tasks. Breaking

Robotics 2021, 10, 105 11 of 27

down the task and applying rewards frequently allows the system to learn faster, but it can
also distract the agent [32,40].

5. Imitation (Apprenticeship) Learning

Reward shaping is one of the tasks which require human intervention in RL. With
only a monolithic goal, the agent may be forced to search the environment for an extended
period to refine its actions. An alternative path to manual reward shaping is imitation
learning [15,41,42].

Traditional robotic control systems (discussed in Section 1.1) can have imitation behav-
ior programmed into a robot via manual robotic arm positioning. This approach has the
equivalent results to implementing the teach pendant without the need for joint program-
ming. Manual arm positioning is valid but has all the same issues as traditional control,
i.e., the inability to handle changes in the environment [7,8].

As an alternative to traditional control, imitation learning can be used to learn a
reward function from examples. The reward function can be used to refine the policy
depending on the scenario, allowing for domain adaptation [42]. Imitation (apprenticeship)
learning includes several different approaches, such as Behavior Cloning (BC) and Inverse
Reinforcement Learning (IRL). Like all other approaches to RL, imitation learning has the
option to implement model-based and model-free techniques [42].

5.1. Behavior Cloning

BC is the simplest form of imitation learning, as it borders supervised learning (SL)
and RL. The objective of this learning technique is to learn the policy which determined
the trajectory of the expert demonstration. The trajectory variable τ = (s0, a0, s1, a1, . . .) is
used as the functional output from the policy [42]

τ = π∗(s) (23)

where s is the state of some robotic manipulator. The problem resembles supervised
learning, where the objective of mimicking behavior is set as minimizing the loss be-
tween the policy parameters θ of the policy πθ(s) and the optimal policy based on expert
demonstrations of π∗(s).

BC is easy to understand and execute, but since the problem is reduced to a supervised
learning approach, error may occur when reaching a state which the expert has never
visited. The policy may attempt to map a new environment with the same strategy used for
an older environment, which can cause an error referred to as the covariate shift [43]. Due
to undefined behavior in that state, the algorithm could lead to catastrophic problems, as
was shown by Stephane Ross in his work on mismatch training and test inputs on training
robotics [44].

The first application of behavior cloning was ALVINN, a project by Pomerleau in
1989 [45], where a neural network was used to estimate the policy for driving an au-
tonomous vehicle. The inputs were sensor signals from vision cameras and laser range
sensors, and the outputs were turning curvatures which translated into steering angles.
Supervised learning was performed by using road snapshots and turn curvature pairs to
train the network. The objective suggests that it minimizes the 1-step deviation error along
the expert trajectory; therefore, it does not capture the intention of expert behavior in the
long term, which reduces the accuracy of long-term planning.

Due to the approach operating in the SL domain, BC is more applicable to scenarios
in which massive databases of expert data are available [43]. BC has been shown to be
valuable in large data domains such as autonomous vehicles [46] but has not been shown
to be applicable to robotics.

5.2. Inverse Reinforcement Learning

IRL is a way to find the underlying reward function which explains the agent’s
behavior (the policy). IRL is based on the known parameters in an MDP (s, a, p(s′|s, a), γ,

Robotics 2021, 10, 105 12 of 27

π∗) [41,42]. The goal in IRL is to choose R, which makes the policy π optimal, and makes
any changes in policy π as costly as possible, so that the differences between two actions in
any state is significant [41].

The notation for IRL is [47]
R∗(s) = w∗φ(s) (24)

where the true reward function R∗ is a function of features φ, and the true weights w∗.
In robotics, φ could be used to represent the features: smooth motion profiles and speed.
Different weights w∗ could represent the tradeoff between these two features.

One approach for implementing IRL is with the apprenticeship learning technique
implemented by Abbeel and Ng [47]. This technique defines the value of a policy as:

Es0∼ p(s′ |s,a1)
[Vπ(s0)] = E

[
∑∞

t=0 γtR(st)
∣∣∣π] = w ∗ E

[
∑∞

t=0 γtφ(st)
∣∣∣π] (25)

where Es0∼p(s′ |s,a)[Vπ(s0)] represents the expectation for value given that the agent starts
in state s0 with some transition probability for the next state of p(s′| s, a) [41]. To get the
final formulation shown in Equation (25), the value function for the policy is replaced with
the reward function defined in Equation (24). This formulation can be used to find the
policy π̃ by minimizing the difference between the policies πE and π̃ while maximizing
the minimum differences between trajectories. The formulation for this min-max problem
can be expressed as [47].

ε ≥ maxwminj[wT
[
∑∞

t=0 γtφ(st)
∣∣∣πE

]
−
[
∑∞

t=0 γtφ
(

sk
t

)∣∣∣π̃]] (26)

The IRL learning process involves the loop shown in Figure 3, where the policy is
initially randomized. First, Equation (26) is implemented to compare the policies of the
expert and the agent and improve the reward weighting wT . Next, the updated reward
weighting is used to calculate the state rewards (Equation (24)). Finally, the RL algorithm is
used to compute the optimal policy.

Robotics 2021, 10, x FOR PEER REVIEW 12 of 28

The first application of behavior cloning was ALVINN, a project by Pomerleau in
1989 [45], where a neural network was used to estimate the policy for driving an autono-
mous vehicle. The inputs were sensor signals from vision cameras and laser range sensors,
and the outputs were turning curvatures which translated into steering angles. Super-
vised learning was performed by using road snapshots and turn curvature pairs to train
the network. The objective suggests that it minimizes the 1-step deviation error along the
expert trajectory; therefore, it does not capture the intention of expert behavior in the long
term, which reduces the accuracy of long-term planning.

Due to the approach operating in the SL domain, BC is more applicable to scenarios
in which massive databases of expert data are available [43]. BC has been shown to be
valuable in large data domains such as autonomous vehicles [46] but has not been shown
to be applicable to robotics.

5.2. Inverse Reinforcement Learning
IRL is a way to find the underlying reward function which explains the agent’s be-

havior (the policy). IRL is based on the known parameters in an MDP (s, a, 𝑝(𝑠ᇱ| 𝑠, 𝑎), 𝛾, 𝜋∗) [41,42]. The goal in IRL is to choose R, which makes the policy 𝜋 optimal, and makes
any changes in policy 𝜋 as costly as possible, so that the differences between two actions
in any state is significant [41].

The notation for IRL is [47] 𝑅∗(𝑠) = 𝑤∗𝜙(𝑠) (24)

where the true reward function 𝑅∗ is a function of features 𝜙, and the true weights 𝑤∗.
In robotics, 𝜙 could be used to represent the features: smooth motion profiles and speed.
Different weights 𝑤∗ could represent the tradeoff between these two features.

One approach for implementing IRL is with the apprenticeship learning technique
implemented by Abbeel and Ng [47]. This technique defines the value of a policy as: 𝐸௦బ~ ൫௦ᇲ| ௦,భ൯[𝑉గ(𝑠)] = E 𝛾௧𝑅(𝑠௧)|ஶ௧ୀ 𝜋൨ = w ∗ E 𝛾௧𝜙(𝑠௧)|ஶ௧ୀ 𝜋൨ (25)

where 𝐸௦బ~ ൫௦ᇲ| ௦,൯[𝑉గ(𝑠)] represents the expectation for value given that the agent starts
in state 𝑠 with some transition probability for the next state of 𝑝(𝑠ᇱ| 𝑠, 𝑎) [41]. To get the
final formulation shown in Equation (25), the value function for the policy is replaced with
the reward function defined in Equation (24). This formulation can be used to find the
policy 𝜋 by minimizing the difference between the policies 𝜋ா and 𝜋 while maximizing
the minimum differences between trajectories. The formulation for this min-max problem
can be expressed as [47] ϵ ≥ max௪min[w் 𝛾௧𝜙(𝑠௧)|ஶ௧ୀ 𝜋ா൨ − 𝛾௧𝜙(𝑠௧)|ஶ௧ୀ 𝜋 ൨] (26)

The IRL learning process involves the loop shown in Figure 3, where the policy is
initially randomized. First, Equation (26) is implemented to compare the policies of the
expert and the agent and improve the reward weighting 𝑤். Next, the updated reward
weighting is used to calculate the state rewards (Equation (24)). Finally, the RL algorithm
is used to compute the optimal policy.

