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Abstract: Robotics is an interdisciplinary field and there exist several well-known approaches to
represent the dynamics model of a robot arm. The robot arm is an open kinematic chain of links
connected through rotational and translational joints. In the general case, it is very difficult to obtain
explicit expressions for the forces and the torques in the equations where the driving torques of the
actuators produce desired motion of the gripper. The robot arm control depends significantly on
the accuracy of the dynamic model. In the existing literature, the complexity of the dynamic model
is reduced by linearization techniques or techniques like machine learning for the identification of
unmodelled dynamics. This paper proposes a novel approach for deriving the equations of motion
and the actuator torques of a robot arm with an arbitrary number of joints. The proposed approach for
obtaining the dynamic model in closed form employs graph theory and the orthogonality principle, a
powerful concept that serves as a generalization for the law of conservation of energy. The application
of this approach is demonstrated using a 3D-printed planar robot arm with three degrees of freedom.
Computer experiments for this robot are executed to validate the dynamic characteristics of the
mathematical model of motion obtained by the application of the proposed approach. The results
from the experiments are visualized and discussed in detail.

Keywords: robot arm; open kinematic chain; equations of motion; graph theory; orthogonality
principle; law of conservation of energy

1. Introduction

There exist several different approaches for modeling the motion of robot arms in
the existing literature. Most frequently, the kinematic aspects of motion are expressed by
Denavit–Hartenberg parameters, Euler angles, or normalized quaternions [1]. It is usually
difficult to integrate these models with Newton-Euler, Lagrange and Hamilton methods
employed to represent the dynamic model [2,3]. This is especially true for robot arms
with redundant degrees of freedom, where the redundancy allows improving the quality
of motion by introducing optimization criteria. In the existing literature, these criteria
are defined on the level of kinematics or dynamics. Time optimization, manipulability,
or obstacle avoidance are some of the typical criteria for optimal path planning at the
kinematical level [4–6]. Singularity avoidance is another popular way to exploit redundant
degrees of freedom in executing a given task [7–9]. Criteria related to energy saving
represent a special interest if the level of dynamics is concerned [10,11].

The accuracy of motion control of a physical robot arm strongly depends on the
completeness of the model of dynamics. The dynamic system model describes the rela-
tionship between the forces and torques applied to the robot arm on the one hand and
the resulting robot arm motion in joint space or workspace coordinates on the other hand.
The equations of motion serve to solve the forward and the inverse dynamic problems,
respectively [12,13]. Given the motion in the joint space or workspace, these equations
determine the driving torques of the actuators in the joints or the forces of the gripper. In
the inverse problem, the motion in the joint space or workspace is computed knowing
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the driving torques in the joints. In the existing literature, there are several approaches to
obtain the dynamics equations of motion.

The Lagrangian formulation is one of the most frequently used approaches to describe
mechanical phenomena. Apparently, this approach does not allow to consider the reaction
forces, while it is essential to know these forces at the stage of design in order to select,
for instance, the optimal bearing in the joints. A related research paper [14] follows the
same approach and emphasizes the computation of differential algebraic equations of the
dynamics model, where the reaction forces are not considered. Although the electrical
phenomena are out of the scope of this paper, for completeness, note that there are attempts
to complement the Lagrangian function with terms reflecting electrical characteristics in
terms of electro-mechanical analogies [15]. It appears, however, that this is impossible
in the analysis of case studies involving sliding contacts and volume currents. In such
cases, the Lagrangian formulation is not applicable because there are no suitable electro-
mechanical analogs.

The limitations in the application of the Lagrangian formulation can be resolved
provided the dynamic system model is built on the conservation of energy law. Unlike the
Lagrangian formulation, the law of conservation of energy allows extending the modeling
process so that it includes objects pertinent to electrical and magnetic phenomena, as
well as considering the energy flow between objects intrinsic to robot arm devices [16].
Therefore, this paper employs the law of conservation of energy rather than the Lagrangian
formulation to develop and obtain the dynamic model of a robot arm.

The equations, describing the dynamic model, are nonlinear and one of the most
widely used approaches is to simplify these equations in terms of numerical approxima-
tion [17]. Other computational techniques use Iterative learning control for dealing with
unmodelled dynamics [18], or deep learning for the estimation of dynamics parameters [19].
These approaches are usually implemented in software tools for processing the kinematic
and dynamic characteristics of the robot arm design obtained with advanced CAD systems
like SolidWorks. The 3D CAD model of the robot arm supports nowadays both its manu-
facturing process, as well as the analysis and simulation of its motion in a workspace. For
example, the parameters of the assembly model like mass, inertia moments, geometrical
parameters of the links, can be imported in the integrated environment of MATLAB, Sim-
scape and Simulink software products. Thus, the powerful functionalities of these products
are utilized for computing and simulating the behavior of a robot arm dynamic model.
Several research papers investigate the application of such CAD-based methodologies for
developing the dynamic model of a robot. These papers consider, however, special cases of
robot devices, where the results are restricted to deriving the equations of kinematics [20]
or the built-in functionalities of the software packages don’t allow to consider in explicit
form important parameters of the dynamic model, such as drive torques and forces [21].
Apparently, the CAD model can assist in extracting the basic characteristics of kinematics
and dynamics, however, the complex nonlinear relationships inherent to a robot arm cannot
be obtained from a CAD model in a fully automatic way. At present, the dynamic system
model can be obtained in closed-form only in some particular cases [22]. In the general
case, however, the analytical representation of the complete equations of motion remains a
challenge that the model proposed in this paper aims to resolve.

The objective of this paper is to propose an approach for modeling, in closed form, the
dynamics of robot arms with an open kinematic chain, having rotational or translational
joints of the fifth class. The proposed model of the dynamics borrows ideas from the
paper of Tellegen [23] where graphs, in combination with terms of “through” (current) and
“across” (voltage) variables, are introduced to represent electrical networks in a practicable,
convenient way. Further on, these ideas are elaborated in the research works of Black-
well [24] and Andrews [25]. Blackwell considers merely electro-mechanical systems with
simple mechanical components. Andrews introduces the orthogonality principle for the
first time but only in relation to models of dynamics dealing with mass points. Later on,
graph theory is introduced to design interconnected systems of multi-bodies in related
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research papers [26,27]. Thus, the orthogonality principle became applicable for industrial
robots [28,29]. A detailed description of the proposed approach in such cases is presented
here. Without loss of generality, the non-conservative friction effects are left out of scope
in this study, although the law of conservation of energy allows taking them into account
in the proposed dynamic model by means of the same approach. The study of these
effects represents a subject for separate research work and for simplicity of presentation,
these effects are not considered here. Finally, the paper demonstrates how to apply this
approach in the case of a proprietary physical model of a robot arm. Results from computer
experiments with the obtained explicit equations of motion in this real-life case study are
provided to validate the correctness of the model of dynamics.

