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Abstract: Dynamic parameters are crucial for the definition of high-fidelity models of industrial
manipulators. However, since they are often partially unknown, a mathematical model able to
identify them is discussed and validated with the UR3 and the UR5 collaborative robots from
Universal Robots. According to the acquired experimental data, this procedure allows for reducing
the error on the estimated joint torques of about 90% with respect to the one obtained using only
the information provided by the manufacturer. The present research also highlights how changes in
the robot operating conditions affect its dynamic behavior. In particular, the identification process
has been applied to a data set obtained commanding the same trajectory multiple times to both
robots under rising joints temperatures. Average reductions of the viscous friction coefficients of
about 20% and 17% for the UR3 and the UR5 robots, respectively, have been observed. Moreover,
it is shown how the manipulator mounting configuration affects the number of the base dynamic
parameters necessary to properly estimate the robots’ joints torques. The ability of the proposed
model to take into account different mounting configurations is then verified by performing the
identification procedure on a data set generated through a digital twin of a UR5 robot mounted on
the ceiling.

Keywords: collaborative robotics; industrial robots; dynamic identification

1. Introduction

Detailed knowledge of robot dynamic parameters can be beneficial for several appli-
cations. However, in contrast with the kinematic ones, these values are usually not fully
provided by the manufacturer. As an example, Universal Robots, one of the main brands
in collaborative robotics, details only the expected values of the mass and the position
of the center of mass of each joint/link of its manipulators [1], for a total of 24 (4 × 6)
parameters. On the other hand, the remaining 54 (9 × 6), which include links and motors
inertia and Coulomb and viscous friction, remain unknown, thus preventing the definition
of accurate dynamic models. According to [2,3], this is of primary importance for control
algorithms currently adopted for industrial manipulators which often rely on control strate-
gies far more complex than simple Proportional-Integral-Differential (PID) ones [4]. On the
other hand, a different approach could be derived from [5], where deterministic artificial
intelligence has been effectively used to learn the dynamic properties of an unmanned
underwater vehicle for autonomous trajectory generation and control.

Moreover, an imprecise estimate of the torques required to execute the desired trajec-
tory could negatively influence the effectiveness of algorithms used to provide performance
indexes to evaluate the energy consumption of a manipulator [6], or to define optimal
trajectories to minimize the power required by the robot without compromising its pro-
ductivity [7,8]. Since these methods use the Lagrange formulation [9], more accurate
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knowledge of the dynamic parameters of the robot arm could lead to a better estimate of
the joints torques.

High-Fidelity (HF) mathematical models could be also used for diagnostics and
prognostics purposes. To do so, most of the algorithms currently employed rely on data-
driven methods, which need to be trained on large data sets representative of the statistical
distribution of the system behavior in both nominal and off-nominal conditions [10].
However, since the Mean Time Between Failures (MTBF) of a robot is in the order of tens
of thousands of hours [11], there is a general lack of data associated with operation under
degraded health conditions. To overcome this limitation, and quickly generate extensive
data sets through which design and evaluate dedicated prognostic routines, simulated
faults and failures can be inserted in the HF model of the manipulator. The effectiveness
of this approach in industrial robots applications is discussed in [12], where prognostics
routines have been applied to predict fault and failures in a roller hemming head mounted
on a 5 DOF manipulator. Given these premises, reliable results can be obtained through the
exact definition of both the kinematic and dynamic parameters of the robot arm, as well as
through the modeling of its components.

Diagnostics and prognostics algorithms are crucial not only to minimize downtimes
and economical losses in production or assembly lines, but also to guarantee the safety
of the operator who is sharing his workspace with the robot. Despite the old idea of
industrial automation where robots are surrounded by fences and cages to which access is
usually restricted, in tasks involving Human–Robot Collaboration (HRC), the worker and
the machine operate in close proximity as in the case of hand-over applications analyzed
in detail in [13]. According to the norms in force, such cooperation is feasible only if
the operator’s safety is always guaranteed. A possible solution consists of preventing
an impact between the operator and the robot arm by implementing collision avoidance
algorithms [14,15]. An example of a practical implementation of this approach has been
proposed by [16], where a human–robot assembly task is disclosed. However, especially
in the case of continuous cooperation of the worker and the robot, advanced algorithms
for human–robot workspace sharing cannot always be developed with a satisfying safety
level. As a consequence, norms require the development of the application so that the
negative effects of possible undesired events would be minimized. To do so, energy
approaches are often used to estimate the kinetic energy of the manipulator, which must
always be under a specific threshold defined according to the possible impact zones on the
worker’s body. Within this framework, a more reliable risk assessment can be reached by
accurately identifying the dynamic parameters of the robot adopted. Offline simulators,
effectively used to program the movements of the manipulator, often do not fully take
into account its dynamic properties. Then, the kinetic energy of the robot, evaluated over
its entire trajectory, does not reflect the one of the real system. This could lead to label
as safe an application that is actually not. Within this framework, since the experimental
campaign has been carried out using two largely adopted collaborative robots, the UR3
and UR5 manipulators from Universal Robots, the present research also aims to provide
a tool for a fast and reliable classification of human–robot collaborative tasks into safe or
hazardous ones.