Figure 3. IRL learning process.

The IRL solution is often ill-posed, so instead of forcing the system to perform ex-
actly as the optimal behavior from the demonstrations, the constraints can be relaxed to
help find a suitable solution. Abbeel and Ng [47] did so by relaxing the equality of the
performance with

max
π∈Π

E π [r(s, a)] ≥ E π∗ [r∗(s, a)]− ε (27)

Algorithms based on IRL can be costly due to the inner loop, which contains internal
RL calculations for each step. The reward function acquired with IRL does not tell the
agent how to act, thus imitating the exact motion of the expert demonstrations still requires
RL [43]. That said, IRL has shown significant potential in robotics applications, as will be
shown in the Section 8.

Robotics 2021, 10, 105 13 of 27

6. Pose Estimation for Grasp Selection

Pose estimation is a critical factor for pick and handle operations. Incorrect estimation
of pose could result in poor grasp choice due to the robotic arm pose or unstable placement
due to incorrect estimation of object pose. Gualtieri and Platt [19] noted the value in
pose estimation when comparing the accuracy of cup placement against blocks and bottles.
Blocks are symmetric in x, y, and z, bottles are symmetric in x and y, and cups are symmetric
only in x. The complexity of the cup pose made the pick-and-place task more difficult,
which resulted in lower overall accuracy compared to blocks and bottles (Figure 4). Pose
estimation is critical, as the task should be completable regardless of the complexity of the
target object.

Robotics 2021, 10, x FOR PEER REVIEW 13 of 28

Figure 3. IRL learning process.

The IRL solution is often ill-posed, so instead of forcing the system to perform exactly
as the optimal behavior from the demonstrations, the constraints can be relaxed to help
find a suitable solution. Abbeel and Ng [47] did so by relaxing the equality of the perfor-
mance with maxగ∈ஈ 𝔼 గ[𝑟(𝑠, 𝑎)] ≥ 𝔼 గ∗[𝑟∗(𝑠, 𝑎)] − 𝜖 (27)

Algorithms based on IRL can be costly due to the inner loop, which contains internal
RL calculations for each step. The reward function acquired with IRL does not tell the
agent how to act, thus imitating the exact motion of the expert demonstrations still re-
quires RL [43]. That said, IRL has shown significant potential in robotics applications, as
will be shown in the Section 8.

6. Pose Estimation for Grasp Selection
Pose estimation is a critical factor for pick and handle operations. Incorrect estimation

of pose could result in poor grasp choice due to the robotic arm pose or unstable place-
ment due to incorrect estimation of object pose. Gualtieri and Platt [19] noted the value in
pose estimation when comparing the accuracy of cup placement against blocks and bot-
tles. Blocks are symmetric in x, y, and z, bottles are symmetric in x and y, and cups are
symmetric only in x. The complexity of the cup pose made the pick-and-place task more
difficult, which resulted in lower overall accuracy compared to blocks and bottles (Figure
4). Pose estimation is critical, as the task should be completable regardless of the complex-
ity of the target object.

Figure 4. Various grasp pose configurations for bottle and block targets. Bottle targets are symmetric
in x and y compared to blocks which are symmetric in x, y, and z.

The literature refers to two pose types, the object pose and the gripper pose (also
referred to as the grasps [48]). The object pose is described by the position and orientation
of the object being manipulated [49,50]. Each object pose exists inside the set of all possible
poses for that object, called the pose space [50]. The gripper pose is used to describe the
different gripping positions, orientations, and jaw openings that could be used to grasp a
target object [23]. Each gripper pose exists inside the set of all possible grasps for an object,
called the grasp space. Pose estimation can be completed using analytic (geometric) or
data-driven methods.

Analytic methods fit the point cloud of sensor input to known models (often CAD).
Model fitting limits the agent to detecting the pose of items which have models available
for comparison [51]. The analytic method first determines the target object pose, then se-
lects an optimal gripper grasp based on the target object pose. The analytical method is
usually set up as an optimization problem. The grasp is chosen from the grasp space based

Figure 4. Various grasp pose configurations for bottle and block targets. Bottle targets are symmetric
in x and y compared to blocks which are symmetric in x, y, and z.

The literature refers to two pose types, the object pose and the gripper pose (also
referred to as the grasps [48]). The object pose is described by the position and orientation
of the object being manipulated [49,50]. Each object pose exists inside the set of all possible
poses for that object, called the pose space [50]. The gripper pose is used to describe the
different gripping positions, orientations, and jaw openings that could be used to grasp a
target object [23]. Each gripper pose exists inside the set of all possible grasps for an object,
called the grasp space. Pose estimation can be completed using analytic (geometric) or
data-driven methods.

Analytic methods fit the point cloud of sensor input to known models (often CAD).
Model fitting limits the agent to detecting the pose of items which have models available
for comparison [51]. The analytic method first determines the target object pose, then
selects an optimal gripper grasp based on the target object pose. The analytical method is
usually set up as an optimization problem. The grasp is chosen from the grasp space based
on maximizing the values for resistance to disturbance, dexterity for further manipulation,
equilibrium to reduce object forces, and stability in the case of external forces or grasp
errors [52,53]. The analytic method is useful when precise placement in a particular
orientation is required [23].

Data-driven methods are free from the constraint of requiring models, as this approach
implements machine learning to estimate optimal gripper poses directly [23]. There are
two approaches inside of the data-driven method: the target-model-based approach and
the model-free approach.

The target model-based approach implements the point cloud data from the sensors to
estimate a model of the target object. The target model can be used to eliminate many of the
available grasp pose options. Supervised learning (SL) can be used to label objects based
on the training data [23,53]. To save time on data labeling for the SL problem, simulation
environments can be implemented to create a database of randomly oriented and mixed
samples for training the model. The data-driven target model-based approach is optimal
when accurate placement and correct target orientation is critical to receive the reward or
when the target objects must be selected from a cluttered scene [23].

Robotics 2021, 10, 105 14 of 27

The model-free approach removes the model estimation step and instead focuses on
optimizing the grasp pose based on the entire range of available grasps. The model-free
approach is composed of discriminative and generative techniques. The discriminative
technique reviews all the available grasp pose candidates and trains a convolutional neural
network (NN) to select the optimal grasp based on these [19]. The generative approach
recommends a grasp configuration based on the orientation of the target. This approach
is fundamentally the same as object detection, where the gripper pose is selected based
on the orientation of the detected object. An example of this comes from Jiang et al. [54],
who implemented orientation rectangles to provide an estimate for the ideal position and
orientation of the gripper head. Since multiple grasp candidates are often available, a
NN is used to train the model to select the best grasp. The model-free approach is most
successful when dealing with new targets and soft placement restrictions [23].

The approaches listed work well in combination with other strategies. For example,
the agent could be allowed to implement the temporary placement of the object, free from
clutter, to allow a better estimation of pose. This approach would be useful when accurate
placement is required [19]. An alternative method would be to implement multiple viewing
angles by hoisting the item in front of external cameras. Multiple viewing angles could
be used to identify the object or determine if a more optimal grasp pose is available [55].
Another practical approach for estimating pose is by implementing focus. Attention focus
has been successfully implemented by Gualtieri and Platt [22] via iterative zooming to
regions of interest. The use of focus would limit the number of available grasp poses to
those seen in the focus region.

7. Simulation Environment

In the sections above, training in simulation was mentioned as a requirement for some
approaches, and a useful tool for others. The benefit of training in a simulated environment
is that the agent can perform thousands of training iterations in a short period, without any
wear effects on the online device. Online training requires the availability of the robot and
human supervision for safety reasons. Examples of the difficulties with training in real life
can be seen from Levine and Koltun [28], who implemented 14 robotic manipulators over
two months to collect 800,000 grasp attempts. The accuracy of the grasp operation after
this training was 82.5 percent, a lower accuracy than has been achieved for comparable
pick-and-place actions when training was completed in simulation.