The paper is structured in four sections. The following section describes the develop-
ment of the kinematics and dynamics model of a robot arm. The results from computer
experiments are visualized and discussed in Section 3. Section 4 provides a discussion on
the advantages and disadvantages of this approach in view of its application in the field of
industrial robotics. This final section summarizes the main results of the paper.

2. Materials and Methods

This section provides a detailed description of the proposed uniform approach for
developing a mathematical model of the robot arm dynamics. The graph theory allows the
application of the orthogonality principle in deriving the dynamic’s equations of motion
of the robot arm. For clarity, a procedure for applying the proposed approach in the
general case is here provided. The implementation of the procedure is demonstrated in a
real-life case study, where the actuator torques are computed from the obtained equations
in executing a given robot arm motion.

2.1. Kinematics

In this paper, we consider a robot arm with an open kinematic chain with n DoF. The
links of the robot arm are n + 1 rigid bodies (including the base) with translational or rota-
tional joints of the fifth class. The vector of the generalized coordinates q = (q1, q2, . . . ., qn)

T

is used to describe the forward kinematics in the workspace W in terms of the linear and
angular position of the gripper of the robot arm. In practice, the dimension of W is equal to
the number of parameters required to define the work task executed by the robot arm. For
clarity, assume the dimension of W is m. Special interest represents the case n > m when
the robot arm has redundant DoF.

Forward kinematics is expressed by means of Denavit–Hartenberg notation as follows
(Figure 1). A coordinate system Oixiyixi with unit vectors e(i)1 , e(i)2 , e(i)3 is fixed in each link
i, i = 0, 1, 2, . . . , n, where the coordinate system O0x0y0z0 is attached to the base. The
axis zi coincides with the axis of relative motion of link i + 1 with respect to link i. For
convenience, the axis z0 is chosen to coincide with z1 and O0 ≡ O1. Similarly, the axis zn is
appropriately chosen to represent the axis of relative motion of the gripper. The axis xi is
orthogonal to both zi−1 and zi,whereby xi is oriented towards zi. The axis yi complements
Oixiyizi to right-handed coordinate system. On each axis zi two points Ci,i and Ci−1,i are
chosen, where the first of them is fixed in the link i and the second in link i− 1.

Definition 1. The point Ci−1,i is referred to as contact point of link i− 1 with joint i.

For convenience, select point Ci,i ≡ Oi and point Ci−1,i as the intersection point of
axes xi−1 and zi, i = 1, 2, . . . n. Without loss of generality, assume C0,1 coincides with the
origin O0 of the base coordinate system. Let the distance between two adjacent coordinate
systems be represented by vector di = Ci−1,i Ci,i along zi. Denote by αi and ai the angular
displacement between axes zi and zi−1 and the vector ai = Ci−1,i−1 Ci−1,i. measured along
axis xi. The generalized coordinates qi represent the relative translation or relative rotation
along zi in case joint i is translational or rotational joint correspondingly. For convenience,
the motion of the robot arm links with respect to O0x0y0z0 is considered in the following
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sections in terms of coordinate systems Cixiyizi, i = 1, 2, . . . , n obtained by translating
Oixiyizi in the mass centers Ci, i = 1, 2, . . . , n by vector ci = Ci Ci,i (Figure 1). Then, the
absolute linear position of link i is given by the respective vector Ri(q). Further on, the
locations ρi of the contact points Ci−1,i, i = 1, 2, . . . , n in Cixiyizi are used to represent
important constructs in the proposed dynamics model.
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Figure 1. Coordinate systems and vectors in two adjacent connected bodies.

2.2. Dynamics

In this section, the robot arm model of dynamics is built making use of the orthog-
onality principle [24,27]. This principle is strongly related to energy flow and energy
potential. The theory of graphs offers a convenient technique to manage effectively these
basic characteristics of the energy conservation law. In the related literature [24,25], the
energy flow and energy potential are expressed in terms of so-called “through” and “across”
variables in accordance with the following definitions.

Definition 2. Across variables are the variables representing the energy potential characteristics.

Definition 3. Through variables are the variables representing the energy flow characteristics.

The linear and angular velocities as well as the radius vectors ρi i = 1, 2, . . . , n of the
contact points and the radius vectors Ri in Figure 1 are examples of across variables. On
the other side, forces and torques are typical representatives of through variables in the
existing literature [24]. Pairs of across and through variables provide means to describe
translational and rotational motion correspondingly.

In this paper we employ a graph, referred to as energy graph, to model the energy
flow and energy potential.

Definition 4. Energy graph is the graph where each edge is associated with a pair of across and
through variables and the vertices are the mass centers Ci and the contact points Ci−1,i, i =
1, 2, . . . , n. The root vertex of the energy graph is the origin O0 of the base coordinate sys-
tem O0x0y0z0.

The thus introduced energy graph is employed in the following subsections to outline
a procedure for deriving the differential equation of dynamics.

2.2.1. Energy Graph Associated with Robot Arm

In the following sections, we consider the energy graph as the union of two nonin-
tersecting graphs Gp and Gr. The edges in the energy graph with across variables related
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to linear displacement are part of Gp and the edges with across variables dealing with
angular displacement build-up Gr. For example, the absolute linear velocity v and force F
applied in the mass center C of a free rigid body as well as the absolute angular velocity ω
and torque T with respect to its mass center represent such pairs (Figure 2) in the energy
graph. Accordingly, the first pair is an edge in Gp and the second pair is an edge in Gr.
Note that both edges connect the origin of the base coordinate system with the mass center.
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Figure 2. Graphs Gp (left) and Gr (right) of a free rigid body with mass center C.

Consider now the energy graph in the general case of a robot arm with an open
kinematic chain. Both Gp and Gr have the same topological structure shown in Figure 3.
Similarly to the case of a free rigid body Gp and Gr have edges that connect the origin of
O0x0y0z0. with the respective mass center Ci of the bodies in the kinematic chain. These
edges are shown in black color in Figure 3.
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Figure 3. The topological structure of sub-graphs Gp and Gr of a robot arm with n DoF .