A simple approximation of the dynamic parameters can be obtained from the CAD
models of the robot arm provided by the manufacturer. However, since complex com-
ponents, like the joints, are not modeled in detail and friction cannot be considered, this
method is usually not effective. A better solution is proposed in [17], where a sequential
identification of the dynamic properties of manipulator links is performed. Nevertheless,
this is not optimal since error propagation and accumulation from one step to the next
one negatively affect the algorithm performance. On the contrary, by identifying the robot
dynamic parameters in a single step, the effect of the error is reduced, and the time required
for the entire process is minimized. Due to the better results provided by this approach,
recent studies have been using it for several industrial manipulators. As an example, in [18]
the dynamic parameters of a four Degrees Of Freedom (DOF) robot have been identified,
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while in [19] the case of a six DOF robot arm mounted on a linear axis has been analyzed.
Other studies, involving seven DOF collaborative robots, can be found in [20,21], where the
inertial parameters of an ABB IRB14000 (YuMi) and a Franka Panda Emika, respectively,
have been estimated.

To guarantee a complete and reliable identification of the robot dynamic parameters,
specifically designed trajectories are commanded to the manipulators. To do so, different
approaches, as B-splines adopted in [22] and fifth order polynomials used in [23,24] for a
three DOF robot and in [25] for a six DOF manipulator, can be found in the literature. How-
ever, other authors [19,26,27] preferred Finite Fourier Series (FFS) due to their advantages
in signal processing and noise reduction [28].

The present paper describes the algorithm implemented to identify the dynamic
parameters of an industrial manipulator. Similar work can be found in [26], where the
dynamic calibration of a UR5 collaborative robot has been carried out. However, simplify-
ing assumptions based on the manipulator geometry have been implemented, leading to
the definition of a mathematical model effective only with that specific machine. On the
contrary, a more general approach, as in [29], has been used in this research, allowing the
proposed methodology to be easily adapted to different industrial robots. In particular, the
flexibility and the reliability of the developed mathematical model have been tested during
an experimental campaign carried out with the collaborative robots UR3 and UR5.

The novelty of the present work relies on the fact that, despite other similar stud-
ies [18–21,26], the effects of temperature and mounting configuration on the robot dynamics
have been taken into account and investigated with the same procedure used for the identi-
fication of the robot inertial parameters, while in studies like [30,31], friction coefficients
were estimated by exciting one joint at the time through a customized trajectory. Since
in the literature the dynamic parameters of a manipulator are identified only once, their
variations, caused by changes in the robot working conditions, are not considered, leading
to possible wrong estimates of the joints torques. As an example, joints temperatures
vary during a task and they can be responsible for up to half the amount of the friction
torque [32]. The effect of temperature on the dynamic parameters, and in particular on
joints viscous friction coefficients, has been studied and quantified by repeating several
times the identification process for both robots.

Moreover, since industrial manipulators are often positioned on the ground or on
a horizontal bench, previous studies have been focused on the identification of the base
dynamic parameters only in such scenarios [19,26,29]. Nevertheless, due to their high
flexibility, reduced weight, and compact dimensions, collaborative robots can be easily
mounted in several configurations. The mathematical model has been developed to be
easily adapted to different setups to guarantee reliable estimates of the joints torques.

In addition, by mounting the robot such that the axis of its first joint is not aligned
with the gravitational acceleration vector, it is possible to identify two additional base
dynamic parameters, that are otherwise not identifiable. The importance of the definition
of the robot mounting configuration is highlighted by estimating the joints torques of a
digital twin of the UR5 mounted on the ceiling using the official offline simulator (URSim)
developed by the same manufacturer.

2. Experimental Setup

The research campaign has been carried out using the collaborative robots UR3 and
UR5. The commands were given to the robots using port 29999, while the feedback signals
were acquired at a frequency of 125 Hz using port 30003 [33]. The data necessary for the
proposed application are the joint temperatures, angular positions and velocities, and the
motors currents. These last values have been used to calculate the joints torques at each
trajectory point k by multiplying the motors currents, the gear ratio (G), equal to 101 for
both the UR3 and the UR5, and the torque constants reported in Table 1.
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Table 1. Torque constant for each joint of the UR3 and the UR5 used in the experimental campaign.

Robot Kt1 [Nm/A] Kt2 [Nm/A] Kt3 [Nm/A] Kt4 [Nm/A] Kt5 [Nm/A] Kt6 [Nm/A]

UR3 0.1249 0.1249 0.0934 0.0453 0.0453 0.0453
UR5 0.1350 0.1361 0.1355 0.0957 0.0865 0.0893

Since the joints angular accelerations are not provided, they were obtained by deriving
the angular velocities. To minimize the effect of noise in the data, filtering techniques, as
suggested in [19,26], have been adopted for all signals.

3. Mathematical Model of the Industrial Manipulator

By considering the robot as a rigid body, its dynamic behavior can be described by a
Lagrangian energy-based approach [9] which leads, for a n-DOF manipulator, to write:

M(q)
..
q + C

(
q,

.
q
) .
q + F

( .
q
)
+ G(q) = τ (1)

where M (q) ∈ Rn×n is the symmetric positive definite mass matrix, C
(
q,

.
q
)
∈ Rn×n

is the Coriolis and centripetal coupling matrix, F
( .
q
)
∈ Rn. is the friction force vec-

tor, G (q) ∈ Rn is the gravitational force vector, τ ∈ Rn is the joints torques vector
while q,

.
q,

..
q ∈ Rn are, respectively, the generalized joints angular positions, velocities,

and accelerations.
However, for the proposed application, it is necessary to rewrite Equation (1) with

respect to a set of dynamic parameters p ∈ R13n [26] as:

Y
(
q,

.
q,

..
q
)
· p = τ (2)

where Y ∈ Rn×13n is called regression matrix or regressor. The robot geometric parameters
used to build Y are the ones specified by the manufacturer [1]. Even though Universal
Robots provides, for each robot, the corrections to the Denavit–Hartenberg (DH) parameters
as a result of the kinematic calibration procedure, they cannot be implemented in a dynamic
model of the manipulator. This is related to the fact that these values have been calculated
to optimize the position accuracy of the manipulator Tool Center Point (TCP) via numerical
optimization without taking into account their physical meaning. As an example, for
the UR5 adopted in this study, some link lengths have negative values which, even if
impossible from a physical point of view, allow a correct estimate of TCP poses derived
using forward kinematics. Nevertheless, since possible mismatches among nominal and
real DH parameters are related to production tolerances and mounting errors, their values
are expected to be small. As a consequence, their influence on the calculation of the
dynamic parameters and the predicted joints torques can be neglected.