The benefits of training offline are often contrasted with the loss of accuracy when
the trained model is applied in the real world. Inaccuracies of model parameters such as
friction, weight, or dimension, may have massive influences during model testing. The
difference between the offline and online models is referred to as the “reality gap”. The
primary approaches for coping with the reality gap are domain randomization and domain
adaptation [23].

Domain randomization is a method of training the agent in an inconsistent envi-
ronment. The goal is to force the agent to learn to ignore “noise” and changes in the
background. Noise added for domain randomization could include lighting, color, po-
sitions, textures, or other features that serve to confuse the scene. The goal of domain
randomization is to make the online test scene appear as a training sample with different
randomizations than previously experienced [56].

Domain adaptation is an approach that implements a form of generative adversarial
networks (GANs) to generalize the test data onto the target domain. The process imple-
ments data from the test domain (online) to train the model in the training domain (offline)
so that training in the simulation generalizes well to online testing. This approach still
requires a small amount of labeled data from the test domain; however, much less data is
required than online training [23,57].

The choice of simulation environment is another factor that affects test accuracy. An
assortment of packages exist (MuJouCo, ODE, and Bullet), each of which have their pros
and cons. Key factors include consistency, stability, numerical accuracy of simulation, and

Robotics 2021, 10, 105 15 of 27

compatibility [58]. MuJouCo performs better than other simulators in terms of simulation
accuracy, energy conservation, and grasp stability. ODE came in second for nearly all
of these measurements. The primary difference between the two physics engines is that
ODE is open source and compatible with a variety of simulators such as Gazebo and
OpenRAVE [59]. In terms of support, documentation, and ease of use, MuJouCo was
ranked the worst [58].

8. Analysis

The above sections review the primary choices that need to be made during problem
formulation. This analysis section focuses on reviewing and critically discussing the current
state of research.

8.1. State of Research—Complete Pick-and-Place Task

Benchmarks for pick-and-place operations include simulation accuracy, the number
of online tests required to train the model, and most importantly, the accuracy of testing.
The table below reviews papers published by leading RL robotics researchers to illustrate
the strengths and weaknesses of the different implementations. Success rates in each paper
are difficult to compare due to the differences in the tasks. The discussion outside of the
table gives clarity for each implementation and explains the results.

Fu et al. [17] completed several tasks, with comparable difficulty to pick-and-place,
including inserting a peg in a hole, stacking toy blocks, placing a ring on a peg, and
more. The approach involved learning the system dynamics from prior examples, then
completing manipulation tasks in one shot after the goal was defined. The approach did
not directly use RL for learning individual tasks by searching through the state space, but
instead used RL to learn the system dynamics for robotic control. The accuracy of these
tasks was high; however, the approach did not incorporate a cluttered scene.

Gualtieri et al. [19,22] published several papers on completing the pick-and-place ac-
tion in a cluttered scene with an assortment of objects. Before this work, Gualtieri et al. [51]
first published a manuscript on pose estimation. The pose estimation research completed
in [51] was applied to the entire pick-and-place operation in [19,22]. The group completed
testing in simulation and online. The accuracy listed represents the online accuracy of
grasping a novel object after being trained on objects of similar type. The group found that
an item picked from a clutter of objects had significantly lower accuracy than selecting
an object in isolation. The results indicate that items with complex geometry (cups and
bottles) are significantly more difficult to grasp compared to targets with a simple geometry
(square blocks). Compared to other tasks completed in the literature, the complexity of the
cluttered pick-and-place task was high.

Popov et al. [60] completed the action of precision stacking of Lego blocks using
distributed deep DPG (DDPG) with a robotic arm in simulation. The blocks were initially
positioned in isolation in the same orientation, which significantly reduced the task diffi-
culty. The team compared simple single reward and composite multi-step reward functions
and proved that the single reward approach had the fastest convergence. The groups asyn-
chronous implementation of DDPG proved that distributed training with asynchronous
updates can improve convergence speed. The task had an average complexity.

Mahler and Goldberg [61] applied imitation learning to complete the task of selecting
novel objects from a cluttered environment and placing them aside in an organized manner.
The learning approach implemented the Dex-Net 2.0 database of point clouds and grasp
poses to generate training samples for learning effective Grasp Quality Convolutional Neu-
ral Networks (GQ-CNN). The policy learned appropriate NN weights based on replicating
the results from the demonstrated samples. Transfer learning was effectively used to apply
synthetic training to real world pick-and-place. Compared to the other examples from
literature, the complexity of this cluttered pick-and-place task was high.

Sehgal et al. [62] simulated a simple, single block pick-and-place task with the use
of DDPG HER whose parameters were tuned with the genetic algorithm. The main

Robotics 2021, 10, 105 16 of 27

contribution from this paper was to show that the GA could be used to minimize the
number of training iterations required to achieve comparable convergence to that of DDPG
HER without the GA. The overall task complexity for this action was low. Zuo et al. [63]
implemented deterministic GAIL to complete a simple, single block pick-and-place task.
The DGAIL approach implemented a NN discriminator to develop a reward function
based on examples and a policy gradient method for learning ideal actions based on the
discriminator. During testing, DGAIL was compared to stochastic GAIL and DDPG to
prove the relevance of this approach. The approach yielded much better results than all
other methods except DDPG, a more computationally expensive approach. The overall
task complexity for this implementation was low.

Chen et al. [64] completed a picking operation where the target object was in a cluttered
environment. The robotic arm could rearrange the cluttered scene if the target was invisible
from the camera vantage. The approach was limited due to the model-based grasp pose
technique, however, it showed excellent performance in finding the target object in the
cluttered scenario. The placement operation was not tested but could have been easily
implemented since models for the target object were available. The action of selecting the
target from a cluttered scene had an average complexity.

Xiao et al. [65] achieved a high accuracy for the pick-and-place task in a cluttered
environment with the Parameterized Action Partially Observable Monte-Carlo Planning
(PA-POMCP). The system approximated the utility of available actions based on the current
belief of the agent about the environment. The approach allowed the agent to change
perspective or maneuver items in the scene to find an accurate estimation for the location of
the target object. The approach showed significant performance for known items but was
not tested on unknown items in new environments. The action sequence of rearranging
the scene and selecting a target from the clutter, had a high complexity.

Liu et al. [66] designed a system to complete several robotic pick-and-place tasks,
including stacking, sorting, and pin-in-hole placement. A major contribution of this paper
was the work around reward shaping to solve complex problems. The approach assigned
rewards based on the Euclidean distance between the Objects Target Configuration (OTC)
and the Objects Current Configuration (OCM). The closer the configuration of blocks, pins,
etc., to the optimal configuration, the more reward allocated to the sample. Additional
rewards were allocated for final task completion. Comparison between this approach
and a basic linear reward approach shows a significant improvement in convergence.
In addition to reward shaping, this paper compared the MAPPO learning technique to
traditional PPO and Actor-Critic (A3C) techniques. MAPPO improved performance against
the other techniques by directly outputting manipulation signal to the agent. The overall
task complexity for the various action sequences was high.

Mohammed et al. [67] simulated a robotic agent which completed the task of organiz-
ing 10 blocks dropped into a workspace. The training technique applied was Q-learning.
The block geometries were not all the same, but the shapes were simple. The accuracies
for the pick-and-place operations were only tested in simulation, and not applied to an
online agent. Considering the average-high complexity of the task, the accuracy of the
pick-and-place and the computational efficiencies are promising.

Li et al. [68] applied a robotic arm to perform tasks including reach, push, multi-
step push and pick-and-place using the Augmented Curiosity-Driven Experience Replay
(ACDER) approach. The pick-and-place operation was applied to a single target object
which was free from clutter. The novelty of the research includes a method of exploration in
which rewards are allocated for the exploration of unfamiliar states (curiosity). Additionally,
this approach initiated the robot in states not stored in the replay buffer to improve
exploration efficiency. Through testing, this approach was proven to be several times more
sample efficient than hindsight experience replay (HER). The overall task complexity for
this action was low.