The links of the robot arm are connected with joints and this requires considering the
reactions in the joints by introducing in the topological structure vertices representing the
contact points Ci−1,i, i = 1, 2, . . . n of the links in the respective joints.

Therefore, we add edges in Gp and Gr with pairs of across and through variables
related to the reactions in the joints. These edges are shown in red color in Figure 3.
Apparently, graphs Gp and Gr are oriented graphs with different pairs of across and
through variables attached to their edges. Each graph Gp and Gr has 2n + 1 vertices
(corresponding to the number of links including the base coordinate system) and 5n− 1
edges. Part of the vertices are the mass centers Ci, i = 1, 2, . . . , n of robot links and the
remaining are the contact points Ci−1,i. All the vertices are connected with the origin of the
base coordinate system.

Definition 5. A cycle in a graph is the set of edges connecting two different vertices of the graph.
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According to this definition the edges of Gp and Gr can be considered to belong to
two separate sets, namely, branches and chords.

Definition 6. An edge is referred to as a branch when this edge does not belong to a cycle.

Definition 7. An edge is referred to as a chord when this edge connects two vertices belonging
to a branch.

Apparently, a chord introduces cycles in the topological structure of the energy graph.
Therefore, the cycle orientation is equal to the orientation of the chord generating the cycle
as shown with a dashed line in pink color in Figure 3. The edges denoted by 1, 2, . . . , n in
Figure 3 refer to pairs of across and through variables interpreting a resulting force (graph
Gp) or a resulting torque (graph Gr) are considered as branches and these are denoted
in black color in Figure 3. Through variables referring to external forces and torques are
represented in terms of chords denoted by numbers framed in green color. Each of these
numbers is related to the number used to denote the branch pointing to the mass center
where the corresponding external force is applied to. In case the external forces applied
to a mass center are represented by their resultant force then these numbers are the same.
For example, the external forces applied in the mass centers are represented in Figure 3 by
their resultant force. Therefore, the through variables of these resultant forces are indexed
by the same numbers as the branches pointing to the respective mass center. For example,
both the through variable (denoted inside a green frame) of the resultant force applied to
the mass center C1 and the branch number (denoted in black) is equal to 2. Without loss of
generality, the resultant forces include only the gravity forces applied to the mass centers
Ci, i = 1, 2, . . . , n are taken into consideration. In the general case, each external force
applied to Ci can be introduced by adding a separate through variable, where its number
in the green box must be indexed in relation to the branch number 2i, , i = 1, 2, . . . , n.
Note that these variables can be used to represent torques induced by external forces
as well. Through variables referring to reactions like the resultant of the reaction forces
applied in the joints are represented also by the chords with numbers displayed in red
color in Figure 3.

Consider closer graph Gp. The n edges in Gp that are numbered in green frames
represent the variables related to external forces. For simplicity, here only the gravity force
is considered. The branches start from vertex O0 to Ci and Ci−1,i, i = 1, 2, . . . , n, while
the remaining edges are chords.

The following through variables are represented in the graph Gp having the topologi-
cal structure shown in Figure 3:

• The D’Alembert forces Fd
2i, i = 1, 2, . . . , n, associated with the edges numbered in

black and denoted by 2i, i = 1, 2, . . . , n.
• The forces F2i−1, i = 1, 2, . . . , n, applied in the points Ci−1,i with the edges numbered

in blue and denoted by 2i−1. Note, that only F1 6= 0 because the first body is linked
with the base coordinate system.

• The resultant of the external forces F2i, i = 1, 2, . . . , n, applied in the mass centers
are represented by edges numbered 2i, , i = 1, 2, . . . , n in green frame.

• The forces Fc
i , i = 2n + 1, . . . , 4n− 1 of interaction between the adjacent bodies are

represented by edges numbered in red and denoted by i = 2n + 1, . . . , 4n− 1.

The across variables associated with the graph Gp are:

• The radius-vectors of the mass-centers Ci and the points Ci−1,i starting from O0.
• The local radius-vectors of Ci−1,i relative to the mass centers Ci for the remain-

ing edges.

The edges with numbers from 1 to 2n are chosen as branches [25,26] and all the other
edges are chords. The same enumeration style is used for the angular velocities related to
the edges of the graph Gr.
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Graph Gr has the same topological structure as Gp where the through variables have
the following interpretation.

• The D’Alembert torques Td
2i, i = 1, 2, . . . , n, associated with the edges numbered in

black and denoted by 2i, i = 1, 2, . . . , n.
• The torques T2i−1, i = 1, 2, . . . , n, acting on the points Ci,j associated with the edges

numbered in blue and denoted by 2i−1. Note, that only T1 6= 0 because the first body
is linked with the base coordinate system.

• The resultant of the external torques T(2i), i = 1, 2, . . . , n applied in the joint axes s
are represented by edges numbered in the green frame by 2i, , i = 1, 2, . . . , n.

• The torques Tc
i , i = 2n + 1, . . . , 4n− 1 of interaction between the connected bodies

are represented by edges numbered in red and denoted by i = 2n + 1, . . . , 4n− 1.

The across variables associated with graph Gr are determined as follows. For each of
the edges starting from O0 the across variable is the absolute angular velocity of the link
matching the vertex the respective edge is directed to. These across variables are denoted
by Xr

b. The vertices Ci−1,i in this graph correspond to contact points Ci−1,i belonging to
links with number i− 1 in Figure 3. Thus, the “angular” velocity of such vertex is assumed
to coincide with the angular velocity of the respective link. The across variables for chords
starting from the mass centers Ci describe relative angular velocities and those with even
numbers are zeroes according to the assumption for the contact points Ci−1,i. These across
variables are denoted by Xr

c.

2.2.2. Cut-Set and Circuit Equations

The energy conservation law cannot be proved but is always under verification.
One of its formulations states that the energy is not created or destroyed; it can only
be transformed from one kind to another. This way our system can accept energy, and
transform it according to its functioning, and return back the remainder after that. In this
paper, the system is interpreted by a graph whose edges are associated with pairs of across
and through variables. The energy conservation law is known in the area of mechanics
as the orthogonality principle. This principle can be formulated in terms borrowed from
graph theory as “The sum over all the edges of the scalar products of the through and the
across variables associated with each edge of the graph must be zero”.