Moreover, the regressor matrix is also a function of the mounting configuration. This
has been implemented in Y while defining the kinematic chain of the robot arm. To do this,
the first DH matrix, which describes the position and the orientation of the first robot joint
with respect to its base, has been multiplied by the 3 × 3 rotation matrix WAB defined as:
WAB = R(ψ, ϕ, θ) = Rot (z, θ) · Rot (y, ϕ) · Rot (x, ψ)

WAB =

 cos ϕ cos θ cos θ · sin ϕ · sin ψ− sin θ · cos ψ cos θ · sin ϕ · cos ψ + sin θ · sin ψ
sin θ · cos ϕ sin θ · sin ϕ · sin ψ + cos θ · cos ψ sin θ · sin ϕ · cos ψ − cos θ · sin ψ
−sin ϕ cos ϕ · sin ψ cos ϕ · cos ψ

 (3)

where ψ, ϕ, and θ are, respectively, the roll, pitch, and yaw angles describing the orientation
between the robot base (B) and the fixed world (W) reference frames. So, in a common
scenario where B and W are aligned, as for the robots mounted on the ground, it would
be ψ = ϕ = θ = 0, leading to WAB = I, where I is the 3 × 3 identity matrix. On the other
hand, if the robot would be mounted on the ceiling, for example, it would be ϕ = θ = 0
and ψ = π.
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In more detail, for a generic trajectory point k, Y is defined as:

[
Yid

(k) Y(k)
c Y(k)

v Y(k)
I,m

]
pid
pc
pv

pI,m

 = τ(k) (4)

where Yid
(k) ∈ Rn×10n is the regressor block built according to [34]. Besides, for a complete

model of the manipulator, Coulomb and viscous friction phenomena are described for each

joint i by respectively: Yc
(k) = diag

(
tanh

( .
qi

0.001

))
∈ Rn×n and Yv

(k) = diag
( .
qi
)
∈ Rn×n.

The effects of motors inertia have been implemented in YI,m
(k) = diag

(..
qi
)
∈ Rn×n.

Since each body of the robot arm can only affect the dynamics of the previous ones, the
regressor matrix has an upper triangular structure, where the generic element Yab repre-
sents the contribution of the bth body to the dynamics of the ath one. Similarly, p is com-

posed by pid =
[
pid,1, pid,2, pid,3, pid,4, pid,5, pid,6

]T
∈ R10n where, for the single body

i, pid,i =
[
m, mx, my, mz, Jxx, Jyy, J zz, Jyz = Jzy, Jxz = Jzx, Jxy = Jyx

]
i ∈ R10, which

contains the information about its mass, the position of the center of mass according to the xi, yi,
and zi axes, and its moments of inertia. Coulomb and viscous coefficients have been grouped in-
side pc = [ fc1, fc2, fc3, fc4, fc5, fc6] ∈ R6 and pv = [ fv1, fv2, fv3, fv4, fv5, fv6] ∈ R6

respectively, while motor inertia are stored in pI,m = G2· [Im1, Im2, Im3, Im4, Im5, Im6] ∈ R6.

3.1. Regressor Reduction Using SVD and QR Decomposition

Since not all the manipulator dynamic parameters are linearly independent, it is
necessary to remove all the null columns from the regressor Y to obtain a reduced matrix
YB, so that YB· pB = τ, where pB is the vector of the base dynamic parameters. To do
so, two different approaches, explained in detail in [35], can be adopted: QR decompo-
sition and Singular Value Decomposition (SVD). This last method has been applied to
Y25 ∈ R25n×13n obtained by stacking every regressor Y ∈ Rn×13n evaluated in one of the
25 random sets of angular positions, velocities, and accelerations as suggested in [19]. Y25
is then written as Y25 = UΣVT , where Σ = diag(σi) ∈ R13n×13n is a diagonal matrix,
whose non-null elements are the singular values σi of Y25 reported in Figure 1a.
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By analyzing the trend of the singular values of Y25 and its cumulative energy [36] in
Figure 1b, it is possible to see, as also reported in [29], how 52 base dynamic parameters
must be used to fully describe the robot dynamic behavior. If more are adopted, the
condition number of Y25, defined as the ratio between the highest and the lowest singular
value σi, would drop, jeopardizing the identification process [37]. A high value of this
index, in fact, makes the base dynamic parameters strongly dependent on slight variations
of the signals measured from the robot that are affected by noise.

This information is then used to check the quality of the QR decomposition adopted
in this work to reduce the system from Y ∈ R6×78 to YB ∈ R6×52 and from p ∈ R78 to
pB ∈ R52. This analysis highlights that not all the 78 dynamic parameters of the manipu-
lator (13 for each joint) can be identified. Indeed, only 30 of them are totally identifiable; 39
are identifiable with linear dependency, while the remaining 9 do not play any role in the
dynamics of the manipulator.