Pore and Aragon-Camarasa [69] proposed an algorithm for robotic pick-and-place on
a simple block placed in isolation on a surface. The solution method involved decomposing

Robotics 2021, 10, 105 17 of 27

the task into approach, grasp and retract segments. After perfect accuracy was achieved for
each independently trained action, a high-level choreographer (actor-critic network) was
trained to learn the policy for ordering the behaviors. The team compared a DDPG + HER
approach to this A3C + subsumption architecture (SA) model. The end-to-end approach
with DDPG + HER resulted in a maximum of 60% accuracy after 10,000 episodes. The
A3C + SA model achieved 100% accuracy after 6000 training episodes. The relative com-
parison shows the potential of this SA model; however, the task had a low complexity and
was never tested online with a real robot.

Al-Selwi et al. [70] simulated the pick-and-place task on a simple block placed in
isolation on a surface using a DDPG approach combined with HER. The approach validated
what has been shown in other papers [19], that target object complexity changes task
effectiveness. The work presents little novelty in terms of policy optimization. The overall
task complexity in this example was low.

Marzari et al. [71] presented simulations and online testing for pick-and-place task on
a simple block placed in isolation on a surface by using a DDPG HER method. By imple-
menting task decomposition, the model was able to achieve 100% accurate performance
with simulation and online testing. The major contribution of this approach compared
to [69] was that behavior cloning was not used for training the approach subtask, so sam-
ple operations were not required. Online testing indicated excellent generalizability for
novel objects and presented a high sample efficiency compared to all other approaches.
Although the overall task complexity was low, this approach shows excellent potential for
future applications.

Anca and Studley [72] completed a simulated pick-and-place operation in which a
simple block was picked by manipulating a robot in 2D with a twin delayed actor-critic
network. The result demonstrated operational accuracy without requiring example simu-
lations (unlike [69]), however, showed little advantage over approaches based on DDPG
HER [71]. The task complexity with this action sequence was lower than all other samples.

8.2. State of Research—Pick-and-Place Subtasks

Due to the novelty of the field, Table 1 presents the (short) exhaustive list of all
robotic pick-and-place with RL literature currently available. That said, there are other
publications which present contribution to the field, that do not include key elements of
the action sequence. Examples include the literature on grasp selection [73,74] or precision
placement [75]. To provide a comprehensive survey, key examples for the pick-and-place
subtasks drawn from the literature are listed in Table 2.

Finn et al. [75] developed an IRL algorithm that could be applied to various tasks
in different environments to learn the policy and reward function. A task completed in
simulation included peg insertion in a hole to a depth of 0.1m. The robotic model could
complete this task with high precision after training with ~30 examples. Of the real robotic
tasks completed, the task of placing dishes in a rack was the most like pick-and-place. After
25–30 samples of human teaching, the dish placement action could be completed with
perfect accuracy. This research gives an excellent indication of the power of IRL, however,
to apply this algorithm to the full pick-and-place action sequence, further extension is
required to include the pose estimation step for “picking”.

Kalashnikov et al. [74] developed a custom Q-learning approach focused on gener-
alizability and scalability for unfamiliar environments. The task required the picking of
random objects from a dense clutter and raising the object above the clutter. The training
was completed online to incorporate all properties which were unmodeled in the physics
simulation. To apply this algorithm to the full pick-and-place action sequence, the research
requires additional task programming to include precision placement.

Robotics 2021, 10, 105 18 of 27

Table 1. Summary of RL in Robotic Pick-and-place.

Paper Policy
Optimization

Pose
Estimation Sim Package Success Rate Strengths (S) and Weaknesses (W)

Fu et al., 2016 [17]

Value function approach with
DP using iterative LQR. Basic

two-layer NN for
updating priors

Model-based approach which
combined prior knowledge and

online adaptation
MuJoCo Simulation Testing: 0.80–1.00

Robot Testing: ~0.80

S: Implemented prior knowledge to
reduce the number of

samples required
W: To create model of system

dynamics the NN must be trained on
prior examples

Gualtieri et al., 2018 [22],
Gualtieri et al., 2018 [19]

Value function approach with
SARSA. Caffe (NN) used to
update the SARSA weights

Model-free data-driven approach
which implemented focus. The

algorithm allowed for temporary
and final placements. Model was

trained using 3DNET
CAD models

OpenRave
(ODE base)

Robot Testing:
Picking: 0.88–0.96

Placement: 0.80–0.89

S: Model-free approach with high
picking accuracy

W: Low placement accuracy and low
overall accuracy in testing

Popov et al., 2017 [60]

Distributed Deep DPG (DDPG)
method with efficient schedule

updates and composite
reward functions

Model-free data-driven approach.
Reward achieved for appropriate
grasp selections. Blocks always
oriented in the same manner.

MuJoCo Simulation Testing: 0.955

S: Proved that asychronous DDPG
has higher data-efficiency then

other approaches
W: No online testing to validate

simulation accuracy

Mahler and Goldberg, 2017 [61]

Imitation learning approach in
which the robot was trained on
data from synthesized grasps.
Sample grasps were found by
using force and torque space
analysis and knowledge of

object shapes and poses

Model based approach used for
demonstration synthesis.

Model free data driven approach
for pose selection during training

Pybullet

Simulated Testing: 0.96
Robot Testing: 0.94–0.78

(Testing accuracy depends on
the number of objects in the

cluttered environment)

S: High picking accuracy on cluttered
enviroment of unfamilier objects

W: Requires models for the wrench
space analysis to develop

demonstration samples. Intensive
programming effort

Sehgal et al., 2018 [62]

DDPG with hindsight
experience replay (HER).

Parameters tuned using the
genetic algorithm

Model-free data-driven approach MuJoCo Simulated Testing: ~0.90

S: Effectively implemented HER for
faster convergence

W: No improvement in overall task
completion performance. No online

testing to validate
simulation accuracy

Zuo et al., 2019 [63]

Deterministic generative
adversarial learning (DGAIL)
which implemented a policy

gradient generator and
discriminator trained with IRL

(an actor-critic approach)

Data driven approach in which
action selection was based on the

difference between the
demonstrated and
generated policy

MuJoCo Simulated Testing: 0.90

S: DGAIL had faster convergence
then several other RL techniques

W: DGAIL was less stable, and less
accurate then other modified

DDPG techniques

Robotics 2021, 10, 105 19 of 27

Table 1. Cont.

Paper Policy
Optimization

Pose
Estimation Sim Package Success Rate Strengths (S) and Weaknesses (W)

Chen et al., 2019 [64]

Two deep Q-Networks (DQN)
for pushing and grasping.

Mask Region convolutional NN
(R-CNN) for object detection

Model based approach where the
target object was mixed in clutter.
RBGD image was used for target
object detection. The scene was

rearranged if the target is
invisible from the sensor’s

perspective

V-REP
simulation
platform

Simulated Testing: 1.0
3 different scene options were

tested. Each seen had the
target in a more/less hidden

location

S: High target location accuracy.
Approach proves that rearranging

the enviroment can improve results
W: Approach was only applied for

known target objects. No online
testing to validate the
simulation accuracy

Xiao et al., 2019 [65]
Parameterized Action Partially

Observable Monte-Carlo
Planning (PA-POMCP)

Model based approach which
implemented known models
from a benchmark model set

OpenRAVE &
Gazebo Robot Testing: 1.0

S: High pick-and-place accuracy
W: Model based approach. Grasp

poses are pre-defined so the primary
task is model recognition. This

technique significantly simplifies
the problem

Liu et al., 2020 [66] PPO with actor output as
manipulation signal (MAPPO)

Data driven approach which
extracted target object pose from

RGBD sensor
Gazebo

Robotic Testing: Relative
improvement of MAPPO to
PPO and A3C shown to be

>30%.
Final accuracy not given

S: Compared various learning and
reward shaping approaches

W: No final pick-and-place accuracy
given. Difficult to guage the
performance improvement

Mohammed et al., 2020 [67]

Value Function approach with
Q-Learning. CNN used to
update Q-learning weights.