The oriented graph with the topological structure shown in Figure 3 has ν = 2n + 1
vertices and σ = 5n − 1 edges. Then, the branches are ν− 1 = 2n and the chords are
σ− (ν− 1) = 3n− 1. After the elimination of the across variables it follows that (1):

σ

∑
j=1

βj
.
Yj = 0 (1)

holds true for every vertex i. Here the through variable
.
Yj is associated with edge j and

• βj = 0 if edge j is not incident with vertex i,
• βj = 1, if edge j starts from vertex i
• βj = −1, if edge j enters vertex i.

This allows expressing the branch variables in terms of chords as shown in (2):

[ Ub, Vc]

[ .
Yb.
Yc

]
= 0 (2)

where Ub is a unit matrix of order ν− 1,
.
Yb- column matrix with ν− 1 elements of branch-

related through variables,
.
Yc- column matrix with σ − ν + 1 elements of chord-related
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through variables, and Vc is a matrix of order (ν− 1)× (σ− ν + 1) having elements 0, +1
and −1 defined in (3) as:

Vc =

[
P
^
E

]
(3)

where P is a matrix with (ν− 1)× (ν− 1) elements described in (4) and ν− 1 is the number
of the branches in the energy graph.

P =


(−1)i−1 for pi,i, i = 1, 2, . . . , ν− 1
(−1)i−1 for pi,i+1, i = 1, 2, . . . , ν− 2

0 otherwise
(4)

and
^
E is defined in (5) as:

^
E =

{
êi,j = 1, when i is odd number 1 ≤ i ≤ 2ν− 3 and j = 1, 2, . . . , ν− 1

êi,j = 0, otherwise
(5)

In the same way, after elimination of the through variables it is obtained that for every
cycle i the following Equation (6) holds true:

σ

∑
j=1

βj
.
Xj = 0 (6)

where the across variable
.
Xj is associated with the edge j and:

• βj = 0 if edge j does not belong to the cycle i,
• βj = 1, if edge j has the same orientation as cycle i
• βj = −1, if edge j has the opposite orientation as cycle i.

This allows to express chord variables by branch ones in (7) as follows:

[ Vb, Uc ]

[ .
Xb.
Xc

]
= 0 (7)

where Uc is a unit matrix of order σ− ν + 1,
.
Xb- column matrix with ν− 1 elements of

branch-related across variables,
.
Xc− column matrix with σ − ν + 1 elements of chord-

related across variables, Vb is a matrix of order (σ− ν + 1)× (ν− 1) having elements 0,
+1 and −1. The subscript c denotes a chord edge representing through variables for a
reaction displayed in Figure 3 in red color. Subscript b denotes a branch edge representing
through variables displayed in Figure 3 in black and blue color. From Equations (2) and (7)
we obtain: .

Yb = −Vc
.
Yc (8)

.
Xc = −Vb

.
Xb (9)

Equations (8) and (9) have been formulated for the first time in [24] as postulates and
they can be obtained from the orthogonality principle as well.

Definition 8. Equations (8) and (9) are called cut-set and circuit equations, respectively.

The cut-set equations are introduced to represent the forces and the torques applied
to the links of the robot arm, while the circuit equations serve to interpret the cycles in
the topological structure of the energy graph. The cut-set equations are used to express
the through and the across variables associated with the branches with those associated
with the chords. Accordingly, the circuit equations allow expressing the across variables
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associated with the chords in terms of those associated with branches. In this regard the
following relations between matrices Vc and Vb hold true in (10).

Vb = −Vc
T and Vc = −Vb

T (10)

Because Ub and Uc are unit matrixes, then (11) and (12) hold true

[ Ub, Vc ]

[
Vb

T

Uc

]
= 0, or the same (11)

[ Vb, Uc ]

[
Ub
Vc

T

]
= 0 (12)

Then the principle of orthogonality can be expressed in (13) as follows:[ .
Y
]T[ .

X
]
=
[ .
X
]T[ .

Y
]
= 0 (13)

Taking into consideration that Ub and Uc are unit matrixes, then from (8) and (9) it
follows that Equation (13) can be written in (14) by separating the branches and chords in
the column matrices

.
X and

.
Y as follows:[ .

X
]T[ .

Y
]
=
[ .
Xb ,

.
Xc

]T
[ .

Yb.
Yc

]
=
[ .
Xb

]T[
Ub , −Vb

T ][ −Vc
Uc

][ .
Yc

]
= 0 (14)

Equation (15) always holds true for any across and through variables:[ .
Xb

]T[
Ub , −Vb

T ][ −Vc
Uc

][ .
Yc

]
=
[ .
Xb

]T
[0]
[ .
Yc

]
= 0 (15)

if and only if (16) holds true:

[
Ub , −Vb

T ][ −Vc
Uc

]
= 0 (16)

Then, from (10) it follows that Equation (16) appears to be another proof of the relations
(8) and (9) between matrices Vc and Vb.

The matrices in (16) look like they are “orthogonal” because their “zero” product
resembles orthogonal vectors. From here comes the name of the orthogonality principle.

2.2.3. Terminal and Connection Equations

The cut-set equations introduced in the previous section deal separately with the
through and across variables. To develop a complete mathematical model of the mechani-
cal system we need to establish terminal relations between the across and through variables
in each sub-graph Gp and Gr separately as well as the relations connecting together corre-
sponding variables from Gp and Gr.

Definition 9. The terminal equations are the equations expressing the relation between across and
through variables in each of sub-graphs Gp and Gr.

The terminal equations have been introduced for the first time in a related research pa-
per [27] referring to mass points, where rigid bodies have not been taken into consideration.
The terminal equations for graph Gp follow the Newton law as shown in (17):

MT
.
X

p
b = −

.
Y

p
b (17)
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where MT is the following operator matrix

MT = diag
(

m1
d
dt

, 0, m2
d
dt

, . . . , 0, mn
d
dt

)
mi, i = 1, 2, . . . , n denote the masses of the links of the robot arm, differentiation is

with respect to time and the notation “diag” denotes a diagonal matrix.
In greater detail, in terms of the absolute velocities vi, i = 1, 2, . . . , n we obtain

M = diag
(

m1
dv1

dt
, 0, m2

dv2

dt
, . . . , 0, mn

dvn

dt

)
The terminal equations for graph Gr are (18):

IT
.