On the other hand, when mounting the robot in different configurations (i.e., on a
wall, being ϕ = θ = 0 and ψ = π/2), the SVD analysis applied to Y25 assesses that
the manipulator dynamics is fully described by 54 base dynamic parameters, leading to
pB ∈ R54. Since the rotation axis of the robot base is not aligned with the gravitational
acceleration vector, the mass and two coordinates of the position of the center of mass of the
first joint/link need to be identified. So, while the number of the totally identifiable dynamic
parameters remains unchanged, 42 of them are now identifiable with linear dependency
and only 6 do not affect the robot dynamics. The symbolic equations describing the
54 elements of the vectors pB of both the UR3 (pB, UR3) and the UR5 (pB, UR5) are reported
in Appendix A. In the case study in which the robot is positioned on the ground or on the
ceiling, the 52 base dynamic parameters are still described by Equations (A1) and (A2), but
without the first two rows.

3.2. Optimized Excitation Trajectory

For proper identification of the base dynamic parameters pB, a persistent trajectory,
built using 5th order Finite Fourier Series (FFS), has been commanded to both the UR3
and the UR5. Angular positions, velocities, and accelerations of each joint i are calculated
according to:

qi (t) = qi,0 +
5
∑

l = 1
ai,l sin

(
ω f lt

)
− bi,l cos

(
ω f lt

)
.
qi (t) =

5
∑

l = 1
ai,l ω f l cos

(
ω f lt

)
+ bi,l ω f l sin

(
ω f lt

)
..
qi (t) =

5
∑

l = 1
− ai,l

(
ω f l
)2

sin
(

ω f lt
)

+ bi,l

(
ω f l
)2

cos
(

ω f lt
) (5)

where:

• ω f is the fundamental frequency equal for each joint to guarantee the periodicity
of the robot’s movement. It is defined as ω f = 2π/T, where T is the identification
trajectory period set to 10 s as in [29], while similar or lower frequencies have been
adopted in [19,26,38];

• qi,0 is the joint position offset equal to [0, −π/2, 0, 0, 0, 0] rad;
• ai,l and bi,l are the coefficients of the FFS that have to be found by optimization to

define a trajectory able to continuously excite all the base dynamic parameters.

Since the identification trajectory must be feasible, physical constraints, regarding the
maximum joints angular positions (qmax), velocities (

.
qmax), and accelerations (

..
qmax) of the

manipulator, were added to the minimization problem. Such values were chosen both
according to the mechanical constraints of the robots (

.
qmax and

..
qmax are equal to π rad/s

and 5.5π rad/s2, respectively) and to avoid any collision of the robots with themselves or
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with the external environment by setting qmax = [2π, π, π, 2π, 2π, 2π] rad. By adapting the
equations reported in [39], these limits have been implemented as:

qi(t) =
5
∑

l = 1

√
a2

i,l + b2
i,l + |qi,0| ≤ qi,max

.
qi(t) =

5
∑

l = 1
ω f l ·

√
a2

i,l + b2
i,l ≤

.
qi,max

..
qi(t) =

5
∑

l = 1

(
ω f l
)2
·
√

a2
i,l + b2

i,l ≤
..
qi,max

(6)

Moreover, since non-zero values of the joints angular velocities and accelerations
would lead to high vibrations at the start and the end of the commanded trajectory, their
initial and final values have been set to 0 using:

.
qi (t0) =

.
qi (tend) =

5
∑

l=1
ai,l ω f l = 0

..
qi (t0) =

..
qi (tend) =

5
∑

l=1
bi,l

(
ω f l
)2

= 0
(7)

The FFS coefficients ai,l and bi,l can be identified using different approaches like
artificial bee colony [38], particle swarm [40], or a Genetic Algorithm (GA) [18,41]. In the
present work, the MATLAB Global Optimization Toolbox has been used to implement a
GA with a population of 300 individuals to minimize the objective function:

min
q,

.
q,

..
q

cond
(
YB
(
q,

.
q,

..
q
))

(8)

where YB =

 YB,1
...

YB,N_id

 ∈ R(nxN_id) x52 is the observation matrix built by piling the single

regressors YB,k calculated for each trajectory point k of the identification trajectory. Other
types of cost functions can be found in [42].

The resulting angular positions obtained for the UR5 collaborative robot are reported
in Figure 2a. Similar values have been also found for the UR3.
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A condition number of about half the one related to the trajectory of Figure 2a has
been obtained for the one reported in Figure 2b in the case the robot would be mounted
on the ceiling. This result suggests that more reliable identification of the base dynamic
parameters would be obtained by mounting the manipulator on the ceiling rather than
on the ground. Nevertheless, as reported in Section 5, good approximations of the joints
torques of both robots have been obtained by calculating their base dynamic parameters
while mounted on the ground.

To reduce the risk of an ill-conditioned YB, the identified trajectory is repeated three
times, leading to a total excitation period of 30 s. To do this, it has been necessary to use
the servoj function created to directly control the joints angular positions and defined as:
servoj(target joint configuration, acceleration, velocity, time, lookahead time, gain) [43]. Since they
are not used in the current version of the robot software, the acceleration and the velocity
parameters have been set to 0. On the contrary, the time has been set to 0.008 s being the
communication frequency between the robot and the external computer equal to 125 Hz.
Experimental tests showed that, for a smooth movement of the robot arm, optimal values
for the lookahead time and the gain should be 0.03 and 500, respectively. This approach only
allows for specifying a set of angular positions to the manipulator, while joints angular
velocities and accelerations cannot be directly commanded.