Model pre-trained on
Densnet-121.

Data-driven approach. Grasps
were generated by using a CNN
to identify available poses from a

RGB image

Vrep (ODE
base)

Simulated Testing:
Picking: 0.8–1

Placement: 0.9–1

S: High placement accuracy
considering the absense of model for

target object. Short training time
W: No online testing to validate the

simulation accuracy

Li et al., 2020 [68]

DDPG approach with
goal-oriented and curiosity

driven exploration and
dynamic initial states

Data driven approach which
used RGBD images to determine

object and goal positions
MuJoCo Simulated Testing: 0.95

Robotic Testing: 0.85

S: Comparison to several other
sampling and learning techniques
validated the sample efficiency for

this approach
W: Deployment on robot showed a

reduced overall effectiveness

Robotics 2021, 10, 105 20 of 27

Table 1. Cont.

Paper Policy
Optimization

Pose
Estimation Sim Package Success Rate Strengths (S) and Weaknesses (W)

Pore and Aragon-
Camarasa, 2020 [69]

Hierarchical RL in which the
task was broken into simplified
multi-step behaviors with the

subsumption architecture (SA).
Behavior cloning was used for

low-level behavior training.
Actor-Critic technique was

applied for high level
task completion

Data driven approach in which
grasp poses were trained with

behavior cloning. Target objects
were consistent which means that

advanced pose estimation was
not required

OpenAI Fetch
environment
with MuJoCo

Simulated Testing: 1.00

S: Validated that the subsumption
architecture improves entire task

performance significantly compared
to end-to-end approaches

W: Technique required behavior
cloning samples, and a human for
problem breakdown. No online

testing to validate
simulation accuracy

Al-Selwi et al., 2021 [70] DDPG with HER

Model based approach in which
RGB

image was used to determine
bounding box and rotation angle

MuJoCo
Simulated Testing: 0.502–0.98

(depending on target
geometry)

S: Validated that HER DDPG can be
used with vision feedback to

improve accuracy
W: CAD models required for pose

selection. No online testing to
validate simulation accuracy

Marzari et al., 2021 [71] DDPG with HER and task
decomposition

Data driven approach in which
grasp poses were learned from a
single target object with simple

geometry

MuJoCo Simulation and Robotic
Testing: 100%

S: Proved that the DDPG approach
with HER can perform excellent task

completion accuracy by using task
decomposition rather then

end-to-end training
W: Approach assumed human

involvement for task decomposition

Anca and Studley, 2021 [72]

Twin delayed hierarchical actor
critic (TDHAC) which broke

task into high- and
low-level goals

Data driven approach which only
implemented a 2D motion for

picking the action
Pybullet Simulated Testing: 100%

S: Confirmed that the hierarchical
approach improves convergence

W: Approach showed no significant
improvement over DDPG with HER.

The motion was limited to 2D. No
online testing to validate

simulation accuracy

Robotics 2021, 10, 105 21 of 27

Table 2. Robotic Pick and Place Subtasks.

Paper Policy
Optimization

Pose
Estimation Sim Package Success Rate Strengths (S) and Weaknesses (W)

Finn et al., 2016 [75]

Combined relative entropy IRL
and path integral IRL with

sampling using policy
optimization

Algorithm did not incorporate
the picking operation so pose

selection was not required
MuJoCo Robotic Testing:

Placement: 1

S: Perfect placement accuracy
W: Technique did not incorporate picking action.

Online training samples are required

Kalashnikov et al., 2018 [74]

QT-Opt, a modified Q-learning
algorithm that implemented

off-policy training and on-policy
fine-tuning

Data-driven approach. Strategy
implemented dynamic closed

loop control with RL to solve the
grasping task.

Bullet Physics
Simulator

Robotic Testing: Picking:
0.96 (with object shifting)

S: High picking accuracy in a cluttered
environment with unknown objects

W: Time-consuming online training required

Wu et al., 2019 [76] Pixel attentive PPO

Data driven approach which
learned optimal grasps through

trial and error. Pixel attentive
method cropped image to focus
on local region containing ideal

grasp candidates

Pybullet

Simulation and Robotic
Testing: 0.911–0.967.

Accuracy changed based
on the density of

the clutter

S: Excellent alignment between simulation and
real enviroments. Useful data presented which

compared camera orientation and grasp accuracy
W:Three finger gripper may contribute to high

picking success rate. Most standard grippers are
planar (2 fingers)

Deng et al., 2019 [77]
Deep Q-Network (DQN)

implemented to select actions
based on affordance map

Data driven model-free approach
in which lifting point candidates

were selected based on
affordance map showing “hot

spots” or ideal grasp candidate
locations in the RGBD image.

V-REP Robotic Testing: Picking:
~0.71

S: Novel robotic arm design effective for selection
of randomly oriented objects in a clutter.

W: Picking operation success rate was only 11%
better then random grasp actions (very poor)

Beltran-Hernandez et al., 2019 [78] Guided policy search, with image
input and grasp pose as output.

Model-based approach. The
agent was trained on basic
shapes and then tested on

complex geometries

Gazebo (ODE Base) Simulation Testing:
Picking: 0.8–1

S: Approach shows significant controbution to the
space by showing effectiveness of using model

based techniques for grasping unfamiliar objects
W: No online testing to validate

simulation accuracy

Berscheid et al., 2019 [79]
Modified Q-learning. Upper

confidence bound for off-policy
exploration.

Model-free approach which
implemented NN to generate

action values

Online Testing. 25,000
grasps trained in 100 h

Robotic Testing: Picking:
0.92 (with object shifting)

S: High picking accuracy and good recognition of
required shifts

W: Time-consuming online training required

Kim et al., 2020 [80]
A2C with state representation

learning (SLR). Involves learning
a compressed state representation

Data driven approach which
implemented raw image

disentanglement
Pybullet Simulation Testing:

Picking: 0.72

S: Computationally affordable grasping action
W: Low picking accuracy. No online testing to

validate simulation accuracy

Robotics 2021, 10, 105 22 of 27

Wu et al. [76] designed a custom robot which implements a 3 finger gripper to pick
objects out of a clutter of 2–30 objects. The study demonstrated that attention improved the
picking action in cluttered scenes by ~20% and implementing a 3-finger gripper improved
object selection by ~45%. To apply this technique to the full pick-and-place operation,
additional task programming is required for precision placement.

Deng et al. [77] designed a custom robotic hand to be used for picking objects out
of a cluttered scene with a series of fingers and a suction rod. The mode of selection
allowed for a simple convolutional NN structure to be used for selecting ideal grasp
locations. During testing, grasp failure occurred if 3 consecutive grasp attempts were not
completed sequentially. Task simplicity and low-test accuracy limits this approach for real
world application.

Beltran-Hernandez et al. [78] performed the task of picking simple geometry items
(cylinder, cube, and sphere) during simulation training. Accuracy for simulation testing on
random objects (duck, nut, mechanical part) was high, especially considering the major
differences between the trained models and the test samples. The approach was model
based, so it could be easily extended to incorporate high precision placement.

Berscheid et al. [79] completed the robotic task of manipulating and picking a variety
of objects in a clutter with the application of Q-Learning. Results indicate high picking
effectiveness and generalizability. Training was completed online, without the use of a
simulation model. The task definition did not include placement, but the picking action
included a high level of difficulty. To apply this algorithm to the full pick-and-place action
sequence, additional task programming is required to include precision placement.

Kim et al. [80] completed the task of picking up unknown target objects in a highly
cluttered scene by using disentanglement of image input. The goal of this approach was
to reduce the computational difficulty of performing a pick action. A key contribution of
this paper is showing the value in creating a low dimensional state representation of the
target object with the use of autoencoders. Additionally, this paper investigated the value
of implementing disentanglement to allow simple scene recognition to guide behavior. The
disentanglement approaches include attention, separation of internal (robot) and external
(scene) information, and separation of position and appearance in the scene.