X
r
b = −

.
Y

r
b (18)

where the operator matrix IT is defined as follows:

IT = diag
(

I1
d
dt

+ ◦ × I1◦, 0, I2
d
dt

+ ◦ × I2◦, . . . , 0, In
d
dt

+ ◦ × In◦
)

Here , Ii, i = 1, 2, . . . , n, are the central inertia tensors, ωi, i = 1, 2, . . . , n are the
absolute angular velocities of bodies that are applied at the circle notation of the operator
matrix together with Ii. For clarity, we can write:

I = diag
(

I1
dω1

dt
+ ω1 × I1ω1, 0, I2

dω2

dt
+ ω2 × I2ω2, . . . , 0, In

dωn

dt
+ ωn × Inωn

)

Definition 10. The connection equations express the connection between variables of the same
name (across–across and through–through) for the two sub-graphs Gp and Gr.

The connection equations are (19) and (20):

.
Y

r
c = diagXp

c ×
(
−

.
Y

p
c

)
(19)

.
X

p
c = diagXp

c × (−P∗)T .
X

r
b (20)

where P and
^
E are defined in (4) and (5) and matrix P∗ is obtained from the matrix −P by

replacing all the elements in its even rows with zeros as follows (21).

P∗ =

{
p∗ i,i = p∗ i,i+1 = −1, when i is odd number

p∗ i,j = 0, otherwise
(21)

2.2.4. Procedure for Deriving the Differential Equations of Motion

In this section, we consider the application of the orthogonality principle (10) in its
equivalent form (22):

[δX]T
[ .
Y
]
= 0 (22)

Here δX denotes the variations of the across variables. The representation of (22) in
terms of branch and chord variables yields the following expression (23):[

δXp
b

]T .
Y

p
b +

[
δXp

c

]T .
Y

p
c + [δXr

b]
T .

Y
r
b + [δXr

c]
T .

Y
r
c = 0 (23)

In this equation Xr
c represent the reactions between the adjacent bodies. Knowing

these reactions, we can obtain the driving torques applied in the joints. Therefore, in the
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following transform Equation (23) into an expression depending only on Xr
c. First, we note

that there are two types of chords in Figure 3. Unlike the chords representing reactions, the
chords representing external forces and torques are denoted by chords with numbers in
frames. Let the variables referring to such chords be denoted with subscripts in frames like
c . Thus, for Gp Equation (8) can be rewritten in equivalent form (24):

.
Y p

b = −P
.
Y p

c −
^
E

.
Y p

c
(24)

or (25):
.
Y p

c = −P−1
.
Y p

b − P−1 ^
E

.
Y p

c
(25)

where P is defined in (4) and
^
E in (5).

This allows to express the branch-related variables in (24) via chord-related ones and
vice versa in (25). Moreover, for Gr Equation (8) can be rewritten in an equivalent form:

.
Y

r
b + P

.
Y

r
c +

^
E

.
Y

r
c′ + P∗

.
Y

r
c′′ = 0

Thus, branch-related variables are expressed separately in terms of chord-related
variables as shown in (26) and vice versa in (27):

.
Y

r
b = −P

.
Y

r
c −

^
E

.
Y

r
c′ − P∗

.
Y

r
c′′ (26)

.
Y

r
c = −P−1

.
Y

r
b − P−1 ^

E
.
Y

r
c′ − P−1P∗

.
Y

r
c′′ (27)

where
.
Y

r
c′ are through chord-related variables, denoting the derivatives of the external

moments and
.
Y

r
c′′ are through chord-related variables, denoting derivatives of the mo-

ments generated by the gravitational force. Without loss of generality, we assume that the
moments of the external forces are zero in this study.

By now we have shown that the through variables Yp
c and Yr

c, respectively, in Gp and
Gr can be expressed in terms of the branch or chord-related variables. It remains to do the
same to the across variables Xp

c and Xr
c in Gp and Gr. Note, that Equation (9) for Gp can be

rewritten in the following equivalent form:

δXp
c = PTδXp

b.
X

p
c = PT

.
X

p
b

or with respect to chord-related variables (28):

δXp
b = ( P−1)

T
δXp

c
.
X

p
b = (P−1)

T .
X

p
c

(28)

Accordingly, Equation (9) for Gr may be expressed in the form (29) or (30):

.
X

r
c = PT

.
X

r
b (29)

.
X

r
b = (P−1)

T .
X

r
c (30)

The above-obtained expressions allow summarizing the following steps in a procedure
for transformation of Equation (23) into an expression depending only on the reactions as
follows (Figure 4).
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1. Substitute the derivatives of through chord-related variables
.
Y p

c and
.
Y r

c in (23)
with their expressions in (25) and (27) correspondingly.

2. Substitute the derivatives of through branch-related variables
.
Yb =

[ .
Y

p
b ,

.
Y

r
b

]T
in (23)

using the terminal Equations (17) and (18). Note, that this replacement introduces terms

with
.
Xb =

[ .
X

p
b ,

.
X

r
b

]T
in (23).

3. Substitute all the across branch-related variables δXb =
[
δXp

b , δXr
b

]T
and

.
Xb =

[ .
X

p
b ,

.
X

r
b

]T

in (23) using circuit Equations (28) and (30). Thus, only variables related to chords remain in (23).
4. Substitute the variations of across chord-related variables δXp

c in (23) with deriva-
tives of across branch-related variables using Equation (20).

5. Substitute the derivatives of across branch-related variables
.
X

r
b with the derivatives

of the relative velocities
.
X

r
c between the adjacent bodies using Equation (30).

6. Replace the derivatives of the relative velocities between the adjacent bodies
.
X

r
c by

the derivatives of the generalized coordinates by means of the following exptression:

.
X

r
c = S

.
Q

where the notations
.

Q and S are introduced for convenience in (31) and (32):

.
Q = diag(

.
q1, 0,

.
q2, . . . , 0,

.
qn)

T (31)

S = diag
(

e(1)3 , 0, e(2)3 , . . . , 0, e(n)3

)
(32)

7. Cancel out the terms with reaction forces in matrix Equation (23) by multiplying it
to the left by the matrix S.

8. Group common terms in Equation (23) by the variations of the generalized coordi-
nates and, taking into account the arbitrariness of these variations, obtain the equations of
motion of the system in the form

A
..
q = B (33)
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where the terms containing the second derivatives of the generalized coordinates are
grouped on the left side of the equation and all the others on the right.