4. Base Dynamic Parameters Identification

As in [19,26,44], to calculate the robots base dynamic parameters pB, the Least Squares
(LS) algorithm has been adopted as:

pB =
(

YT
B· YB

)−1
· YT

B · τID (9)

where τID =

 τID,1
...

τID,N_id

 is the joints torques vector derived from the motor currents.

These values are reported, together with their standard deviations, in Figure 3a,b for
the UR3 and the UR5, respectively. Additional frames have been inserted for better
visualization of the small values which cannot be read at full scale.
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Since both robots have been mounted on the ground, their dynamic behavior is fully
described by 52 base dynamic parameters. In Figure 3a,b are reported, respectively, the numer-
ical values associated with the elements pB,UR3(3)− pB,UR3(54) and pB,UR5(3)− pB,UR5(54)
of the vectors reported in Equations (A1) and (A2).
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Moreover, the standard deviation di =

√([
YBYB

]−1
)

i,i
of each element of pB has

been calculated, resulting in maximum values of 0.313 for the UR3 and 0.107 for the UR5.
An alternative to Equation (9), which takes into account the different sizes of the

manipulator joints, is proposed in [19]. By applying a Weighted Least Squares (WLS)
method, the base dynamic parameters are calculated as:

pBweighted =
(

YT
B ·WT ·W · YB

)−1
· YT

B· WT ·W · τID (10)

where the coefficients W, for each trajectory point k, are W(k) = diag
(

1
G · τj,max

)
with τj,max

being the maximum torques of the joint j, reported in Table 2.

Table 2. Maximum joints torques of the UR3 and the UR5 collaborative robots [45].

Joint Joint Size Maximum Torque (τj,max) [Nm]

UR3 base and shoulder Size 2 56
UR3 elbow Size 1 28

UR3 wrist 1, wrist 2, and wrist 3 Size 0 12
UR5 base, shoulder, and elbow Size 3 150
UR5 wrist 1, wrist 2, and wrist 3 Size 1 28

In the proposed application, the LS method has been preferred to the WLS one for
two main reasons:

• While Equation (9) takes 0.05 s to be solved, 138.90 s are required to obtain the
weighted base dynamic parameters for the same manipulator using Equation (10).
The machine used for all the calculations is a PC with processor Intel® i7-8750H at
3.91 GHz equipped with 16 GB of RAM DDR4;

• As reported in Table 3, better results in torques estimates have been obtained using
the LS method.

A third approach is described in [46], where a Constrained Weighted Least Squares
(CWLS) method has been implemented using the constraints associated with links masses
and inertia tensors reported in [47]. This ensures a positive definite mass matrix for each
trajectory point k. If such condition is not satisfied, the algorithm provides physically
impossible results, such as the negative motors inertia (pB (49) − pB (52)) of the last
four joints of both manipulators. Although more accurate, this method requires a global
optimization algorithm to calculate the base dynamic parameters, hence resulting in a
far more time-consuming procedure than the LS and WLS. Alternative approaches can
be found in [48], where an extensive review of the most used algorithms for dynamic
parameters calculation is reported.

Besides, since both Coulomb (pB (37)− pB (42)) and viscous friction (pB (43)− pB (48))
coefficients are fully identifiable, it would be possible to use the proposed identification
algorithm to estimate the health status of all the manipulator joints. An increment of the
friction parameters, for example, could be related to a higher level of wear in the joint
bearings and gearbox. Even though it would not be possible to locate the root cause of the
fault, this information could be used, together with other health features extracted from the
robot signals, to estimate the overall operating condition of the machine and its remaining
useful life. The reliability of the identified friction coefficients is also highlighted by the
similar values of pB (39) and pB (40)− pB (42) and of pB (45) and pB (46)− pB (48) of the
UR3 and the UR5, respectively. Since, as reported in Table 2, the joints mounted at the UR3
elbow and the UR5 wrists are the same, also their Coulomb and viscous friction coefficients
are similar.

The values reported in Figure 3a,b have been calculated for the robot arm only. In
the case a tool is mounted, the identified dynamic parameters must be updated to allow
the model to correctly estimate the joints torques. To do so, it would be only necessary to
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execute again the excitation trajectory and apply the LS method reported in Equation (9).
A tool, in fact, can be considered as an extension of the robot last link and it does not add
any additional degree of freedom to the manipulator, so the regression matrix does not
change. On the other hand, in the case of a cumbersome tool, it could be necessary to find
another persistent trajectory for the identification process since some changes to the robot
constraints qmax could be required to avoid possible collisions.

5. Validation of the Identified Base Dynamic Parameters

The validation of the proposed algorithm has been done by commanding the two
robots with several persistent trajectories, like the ones reported in Figure 4a,b. These
have been obtained by substituting pseudo-random values to the FFS coefficients ai,l and
bi,l in Equation (5) so that the boundary conditions of Equations (6) and (7) are respected.
This approach allows defining persistent trajectories able to excite all the identified base
dynamic parameters reported in Appendix A. The corresponding joints torques of the UR3
and the UR5 are reported in Figures 5 and 6, respectively.
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To evaluate the accuracy of the identified base dynamic parameters, in Figures 5 and 6
the measured torques (UR3 and UR5, respectively) are compared with the ones estimated
with the proposed mathematical model once that the base dynamic parameters pB have
been identified (Model after identification). In addition, the joints torques (Model before
identification), obtained using only the dynamic parameters provided by the manufac-
turer [1], are also reported.