Many other papers exist, which can be applicable for subtasks of pick-and-place,
however most of them could not be easily extended to the entire operation. For more
samples of individual grasping techniques for the pick action, this author recommends the
review of [12].

8.3. Critical Discussion

The literature discussed above shows that significant progress has been made towards
developing a RL approach which can be applied to robotics, however there are several
issues with each approach. Additional research is required for validating simulations,
reducing the loss in accuracy from crossing the reality gap, testing task variations, and
lowering the amount of human intervention required.

Only 40% of the literature analyzed above includes results for online testing. Most of
the research only included data on testing the models in simulation, wherein the dynamics
are completely dependent on accurate modeling. To validate that the various methods are
accurate and implementable in real life, further testing is required.

Of the manuscripts examined, several had robotic testing accuracies which were
significantly lower than simulated accuracies [17,68]. Deviation between simulated and
testing accuracies indicate that problems with bridging the reality gap require further
investigation. As previously noted, training robotic agents online requires extensive time
and equipment availability [28]. For RL to be applicable for robotic pick-and-place in
industry, simulations must be developed in a way that allows for knowledge learned in
simulation to be accurately transfer to the real world.

The literature includes many examples where the task involved simple pick-and-place
with blocks or spheres in an isolated scene [62,63,68–72]. This type of task is rare in an

Robotics 2021, 10, 105 23 of 27

industrial environment, as most tasks involve a cluttered scene with specific placement
requirements. Additional real and simulated testing is required to validate the accuracy of
these approaches for more realistic tasks.

The methodologies which achieved robotic test accuracies high enough to be consid-
ered for application in industry, such as [61,71] required extensive human intervention.
Task decomposition significantly speeds up learning and improves overall accuracy, how-
ever this method requires human involvement. The research must be extended to include
methods for automatic task decomposition, or to develop strategies for task decomposition
which do not require significant effort.

9. Open Problems

RL with robotics is a young and growing field which has many open problems to
consider. The key problems include the lack of generalizability, the fostering of curiosity,
and pose selection.

Problem generalization is an open topic, which relates to the issue of applying learning
from the training set to a broader spectrum of problems. Ref. [78] gave an excellent example
of a technique that can scale a crude model to a large test set, however, this approach still
requires online testing.

Another quandary to be solved is finding a method to teach the agent to learn inde-
pendently with intrinsic motivation. Sutton and Barto describe this idea as “curiosity” [15].
The goal is to enable the agent to learn tasks that may be useful in the future on its own, in
order that the robotic arm could be more universally applicable.

Grasp pose selection is another open problem which significantly affects the pick-and-
place task. The literature presented samples of pose selection which implemented grasp
search or model recognition. Grasp search approaches proved to be reasonably effective
when combined with focus, iterative zooming, or scene rearrangement [55,77], however
this approach had mixed results when trained end-to-end. Model-based approaches
generically performed well, however this approach was limited to tasks involving familiar
target objects.

10. Conclusions and Future Work

This literature survey has shown that RL has potential to replace traditional robotic
control. Several implementations show promising results for enabling robotic arms to
perform basic pick-and-place actions consistently with high accuracy. The existing literature
is optimistic; however, more research must be completed for open problems such as
problem generalization, independent learning and grasp pose search.

To improve task generalizability, training could be extended to include a large sam-
ple set. None of the research reviewed in this paper presented pick-and-place actions
where the targets between each action were drastically different. Generalizing the training
samples could make the pick-and-place task more widely applicable. The idea is concep-
tually equivalent to domain randomization in which the task is randomized rather than
the environment.

Self-motivated learning could be developed for the robotic agents, by rewarding
“play”. The agent could be taught to extend their learning by completing a self-selected
activity. The explorative “play” actions could be used to optimize other tasks that are
currently completed in a specific way to maximize the reward function. Intrinsically
motivated rewards could allow the agent to explore new actions for future use [15].

Grasp pose selection could be optimized by combining the model-based and model-
free techniques for pose estimation. The agent could implement a large bank of models
for application with familiar target objects. In circumstances where no model matches
the target object with a high accuracy, the agent could instead implement a model-free
approach. This combined model-free and model-based approach could be developed to
replicate the human approach of identification. Humans identify objects by mapping them

Robotics 2021, 10, 105 24 of 27

onto previously seen samples. If no sample is available, a human creates a new model for
the object based on the new input.

RL shows promise for implementation in the future. By applying cutting edge policy
learning techniques, robotic pick-and-place tasks can be trained with minimal human
intervention and high accuracy [71]. Because of the nature of the learning process, similar
manipulation tasks with comparable difficulty could be trained with minor adjustments of
reward functions. For the field to continue to grow, further research is required to address
the open problems of generalizability, self-motivation, and grasp selection.

Author Contributions: Conceptualization, A.L.; methodology, A.L.; writing—original draft prepara-
tion, A.L.; writing—review and editing, Y.Q.; supervision, H.-J.K.; project administration, Y.Q.; fund-
ing acquisition, H.-J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was Korea Electrotechnology Research Institute (KERI), through Korea-
Canada AI Research Program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chang, G.; Stone, W. An effective learning approach for industrial robot programming. In Proceedings of the 2013 ASEE Annual

Conference & Exposition, Atlanta, Georgia, 23–26 June 2013.
2. Massa, D.; Callegari, M.; Cristalli, C. Manual Guidance for Industrial Robot Programming. Ind. Robot Int. J. 2015, 457–465.

[CrossRef]
3. Biggs, G.; MacDonald, B. Survey of robot programming systems. In Proceedings of the Australasian Conference on Robotics and

Automation, Brisbane, Australia, 1–3 December 2003; p. 27.
4. Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008.
5. Craig, J.J. Introduction to Robotics Mechanics and Control; Pearson Education International: Upper Saddle River, NJ, USA, 2005.
6. Hughes, C.; Hughes, T. Robotic Programming: A Guide to Controlling Autonomous Robots; Que: Indianapolis, IN, USA, 2016.
7. Kumar Saha, S. Introduction to Robotics, 2nd ed.; McGraw Hill Education: New Delhi, India, 2014.
8. Ajaykumar, G.; Steele, M.; Huang, C.-M. A Survey on End-User Robot Programming. arXiv 2021, arXiv:2105.01757. [CrossRef]
9. Gasparetto, A.; Scalera, L. A Brief History of Industrial Robotics in the 20th Century. Adv. Hist. Stud. 2019, 8, 24–35. [CrossRef]
10. Ballestar, M.T.; Díaz-Chao, A.; Sainz, J.; Torrent-Sellens, J. Impact of Robotics on Manufacturing: A Longitudinal Machine

Learning Perspective. Technol. Forecast. Soc. Chang. 2020, 162, 120348. [CrossRef]
11. Pedersen, M.R.; Nalpantidis, L.; Andersen, R.S.; Schou, C.; Bøgh, S.; Krüger, V.; Madsen, O. Robot Skills for Manufacturing: From

Concept to Industrial Deployment. Robot. Comput. Integr. Manuf. 2006, 37, 282–291. [CrossRef]
12. Mohammed, M.Q.; Chung, K.L.; Chyi, C.S. Review of Deep Reinforcement Learning-Based Object Grasping: Techniques, Open

Challenges, and Recommendations. IEEE Access 2020, 8, 178450–178481. [CrossRef]
13. Liu, R.; Nageotte, F.; Zanne, P.; de Mathelin, M.; Dresp-Langley, B. Deep Reinforcement Learning for the Control of Robotic

Manipulation: A Focussed Mini-Review. MDPI Robot. 2021, 10, 1–13.
14. Tai, L.; Zhang, J.; Liu, M.; Boedecker, J.; Burgard, W. Survey of Deep Network Solutions for Learning Control in Robotics: From

Reinforcement to Imitation. arXiv 2016, arXiv:1612.07139.
15. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction; The MIT Press: Cambridge, MA, USA; London, UK, 2018.
16. Kober, J.; Bagnell, A.; Peters, J. Reinforcement Learning in Robotics: A Survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
17. Fu, J.; Levine, S.; Abbeel, P. One-shot learning of manipulation skills with online dynamics adaptation and neural network priors.