Then, matrix A on the left side of (33) takes the form:

A =
(

SP−1
)

I
(

SP−1
)T

+
(

SP−1P∗ × diag Xp
c

)
P−1m(P−1)

T(
SP−1P∗ × diag Xp

c

)
where the following notations are introduced for the matrices containing the masses of the
bodies and their central inertia tensors (34):

m = diag(m1, 0, m2, . . . , 0, mn)
T, I = diag(I1, 0, I2, . . . , 0, In)

T (34)

Obviously, A is a symmetric matrix. It is built of the masses of the bodies and their
central inertia tensors, the unit vectors along the axes of the joints and the scalar matrices
P−1 and P∗ whose elements are 0,−1,+1.

The matrix B is obtained in the form (35):

B = S
(

B3 + Z1 + P−1P∗ × diagXp
c Z2

)
+ S

.
Y

r
c (35)

where the terms of (35) are given in (36)–(41)

B3 = P−1P∗ × diagXp
c

(
B1 + P−1 ^

E
.
Y

p
c

)
+ B2 (36)

B2 = P−1 ^
E

.
Y

r
c − P−1diag

((
P−1

)T .
X

r
c

)
× diag

(
I
(

P−1
)T .

X
r
c

)
(P−1)

T ×
.
X

r
c (37)

B1 = P−1mP−1T
{

diag
[

diagXp
c ×

(
P−1P∗

)T .
X

r
c

]
×
(
−P−1P∗

)T .
X

r
c

}
(38)

Z1 = −
(

P−1P∗ × diagXp
c

)
P−1m

(
P−1

)T(
P−1P∗ × diagXp

c

)T
V (39)

Z2 = −P−1I(P−1)
T(

P−1P∗ × Xp
c

)
V (40)

V = diag
[(

P−1P∗
)T

Xp
c

]
×

.
X

r
c (41)

3. Results

The applicability of the uniform approach described in the previous section is val-
idated by executing computer experiments with the robot arm shown in Figure 5. The
robot arm has been designed, constructed on a 3D printer and assembled by the authors
of this paper. This section presents the kinematics and dynamics characteristics required
to compute the torques in the actuators of the robot arm in order to execute a prescribed
motion. A case study of a planar motion in the workspace is considered, where the gripper
moves an object between two points in the workspace.

3.1. Kinematics and Dynamics Characteristics of the Robot Arm

The robot arm has an open kinematic chain with 5 DoF. It is assembled from five
joints with parallel axes of type R‖R‖R‖R‖T allowing to execute planar motion as shown
in Figure 5.
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The geometric parameters of the kinematic scheme are provided in Table 1 in terms of
Denavit–Hartenberg notations.

Table 1. Robot configurations.

i αi−1 [rad] ai−1 [m] di [m] qi [rad]

1 0 0 0.15 −π/2 ≤ q1 ≤ π/2
2 0 0.15 0 −π/2 ≤ q2 ≤ π/2
3 0 0.1 0 −π/2 ≤ q3 ≤ π/2
4 0 0.1 0 −π/2 ≤ q4 ≤ π/2
5 0 0 −0.05 ≤ d5 ≤ −0.11 0

The rotational joints of the robot are controlled by Smart Servo Motors HerkuleX
DRS-0101. These actuators have the ability to return asynchronously information about
their current position and velocity. This allows to execute smoothly and precisely the
gripper movement. The hard constraints of movement in the joints are provided in Table 1.

The robot dynamics characteristics are the following: m1 = 0.18 [kg]; m2 = 0.13 [kg]; m3 =

0.17 [kg]; I1,(3,3) = 0.0481
[
kg.m2], I2,(3,3) = 0.0139 [kg.m2

]
; I3,(3,3) = 0.0229

[
kg.m2], where the

measurements for the masses are obtained from the 3D CAD model of the robot arm. Here
m3 and I(3)33 include the mass and inertial characteristics of links 4 and 5 (including the gripper)
(Figure 6). The mass centers Ci, i = 1, 2, 3 are in the middle of the robot arm links. This data
is enough to build the model of dynamics of this robot arm in the following section using the
proposed mathematical model and demonstrate the application of the derived equations of
motion in the execution of a typical work task.

3.2. Case Study

The mathematical model presented in Section 2.2 allows deriving the equations of
motion in the general case of a robot arm with n DoF. In this section, we demonstrate the
application of the above-proposed procedure to obtain these equations in the case here
considered robot arm. For simplicity in the presentation of the dynamic system model, in
the following, we assume that joints 4 and 5 are fixed. This turns the robot arm into a 3 DoF
redundant robot arm in executing tasks in the 2D plane described in terms of the position
of the gripper with respect to O0x0y0z0 (Figure 6).
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Further on, we derive and employ the equations of motion in computer experiments
to execute a work task requiring moving the gripper between two points in the plane.

3.2.1. Dynamical Equations

The application of the here proposed model for building the dynamic model of a robot
arm has been discussed in a related research paper [16], where a hand-held robot with 2
DoF in orthopedic surgery is considered. In this paper, we demonstrate the applicability of
the procedure given in Section 2.2.4 for deriving the dynamics equations in closed form
for the 3 DoF robot arm shown in Figure 6. The main advantage of this procedure is the
introduction of a graph to describe the complexity of relations in the topological structure
of the robot arm. Unlike other approaches for approximate representation of the dynamic
model, this procedure aims to obtain explicitly the equations of motion. The association
of pairs of through and across variables to the edges of the reference graphs allows using
matrix computations to obtain the dynamic system model in closed form.

The first step in applying the here proposed model is to create the topological structure
of the robot arm. The kinematic scheme in Figure 6 provides all the data needed to build
the topological structure of the robot arm as well as the graphs Gp and Gr associated with
this structure. The reference graph shown in Figure 7 displays the mass centers Ci and
the contact points Ci−1,i, i = 1, 2, 3, where each one of them is connected with branches
i = 1, 2, . . . , 6 to the origin of the base coordinate system O0x0y0z0. Next, the chords
(denoted in red), representing the reaction forces applied to the contact points in the joints,
are introduced. Finally, the resultant of the external forces (denoted in green), applied
in the mass centers, are added to the reference graph. Further on, graphs Gp and Gr are
obtained from this reference graph by associating the corresponding through and across
variables with its edges. For example, the pair of through and across variables attached
to chord 7 is obtained as follows. The reaction force between the first link and the base is
the through variable, while the across variable of this pair is the local radius vector ρ1 of
C0,1 with respect to C1 (Figure 1). Accordingly, the pair of through and across variables
attached to chord 2, marked in green and used to denote the resultant force applied to the
mass center C1, has the following interpretation. The through variable is the resultant of
the external forces applied to C1, where, for simplicity, it is rendered only to the gravity
force in this case study. The radius vector R1 of C1 with respect to the origin O0 (Figure 1)
represents the across variable of this pair of variables.
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The next step in the modeling process is to represent the graph in Figure 7 in terms
of a table expressing the relationships between vertexes and edges. These relationships
between the vertexes and the edges of the reference graph and, respectively, of graphs Gp
and Gr are described in Figure 8 as follows. The number of rows is equal to the number
of vertices and the number of columns is equal to the number of edges, where the edge
number is displayed with the respective color shown in Figure 7. The elements of this table
indicate whether an edge enters a vertex, leaves a vertex or the edge is not connected to a
vertex using values −1, 1 and 0, correspondingly. For instance, the edge with number 2
in Figure 7 is directed from O0 to C1. Hence, the first element in row 1 and column 2 of
Figure 8 is 1 (because edge 2 leaves from O0) and the element in row 3 and column 2 is −1
(because edge 2 enters C1). Thus, Figure 8 allows restoring the reference graph as well as
graphs Gp and Gr.
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Next, the thus constructed Figure 8 is used to obtain directly sub-matrices−Ub, P,
^
E and Uc