This analysis highlights how a proper identification of the robot dynamic parameters
is crucial for a correct estimate of the joints torques of a manipulator. As in [26], the
normalized error, defined as eN = 1

N_val

√
eT · e, is adopted to better quantify the mismatch

among measured and modeled joint torques. In the present study, the error vector e has
been calculated in three different ways:

1. e = τUR − τBI , where τUR =

 τUR,1
...

τUR,N_val

 and τBI =

 τBI,1
...

τBI,N_val

 are the

measured torques for each point k of the validation trajectory and the ones obtained
using only the dynamic parameters found in [1];

2. e = τUR − YB · pB, with YB =

 YB,1
...

YB,N_val

 being the observation matrix calculated

for the validation trajectory;
3. e = τUR − YB · pBweighted, where, instead of the base dynamic parameters pB, the ones

obtained through the WLS method have been used.

For the validation trajectories depicted in Figure 4a,b, the normalized errors are
reported in Table 3.

Table 3. UR3 and UR5 normalized errors before and after the identification of their base dynamic parameters.

Robot eN before Identification eN after Identification (LS) eN after Identification (WLS)

UR3 0.1945 Nm 0.0247 Nm 0.0258 Nm
UR5 0.4207 Nm 0.0530 Nm 0.0553 Nm
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By both comparing the trends of the measured and the estimated torques of Figures 5 and 6
and the values of the normalized errors of Table 3, the validation process has been considered to
be successful.

6. Temperature Effect on the Base Dynamic Parameters

For a proper modeling and control strategy of a manipulator, the effect of temperature
on the robot dynamics should be taken into account. To better show its impact on the base
dynamic parameters, the identification trajectory of Figure 2a has been commanded to
the UR5 just after its power-up (cold robot) and after half an hour warm-up (warm robot).
Joints temperatures have been measured by built-in robot sensors and acquired at 125 Hz
via TCP/IP communication using port 30003. Their mean values are hereby reported:

• Cold robot: T = [25.2, 24.9, 22.2, 26.1, 22.4, 23.2] ◦C;
• Warm robot: T = [36.5, 34.6, 32.6, 37.9, 39.7, 40.1] ◦C.

The identified base dynamic parameters are depicted in Figure 7, where additional
frames have been inserted for better visualization of the small values which cannot be read
at full scale.
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Figure 7. Base dynamic parameters of the UR5 collaborative robot just after power-up (cold robot)
and after half an hour of warm-up (warm robot).

The values (pB (1) − pB (36)) and (pB (49) − pB (52)), which should not depend
on temperature, are nearly the same in both working conditions, proving the stability
of the algorithm. On the other hand, there are differences in the friction parameters
(pB (37)− pB (48)), with a reduction of up to 31% of the viscous ones. Similar percentual
variations have been also observed in [19,49].

Since viscous friction depends on joints temperature, a more detailed analysis to better
quantify such a correlation has been carried out with both the UR3 and the UR5. To do so,
the identification process of the base dynamic parameters has been sequentially repeated
multiple times for both manipulators by commanding the same persistent trajectory of
Figure 2a. The results are reported in Figure 8a,b.
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Since an increment of the joint temperature reduces the viscosity of the grease used
to lubricate the joints, the values of the viscous friction coefficients linearly decrease with
the rise of temperature in the considered range. The overall percentage reductions of the
viscous friction coefficients, between the initial and the final robot operating conditions,
are reported in Table 4.

Table 4. Percentage variations of viscous friction coefficients due to the increment of temperature
between the initial and the final operating conditions of the UR3 and the UR5 collaborative robots.

Robot ∆fv1 ∆fv2 ∆fv3 ∆fv4 ∆fv5 ∆fv6

UR3 −10.6% −11.6% −19.5% −26.4% −25.5% −23.9%
UR5 −8.8% −21.0% −13.6% −23.5% −21.1% −15.5%

This analysis also highlights the different operating conditions of the two robots even
if commanded with the same persistent trajectory. By considering the temperature ranges
in Figure 8a,b, it can be seen how, because of their different heat dissipation properties,
smaller joints tend to reach higher temperatures than the bigger ones. So, since grease
viscosity and joint temperature are inversely proportional in the considered temperature
range, this also explains why the viscous friction coefficients of the UR3 face, on average,
higher percentage reductions than the ones of the UR5.

Moreover, by comparing the curves related to the UR3 elbow and the three UR5 wrist
joints, which are the same, it is possible to observe how the four trends are comparable
although different. The slight variations among the three wrist joints of the UR5 could be
caused by their possible different lubrication conditions. On the other hand, since the UR3
has been operative for longer than the UR5, their mismatch with the UR3 elbow joint may
be related to wear [50]. However, since the manufacturer does not provide any information
related to the single joint usage, this assumption, although plausible, cannot be confirmed.

Moreover, to better highlight the impact of changes in grease viscosity on the joints
torques necessary to execute the persistent trajectory of Figure 2a, their average and
maximum differences, between the initial and the final operating conditions of both manip-
ulators, have been reported in Tables 5 and 6.
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Table 5. Average variations of the joints torques between the initial and the final operating conditions
of the UR3 and the UR5 collaborative robots.

Robot ∆C1,avg ∆C2,avg ∆C3,avg ∆C4,avg ∆C5,avg ∆C6,avg

UR3 0.27 Nm 0.42 Nm 0.59 Nm 0.40 Nm 0.41 Nm 0.39 Nm
UR5 0.70 Nm 2.43 Nm 1.45 Nm 0.46 Nm 0.72 Nm 0.40 Nm

Table 6. Maximum variations of the joint torques between the initial and the final operating conditions
of the UR3 and the UR5 collaborative robots.