Proceeding of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14
October 2016; IEEE: New York, NY, USA, 2016; pp. 4019–4026.

18. Lewis, F.; Dawson, D.; Abdallah, C. Robotic Manipulator Control Theory and Practice, 2nd ed.; Revised and Expanded; Marcel
Kekker, Inc.: New York, NY, USA, 2005.

19. Gualtieri, M.; Pas, A.; Platt, R. Pick and Place without Geometric Object Models; IEEE: Brisbane, QLD, Australia, 2018; pp. 7433–7440.
20. Stapelberg, B.; Malan, K.M. A Survey of Benchmarking Frameworks for Reinforcement Learning. South Afr. Comput. J. 2020, 32.

[CrossRef]
21. Ng, A.Y.; Harada, D.; Russell, S. Policy Invariance under Reward Transformations Theory and Application to Reward Shaping.

In Proceedings of the Sixteenth International Conference on Machine Learning, San Francisco, CA, USA, 27–30 June 1999; pp.
278–287.

22. Gualtieri, M.; Platt, R. Learning 6-DoF Grasping and Pick-Place Using Attention Focus. In Proceedings of the 2nd Conference on
Robot Learning, Zürich, Switzerland, 29 October 2018.

23. Kleeberger, K.; Bormann, R.; Kraus, W.; Huber, M. A Survey on Learning-Based Robotic Grasping. Curr. Robot. Rep. 2020, 239–249.
[CrossRef]

http://doi.org/10.1108/IR-11-2014-0413
http://doi.org/10.1145/3466819
http://doi.org/10.4236/ahs.2019.81002
http://doi.org/10.1016/j.techfore.2020.120348
http://doi.org/10.1016/j.rcim.2015.04.002
http://doi.org/10.1109/ACCESS.2020.3027923
http://doi.org/10.1177/0278364913495721
http://doi.org/10.18489/sacj.v32i2.746
http://doi.org/10.1007/s43154-020-00021-6

Robotics 2021, 10, 105 25 of 27

24. Atkeson, C.; Santamaria, J. A Comparison of Direct and Model-Based Reinforcement Learning. In Proceedings of the 1997 IEEE
International Conference on Robotics and Automation, Albuquerque, NM, USA, 25 April 1997.

25. Sigaud, O.; Buffet, O. Markov Decision Processes in Artificial Intelligence, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010.
26. Russell, S.; Norvig, P. Artificial Intelligence A Modern Approach, 4th ed.; Pearson Education, Inc.: Hoboken, NJ, USA.

ISBN 978-0-13-461099-3.
27. Deisenroth, M.P.; Neumann, G.; Peters, J. A Survey on Policy Search for Robotics. Found. Trends Robot. 2013, 2, 1–114. [CrossRef]
28. Levine, S.; Koltun, V. Guided policy search. In Proceedings of the Machine Learning Research, Journal of Machine Learning

Research, Atlanta, GA, USA, 16 June 2013; Volume 28, pp. 1–9.
29. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep

Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24
June 2016; Volume 48, pp. 1928–1937.

30. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the 31st International Conference on Machine Learning, Beijing, China, 16 June 2016; Volume 32.

31. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Oleg Klimov Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

32. Laud, A.D. Theory and Application of Reward Shaping in Reinforcement Learning; University of Illinois at Urbana-Champaign:
Champaign, IL, USA, 2004. ISBN 0496782142.

33. Nagpal, R.; Krishnan, A.U.; Yu, H. Reward Engineering for Object Pick and Place Training. arXiv 2020, arXiv:2001.03792.
34. Grzes, M.; Kudenko, D. Learning shaping rewards in model-based reinforcement learning. In Proceedings of the AAMAS 2009

Workshop on Adaptive Learning Agents, Budapest, Hungary, 12 May 2009; Volume 115, p. 30.
35. Mataric, M.J. Reward functions for accelerated learning. In Machine Learning Proceedings, Proceedings of the Eleventh International

Conference, Rutgers University, New Brunswick, NJ, USA, 10–13 July 1994; Elsevier: Amsterdam, The Netherlands, 1994; pp. 181–189.
36. Luo, Y.; Dong, K.; Zhao, L.; Sun, Z.; Zhou, C.; Song, B. Balance between Efficient and Effective Learning: Dense2sparse Reward

Shaping for Robot Manipulation with Environment Uncertainty. arXiv 2020, arXiv:2003.02740.
37. Jang, S.; Han, M. Combining reward shaping and curriculum learning for training agents with high dimensional continuous

action spaces. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence
(ICTC), Jeju Island, Korea, 17–19 October 2018; IEEE: New York, NY, USA, 2018; pp. 1391–1393.

38. Tenorio-Gonzalez, A.C.; Morales, E.F.; Villasenor-Pineda, L. Dynamic Reward Shaping: Training a Robot by Voice. In Proceedings
of the Ibero-American Conference on Artificial Intelligence, Bahía Blanca, Argentina, 1–5 November 2010; Springer: New York,
NY, USA, 2010; pp. 483–492.

39. Konidaris, G.; Barto, A. Autonomous shaping: Knowledge transfer in reinforcement learning. In Proceedings of the 23rd
International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 489–496.

40. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
41. Ng, A.; Russell, S. Algorithms for Inverse Reinforcement Learning. In Proceedings of the Seventeenth International Conference

on Machine Learning, San Francisco, CA, USA, 29 June–2 July 2000.
42. Osa, T.; Pajarinen, J.; Neumann, G.; Bagnell, J.A.; Abbeel, P.; Peters, J. An Algorithmic Perspective on Imitation Learning. Found.

Trends Robot. 2018, 7, 1–179. [CrossRef]
43. Ho, J.; Ermon, S. Generative Adversarial Imitation Learning. Adv. Neural Inf. Process. Syst. 2016, 29, 4565–4573.
44. Stephane Ross Interactive Learning for Sequential Decisions and Predictions. Ph.D. Thesis, The Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA, USA, 2013.
45. Pomerleau, D.A. Alvinn: An Autonomous Land Vehicle in a Neural Network; Technical Report; Carnegie—Mellon University,

Artificial Intelligence and Psychology: Pittsburgh, PA, USA, 1989.
46. Farag, W.; Saleh, Z. Behavior Cloning for Autonomous Driving Using Convolutional Neural Networks. In Proceedings of the

2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakhier,
Bahrain, 18–19 November 2018; IEEE: New York, NY, USA, 2018.

47. Abbeel, P.; Ng, A.Y. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the Twenty-First International
Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 1.

48. Bohg, J.; Morales, A.; Asfour, T.; Kragic, D. Data-Driven Grasp Synthesis—A Survey. IEEE Trans. Robot. 2016, 30, 289–309.
[CrossRef]

49. Hodan, T.; Matas, J.; Obdrzalek, S. On evaluation of 6D object pose estimation. In Proceedings of the European Conference on
Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016.

50. Brégier, R.; Devernay, F.; Leyrit, L.; Crowley, J.L. Defining the Pose of Any 3D Rigid Object and an Associated Distance. Int. J.
Comput. Vis. 2017, 126, 571–596. [CrossRef]

51. Gualtieri, M.; Ten Pas, A.; Saenko, K.; Platt, R. High precision grasp pose detection in dense clutter. In Proceedings of the
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; IEEE:
New York, NY, USA, 2016.