employed in the cut-set Equation (24) in terms of edges and vertexes. These matrices are derived
from Figure 8 by ignoring the elements in its first row. The elements of matrix −Ub are the
elements (shown in blue) in columns with numbers in the interval [1, 6] below the first row in

Figure 8. Correspondingly, the elements of matrices P and
^
E are the elements in columns with

numbers in the interval [7, 11] (shown in red) and the elements in the last three columns (shown
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in green), where all these elements are below the first row in Figure 8. Finally, the dimension of
the unit matrix Uc is equal to the total number of columns after column 7 (inclusive) in Figure 8.
Here we note once again that P is invertible. It allows applying the above described procedure
and obtaining the equations of motion (33).

It is noteworthy, that sub-matrices −Ub, P,
^
E and Uc can be determined the same

way from Figure 8 no matter the complexity of the topological structure of the robot arm.
Besides, these matrices have a significant role in expressing the branch variables in terms
of chords (7) and applying the whole procedure for deriving the equations of motion
in Section 2.2.4 (Figure 4). This illustrates another major advantage in using the graph-
oriented representation of the topological structure of the robot arm that may be rather
complicated in the general case.

The thus obtained matrices −Ub, P,
^
E and Uc can be used directly to execute the

sequence of steps of the procedure described in Section 2.2.4 as a final step in deriving

the equations of motion. More specifically, knowing matrices −Ub, P,
^
E and Uc allows

computing all the matrix calculations in steps 1–8 of this procedure. As a result of the
computations, the elements of matrices A and B in (33) are obtained and shown below. In
applying the proposed procedure, we take into consideration that matrix A is symmetric
and has the following elements:

a11 = d2
1(M1 + 3M2) + 2d1d2(2M2 + M3)cq2 + 4d1d3M3c

(
q2 + q3

)
+ 4d1d2M3cq3

+d1d3M3 + 4d1d2M3cq3 + d1d3M3d2
2(M2 + M3) + 3d2

3M3 + 4d2d3M3cq3
+I1,(3,3) + I2,(3,3) + I3,(3,3)

a12 = d2
2(M2 + 2M3) + 2d1d2(M2 + M3)cq2 + 2d1d3M3c

(
q2 + q3

)
+ 4d2d3M3cq3 + d2

3M3
+I2,(3,3) + I3,(3,3)

a13 = 2d1d3M3c
(
q2 + q3

)
+ 2d2d3M3cq3 + d2

3M3 + I2,(3,3)
a22 = d2

2(M2 + M3) + 4d2d3M3cq3 + 3d2
3M3 + I2,(3,3) + I3,(3,3)

a23 = 2d2d3M3cq3 + d2
3M3 + I2,(3,3)

a33 = d2
3M3 + I2,(3,3)

Here, Mi =
3
∑
j=i

mj, for example M1 =
3
∑

j=1
mj = m1 + m2 + m3 or M3 =

3
∑

j=3
mj = m3

and Ii,(j,k) are the elements j, k = 1, 2, 3 of the inertia tensor matrix Ii for body number i.
For simplicity, we assume the link mass centers are in the middle of the link length, so that
d1 is the length of vectors r7 and r8, d2 stands for r9 and r10, d3 stands for r11.

For the matrix B in the right side of Equation (33) we obtain the following expression:

B = SP−1P∗ × diag Xp
c B1 + S

.
Y

r
c

where B1 = P−1m
(
P−1)T

{
diag

[
diagXp

c ×
(
−P−1P∗

)T .
X

r
c

]
×
(
P−1P∗

)T .
X

r
c

}
Thus, matrix B

has the elements:

b1 = T1 + d1d2
.
q2

1sq2(2m2 + 4m3)− d1d2(
.
q1 +

.
q2)

2sq2(2m2 + 4m3)

−d1d3(
.
q1 +

.
q2 +

.
q3)

2s
(
q2 + q3

)
2m3 − d2d3(

.
q1 +

.
q2 +

.
q3)

2sq32m3

+d2d3(
.
q1 +

.
q2)

2sq32m3 + d1d3
.
q2

1s
(
q2 + q3

)
2m3

b2 = T2 + d1d2
.
q2

1sq2(2m2 + 4m3)− d2d3(
.
q1 +

.
q2 +

.
q3)

2sq32m3+

d1d3(
.
q1 +

.
q2)

2sq32m3 + d1d3
.
q2

1s
(
q2 + q3

)
2m3

b3 = T3 + d2d3(
.
q1 +

.
q2)

2sq32m3 + d1d3
.
q2

1s
(
q2 + q3

)
2m3

Here T1, T2 and T3 are the drive torques and sqi, i = 1, 2, 3 denotes sin qi, while
cqi, i = 1, 2, 3 denotes cos qi.
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3.2.2. Computer Experiments

The computer experiments are conducted with MATLAB [30] and consider a scenario,
where the gripper moves from point A (233, −172, 0) to point B (269, 155, 0) in the workspace.
The equations of motion are used to compute the torques necessary to apply in the actuators in
order to execute the work task. The desired movement from point A to point B is performed
for 2 s by executing commands for applying the computed torques to the actuators in the
joints. A trapezoidal motion profile for the variation of the velocities is employed to achieve
smooth movement in the joints must smoothly increase. The desired maximal velocities and
accelerations for the generalized coordinates q1, q2 and q3 are computed with respect to
their physical hard constraints as follows: 1.4137 [rad/s], −0.0698 [rad/s], 1.8850 [rad/s] and
4.1888