Robot ∆C1,max ∆C2,max ∆C3,max ∆C4,max ∆C5,max ∆C6,max

UR3 1.02 Nm 1.25 Nm 1.17 Nm 0.87 Nm 1.03 Nm 0.79 Nm
UR5 3.09 Nm 10.90 Nm 4.75 Nm 1.49 Nm 1.57 Nm 0.98 Nm

Even though the average variations of Table 5 could be neglected, it should be pointed
out that viscous friction torques directly depend on joints angular velocities, so the val-
ues reported in this study would be different for other trajectories. This dependency is
particularly relevant for industrial robots which usually reach high speeds to maximize
productivity. However, by analyzing the values reported in Table 6, it becomes clear how
temperature variations affect the dynamic behavior of the tested robots. Such a depen-
dency of joints friction on temperature is also highlighted when comparing the values of
Table 6 with the maximum torques, listed in Table 2, that the single joints can provide. The
weighted percentage variations, reported as an average among all the joints of the same
size belonging to the same robot, are reported in Table 7.

Table 7. Weighted percentage variations of the maximum joints torques between the initial and the
final operating conditions of the UR3 and the UR5 collaborative robots.

Joint Joint Size Weighted Percentage Variation

UR3 base and shoulder Size 2 2.0%
UR3 elbow Size 1 4.2%

UR3 wrist 1, wrist 2 and wrist 3 Size 0 7.5%
UR5 base, shoulder and elbow Size 3 4.2%
UR5 wrist 1, wrist 2 and wrist 3 Size 1 4.8%

Future studies will be devoted to mapping the dependency of the robot viscous
friction coefficients with temperature in the entire working range 0–50 ◦C defined by
Universal Robots.

7. Mounting Configuration Effect on Joints Torques Estimate

To prove the adaptability and reliability of the proposed mathematical model, URSim
has been adopted to estimate the torques of the digital twin of a UR5 mounted on the ceiling
using the same validation trajectory depicted in Figure 4b. Despite the case in which a tool
is added, since the system under analysis is only composed of the UR5, the base dynamic
parameters are the same as the ones identified when the manipulator is positioned on the
ground. On the contrary, the regressor Y is a function of the robot mounting configuration,
so it must be recalculated. If not, there would be a mismatch among the estimated and
the measured joints torques since URSim and the proposed mathematical model would
describe two different physical systems. As reported in Figure 9, by updating the regression
matrix, the estimated torques (Model ceiling) well approximate the ones measured from
URSim (UR5 ceiling). On the contrary, if the same regressor obtained for the robot mounted
on the ground would have been used, the predicted torques (Model ground) would have
not correctly describe the dynamic behavior of the system under analysis, as also proved
by the high value of the normalized error eN_groundVSceiling reported in Table 7.
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This can be also seen by calculating the joints torques errors, and the corresponding
normalized errors reported in Table 8, of the simulated robot in three different scenarios:

1. eground = τground − YB_ground · pB_Sim, where τground are the torques read from UR-
Sim for each point of the validation trajectory in the case the robot is mounted on
the ground, while YB_ground · pB_Sim are the predicted ones obtained using the base
dynamic parameters identified through Equation (9) using the data from URSim;

2. eceiling = τceiling − YB_ceiling · pB_Sim, where the acquired (τceiling) and the predicted
torques (YB_ceiling · pB_Sim) have been calculated as in the previous point, but in the
case of the robot mounted on the ceiling;

3. egroundVSceiling = τceiling − YB_ground · pB_Sim, where the two mounting configurations
are compared to emphasize the high errors that would have been made if the robot
mounting configuration would have not been taken into account.

Table 8. Simulated UR5 normalized errors in the two different mounting configurations analyzed
(ground and ceiling).

Robot eN_ground eN_ceiling eN_groundVSceiling

UR5 (URSim) 0.0043 Nm 0.0050 Nm 0.6144 Nm

By comparing the normalized error for the UR5 obtained after the identification of
its base dynamic parameters using the LS method (Table 3) with the one in Table 8 for the
simulated robot in the same operating conditions (eN_ground), it can be seen that the first one
is higher than the second one. This is related to the fact that there is no noise in the signals
coming from the simulated robot, so the negative effect of the regressor condition number
is limited. So, the main advantage of testing both the identification and the validation
processes with URSim is that the quality of the manipulator base dynamic parameters and,
as a consequence, the one of the predicted torques, is higher than the one obtained using
the real robot. The stability of the identification process and the ability of the model to
effectively predict joints torques in different mounting configurations are also confirmed
by the low value of eN_ceiling, which is comparable with the one obtained when the robot is
mounted on the ground.

It is also worth noting that, in the case of the UR5 mounted on the ground, the es-
timated torques (Model ground) and the ones reported in Figure 6 are not equal. This
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difference is related to the fact that URSim does not take into account link inertia and
joints friction. This proves that the official offline simulator developed by the robot man-
ufacturer cannot be effectively used for an accurate estimate of the dynamic behavior of
the manipulator.

8. Conclusions

The present paper highlights how changes in the robot operating conditions affect its
dynamic behavior. To do so, a mathematical model able to identify the dynamic parameters
of an industrial manipulator is presented and validated with the collaborative robots UR3
and UR5. The two manipulators have been both commanded with persistent exciting
trajectories based on 5th order finite Fourier series optimized using a genetic algorithm.
Based on the data sampled during the experimental campaign, after the identification of
the robots’ base dynamic parameters, the normalized error among the measured and the
simulated joints torques is reduced by about the 90% with respect to the one obtained with
only the manipulators dynamic properties provided by Universal Robots.