52. Suarez, R.; Roa, M. Grasp Quality Measures: Review and Performance. Auton. Robot. 2014, 38, 65–88.
53. Sahbani, A.; El-Khoury, S.; Bidaud, P. An Overview of 3D Object Grasp Synthesis Algorithms. Robot. Auton. Syst. 2011, 60,

326–336. [CrossRef]

http://doi.org/10.1561/2300000021
http://doi.org/10.1613/jair.301
http://doi.org/10.1561/2300000053
http://doi.org/10.1109/TRO.2013.2289018
http://doi.org/10.1007/s11263-017-1052-4
http://doi.org/10.1016/j.robot.2011.07.016

Robotics 2021, 10, 105 26 of 27

54. Jiang, Y.; Moseson, S.; Saxena, A. Efficient grasping from rgbd images: Learning using a New Rectangle Representation. In
Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011.

55. Zeng, A.; Song, S.; Yu, K.-T.; Donlon, E.; Hogan, F. Robotic pick-and-place of novel objects in clutter with multi-affordance grasping
and cross-domain image matching. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018; IEEE: New York, NY, USA, 2018; pp. 3750–3757.

56. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring deep neural networks
from simulation to the real world. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: New York, NY, USA, 2017; pp. 23–30.

57. Huang, S.-W.; Lin, C.-T.; Chen, S.-P.; Wu, Y.-Y.; Hsu, P.-H.; Lai, S.-H. Cross Domain Adaptation with GAN-Based Data Aug-
mentation. In Proceedings of the Lecture Notes in Computer Science: Computer Vision—ECCV 2018, Munich, Germany,
8–14 September 2018; Springer: New York, NY, USA, 2018; Volume 11213, ISBN 978-3-030-01240-3.

58. Ivaldi, S.; Padois, V.; Nori, F. Tools for Dynamics Simulation of Robots: A Survey based on User Feedback; IEEE: Madrid, Spain, 2014;
pp. 842–849.

59. Erez, T.; Tassa, Y.; Todorov, E. Simulation tools for model-based robotics: Comparison of bullet, Havok, MuJoCo, ODE and PhysX.
In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May
2015; IEEE: New York, NY, USA, 2015; pp. 4397–4404.

60. Popov, I.; Heess, N.; Lillicrap, T.; Hafner, R.; Barth-Maron, G.; Vecerik, M.; Lampe, T.; Tassa, Y.; Erez, T.; Riedmiller, M.
Data-Efficient Deep Reinforcement Learning for Dexterous Manipulation. arXiv 2017, arXiv:1704.03073.

61. Mahler, J.; Goldberg, K. Learning deep policies for robot bin picking by simulating robust grasping sequences. In Proceedings of
the 1st Annual Conference on Robot Learning, Mountain View, CA, USA, 13 November 2017; pp. 515–524.

62. Sehgal, A.; La, H.; Louis, S.; Nguyen, H. Deep reinforcement learning using genetic algorithm for parameter optimization. In
Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019;
IEEE: New York, NY, USA, 2019.

63. Zuo, G.; Lu, J.; Chen, K.; Yu, J.; Huang, X. Accomplishing robot grasping task rapidly via adversarial training. In Proceedings of
the 2019 IEEE International Conference on Real-Time Computing and Robotics, Irkutsk, Russia, 4 August 2019.

64. Chen, C.; Li, H.Y.; Zhang, X.; Liu, X.; Tan, U.X. Towards robotic picking of targets with background distractors using deep
reinforcement learning. In Proceedings of the 2nd WRC Symposium on Advanced Robotics and Automation 2019, Beijing, China,
21 August 2019; IEEE: New York, NY, USA, 2019.

65. Xiao, Y.; Katt, S.; Ten Pas, A.; Chen, S.; Amato, C. Online planning for target object search in clutter under partial observability. In
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20 May 2019;
IEEE: New York, NY, USA, 2019.

66. Liu, D.; Wang, Z.; Lu, B.; Cong, M.; Yu, H.; Zou, Q. A Reinforcement Learning-Based Framework for Robot Manipulation Skill
Acquisition. IEEE Access 2020, 8, 108429–108437. [CrossRef]

67. Mohammed, M.Q.; Chung, K.L.; Chyi, C.S. Pick and Place Objects in a Cluttered Scene Using Deep Reinforcement Learning. Int.
J. Mech. Mechatron. Eng. 2020, 20, 50–57.

68. Li, B.; Lu, T.; Li, J.; Lu, N.; Cai, Y.; Wang, S. ACDER: Augmented curiosity-driven experience replay. In Proceedings of the 2020
IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4218–4224.

69. Pore, A.; Aragon-Camarasa, G. On simple reactive neural networks for behaviour-based reinforcement learning. In Proceedings
of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 August 2020.

70. Al-Selwi, H.F.; Aziz, A.A.; Abas, F.S.; Zyada, Z. Reinforcement learning for robotic applications with vision feedback. In
Proceedings of the 2021 IEEE 17th International Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia,
5 March 2021; IEEE: New York, NY, USA, 2021.

71. Marzari, L.; Pore, A.; Dall’Alba, D.; Aragon-Camarasa, G.; Farinelli, A.; Fiorini, P. Towards Hierarchical Task Decomposition
Using Deep Reinforcement Learning for Pick and Place Subtasks. arXiv 2021, arXiv:2102.04022.

72. Anca, M.; Studley, M. Twin delayed hierarchical actor-critic. In Proceedings of the 2021 7th International Conference on
Automation, Robotics and Applications (ICARA), Prague, Czech Republic, 4 February 2021; IEEE: New York, NY, USA, 2021.

73. Morrison, D.; Corke, P.; Leitner, J. Closing the Loop for Robotic Grasping: A Real-Time, Generative Grasp Synthesis Approach.
arXiv 2018, arXiv:1804.05172.

74. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et al.
Scalable deep reinforcement learning for vision-based robotic manipulation. In Proceedings of the 2nd Conference on Robot
Learning, Zürich, Switzerland, 29–31 October 2018.

75. Finn, C.; Levine, S.; Abbeel, P. Guided Cost Learning: Deep inverse optimal control via policy optimization. In Proceedings of the
33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Volume 48. JMLR.

76. Wu, B.; Akinola, I.; Allen, P.K. Allen pixel-attentive policy gradient for multi-fingered grasping in cluttered scenes. In Proceedings
of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4 November 2019; IEEE:
New York, NY, USA, 2019.

77. Deng, Y.; Guo, X.; Wei, Y.; Lu, K.; Fang, B.; Guo, D.; Liu, H.; Sun, F. Deep reinforcement learning for robotic pushing and picking
in cluttered environment. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Macau, China, 4 November 2019.

http://doi.org/10.1109/ACCESS.2020.3001130

Robotics 2021, 10, 105 27 of 27

78. Beltrain-Hernandez, C.; Damien, P.; Harada, K.; Ramirez-Alpizar, I. Learning to Grasp with Primitive Shaped Object Policies.
2019 IEEE/SICE Int. Symp. Syst. Integr. 2019, 468–473. [CrossRef]

79. Berscheid, L.; Meißner, P.; Kröger, T. Robot learning of shifting objects for grasping in cluttered environments. In Proceedings of
the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 3–8 November 2019.

80. Kim, T.; Park, Y.; Park, Y.; Suh, I.H. Acceleration of Actor-Critic Deep Reinforcement Learning for Visual Grasping in Clutter by
State Representation Learning Based on Disentanglement of a Raw Input Image. arXiv 2020, arXiv:2002.11903v1.

http://doi.org/10.1109/SII.2019.8700399

	Introduction
	Robotics Background
	Related Work
	Scope of Review

	RL Formulation
	Markov Decision Process
	RL for Pick-and-Place in Robotics

	Policy Optimization
	Value Function Approach
	Value Functions
	Dynamic Programming
	Model-Free Techniques

	Policy Search Approach
	REINFORCE
	Actor-Critic Methods
	Deterministic Policy Gradient
	Proximal Policy Optimization

	Summary

	Reward Shaping
	Imitation (Apprenticeship) Learning
	Behavior Cloning
	Inverse Reinforcement Learning

	Pose Estimation for Grasp Selection
	Simulation Environment
	Analysis
	State of Research—Complete Pick-and-Place Task
	State of Research—Pick-and-Place Subtasks
	Critical Discussion

	Open Problems
	Conclusions and Future Work
	References