[
rad/s2], 5.5851

[
rad/s2] and 5.5851

[
rad/s2 ]. The displacement in the generalized

coordinates, their velocities, accelerations and the torques required to perform the movement
are visualized in Figures 9 and 10. The torques T1, T2 and T3 reach their maximum values at
time t = 0.4 [s]. They are 0.4367 [Nm], 0.0490 [Nm] and 0.0846 [Nm], respectively. When the
torques are at the maximum, the accelerations in the first and the third joint also reach their
maximum values.
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4. Discussion

This paper presents a model of the dynamics of a robot arm with an open kinematic
chain. The model makes use of the law of conservation of energy and the orthogonality
principle to relate energy potential and energy flow characteristics attached to the edges
of two non-intersecting graphs. These graphs have identical topological structures and
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serve to separate the representation of energy flow characteristics of displacement and
rotation correspondingly. This approach allows to include in consideration all the external
forces, torques and reactions applied to the links of a robot arm with arbitrary degrees of
freedom. The graph notation employed to deal separately with displacement and rotation
variables provides a uniform and intuitive approach to building the inherently complex
model of dynamics. This paper proposes a procedure about how to apply this approach in
the general case. Moreover, the implementation of the proposed procedure is demonstrated
with a realistic case study. The case study considers a physical model of a robot arm
constructed with a 3D printer in our laboratory. The objective of the case study has been
to compute the drive torques for the execution of a required motion of the gripper given
details of the geometrical and inertial characteristics of the robot arm. These equations of
motion are obtained in closed form following the here proposed procedure. The results
from computer experiments are provided and demonstrate that the robot arm gripper
executes smoothly the required motion. Finally, it is worth mentioning that, unlike models
of dynamics founded on the Lagrangian formulation, the proposed procedure allows to
compute the reactions in the joints as well. Without loss of generality, in this case study,
only rotational joints are taken into consideration. Dynamics in the case of the presence of
translational joints can be modeled in a similar way. Finally, the scope of application of
the here presented model can be further extended. It can be applied for the description
of dynamics in other specific areas where the energy interaction occurs. For example, the
elastic characteristics of the robot arm can be included in this model as well.
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17. Guechi, E.-H.; Bouzoualegh, S.; Zennir, Y.; Blažič, S. MPC Control and LQ Optimal Control of A Two-Link Robot Arm: A
Comparative Study. Machines 2018, 6, 37. [CrossRef]

18. Yovchev, K.; Delchev, K.; Krastev, E. State Space Constrained Iterative Learning Control for Robotic Manipulators. Asian J. Control
2018, 20, 1–6. [CrossRef]

19. Liang, B.; Li, T.; Chen, Z.; Wang, Y.; Liao, Y. Robot Arm Dynamics Control Based on Deep Learning and Physical Simulation. In
Proceedings of the 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 2921–2925.

20. Franciosa, P.; Gerbino, S. A CAD-Based Methodology for Motion and Constraint Analysis According to Screw Theory. In Proceed-
ings of the 2009 ASME International Mechanical Engineering Congress and Exposition. Volume 4: Design and Manufacturing,
Lake Buena Vista, FL, USA, 13–19 November 2009; pp. 287–296. [CrossRef]

21. Damic, V.; Cohodar, M.; Kobilica, N. Development of Dynamic Model of Robot with Parallel Structure Based on 3D CAD Model.
In Proceedings of the 30th DAAAM International Symposium, Vienna, Austria, 23–26 October 2019; pp. 155–160. [CrossRef]

22. Bejczy, A.K. Robot Arm Dynamics and Control; Technical memorandum 33-699, Jet Propulsion Laboratory; NASA: Washington, DC,
USA, 1974.

23. Tellegen, B.D.H. A General Network Theorem, with Application. Philips Res. Rep. 1952, 7, 259–296.
24. Koenig, H.; Blackwell, W. Electromechanical System Theory; McGraw-Hill: New York, NY, USA, 1961.
25. Andrews, G. Dynamics Using Vector-Network Techniques; University of Waterloo, Department of Mechanical Engineering: Waterloo,

ON, Canada, 1977.
26. Bojadjiev, G.; Lilov, L. Dynamics of Multicomponent Systems Based on the Orthogonality Principle. J. Theor. Appl. Mech. 1993,

XXIV, 11–26.
27. Schmitke, C.; McPhee, J. Using linear graph theory and the principle of orthogonality to model multibody, multi-domain systems.

Adv. Eng. Inform. 2008, 22, 147–160. [CrossRef]
28. Boiadjiev, G.; Kotev, V.; Delchev, K.; Boiadjiev, T. Modeling and Development of a Robotized Hand-Hold Bone Cutting Device

OCRO. Int. J. Appl. Mech. Mater. 2013, 300–301, 479–483. [CrossRef]
29. Boiadjiev, G.; Chavdarov, I.; Miteva, L. Dynamics of a Planar Redundant Robot Based on Energy Conservation Law and

Graph Theory. In Proceedings of the 2020 International Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Hvar, Croatia, 17–19 September 2020; pp. 1–6.

30. Corke, P. Robotics, Vision and Control. Fundamental Algorithms in MATLAB, 2nd ed.; Springer International Publishing:
Berlin/Heidelberg, Germany, 2017.

http://doi.org/10.3390/robotics9010012
http://doi.org/10.3390/robotics6040039
http://doi.org/10.14232/actacyb.24.3.2020.4
http://doi.org/10.1007/978-3-540-47878-2_15
http://doi.org/10.1109/SII.2012.6427291
http://doi.org/10.3390/machines6030037
http://doi.org/10.1002/asjc.1680
http://doi.org/10.1115/IMECE2009-13159
http://doi.org/10.2507/30th.daaam.proceedings.020
http://doi.org/10.1016/j.aei.2007.08.002
http://doi.org/10.4028/www.scientific.net/AMM.300-301.479

	Introduction 
	Materials and Methods 
	Kinematics 
	Dynamics 
	Energy Graph Associated with Robot Arm 
	Cut-Set and Circuit Equations 
	Terminal and Connection Equations 
	Procedure for Deriving the Differential Equations of Motion 


	Results 
	Kinematics and Dynamics Characteristics of the Robot Arm 
	Case Study 
	Dynamical Equations 
	Computer Experiments 


	Discussion 
	References