The identification process has been then used to investigate and quantify the effects
of temperature on joints viscous friction parameters, allowing a more reliable estimate
of the joints torques of the real robot in different working conditions. In the considered
temperature range, experimental data showed a reduction of the viscous friction coefficients
of about 20% and 17% for the UR3 and the UR5, respectively. This leads to a variation of
the joints torques of up to about 8% of the maximum ones transmissible from the robots,
showing how this dependency cannot be neglected in the definition of a high-fidelity model
of an industrial manipulator.

Due to the possibility to fully identify both Coulomb and viscous friction coefficients
and their strict relation with wear, future tests will be run to evaluate the implementation
of the proposed algorithm to estimate the health status of the manipulator joints.

In addition, the proposed model has been developed to take into account different
mounting configurations which affect the number of base dynamic parameters necessary to
fully describe the robot dynamic behavior. The adaptability of the identification algorithm
to different setups has been validated using the official simulator developed by the same
manufacturer of the tested robots.

The next steps will be focused on testing the proposed algorithm on other robots
mounted in different configurations. Moreover, since this work is part of a larger research
project whose goal is the definition of a high-fidelity model of an industrial manipulator,
more accurate and physically reliable dynamic parameters are required. To do so, the
least square method used for the identification process will be replaced with a global
optimization algorithm. This would allow building a digital twin of a specific machine in
which diagnostics and prognostics algorithms will be implemented to study the fault to
failure mechanisms in an industrial robot and their effects on its behavior.
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Appendix A

In Equations (A1) and (A2) are reported the equations associated with the base dy-
namic parameters of the UR3 (pB,UR3) and the UR5 (pB,UR5) for a general mounting con-
figuration. However, if the axis of the robot base joint is aligned with the gravitational
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acceleration vector, it is necessary to remove the first two elements of the vectors since only
52 out of 54 base dynamic parameters are involved in the robot dynamics.

pB,UR3 =



m1x1
m1z1 − 2.353J2,xz

J1,yy+J2,yy+J3,yy−J2,zz−J3,zz+J4,zz+Jm1−Jm2+0.01262m4+0.01262m5+0.01262m6+0.2247m4y4
21.99J3,zz−16.84J2,zz−16.84Jm2+m2

m2x2 − 4.104J2,zz − 4.104Jm2

m2y2
4.104J2,xz − 4.689J3,xz + m2z2

J2,xx − J2,yy + J2,zz + Jm2

J2,xy
J2,yz

m3 − 21.99J3,zz + m4 + m5 + m6
m3x3 − 4.689J3,zz

m3y3
4.689J3,xz + 0.1123m4 + 0.1123m5 + 0.1123m6 + m4y4 + m3z3

J3,xx − J3,yy + J3,zz
J3,xy
J3,yz

m4x4
0.08535m5 + 0.08535m6 −m5y5 + m4z4

J4,xx − J4,zz + J5,zz + 0.007285m5 + 0.007285m6 − 0.1707m5y5
J4,xy
J4,xz

J4,yy + J5,zz + 0.007285m5 + 0.007285m6 − 0.1707m5y5
J4,yz

m5x5
0.0819m6 + m5z5 + m6z6

J5,xx + J6,yy − J5,zz + 0.006708m6 + 0.1638m6z6
J5,xy
J5,xz

J5,yy + J6,yy + 0.006708m6 + 0.1638m6z6
J5,yz

m6x6
m6y6

J6,xx − J6,yy
J6,xy
J6,xz
J6,yz
J6,zz
fc,1
...

fc,6
fv,1
...

fv,6
G2·Im3

G2·Im4

G2·Im5

G2·Im6



(A1)
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pB,UR5 =



m1x1
m1z1 − 2.353J2,xz

J1,yy+J2,yy+J3,yy−J2,zz−J3,zz+J4,zz+Jm1−Jm2+0.01191m4+0.01191m5+0.01191m6+0.2183m4y4
6.499J3,zz−5.536J2,zz−5.536Jm2+m2

m2x2 − 2.353J2,zz − 2.353Jm2

m2y2
2.353J2,xz − 2.549J3,xz + m2z2

J2,xx − J2,yy + J2,zz + Jm2

J2,xy
J2,yz

m3 − 6.499J3,zz + m4 + m5 + m6
m3x3 − 2.549J3,zz

m3y3
2.549J3,xz + 0.1092m4 + 0.1092m5 + 0.1092m6 + m4y4 + m3z3

J3,xx − J3,yy + J3,zz
J3,xy
J3,yz

m4x4
0.09465m5 + 0.09465m6 −m5y5 + m4z4

J4,xx − J4,zz + J5,zz + 0.008959m5 + 0.008959m6 − 0.1893m5y5
J4,xy
J4,xz

J4,yy + J5,zz + 0.008959m5 + 0.008959m6 − 0.1893m5y5
J4,yz

m5x5
0.0823m6 + m5z5 + m6z6

J5,xx + J6,yy − J5,zz + 0.006773m6 + 0.1646m6z6
J5,xy
J5,xz

J5,yy + J6,yy + 0.006773m6 + 0.1646m6z6
J5,yz

m6x6
m6y6

J6,xx − J6,yy
J6,xy
J6,xz
J6,yz
J6,zz
fc,1
...

fc,6
fv,1
...

fv,6
G2·Im3

G2·Im4

G2·Im5

G2·Im6



(A2)
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