
����������
�������

Citation: Gonçalves, F.; Ribeiro, T.;

Ribeiro, A.F.; Lopes, G.; Flores, P. A

Recursive Algorithm for the Forward

Kinematic Analysis of Robotic

Systems Using Euler Angles. Robotics

2022, 11, 15. https://doi.org/

10.3390/robotics11010015

Academic Editor: António Paulo

Moreira, Félix Vilariño and

Pedro Neto

Received: 26 November 2021

Accepted: 6 January 2022

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

A Recursive Algorithm for the Forward Kinematic Analysis of
Robotic Systems Using Euler Angles
Fernando Gonçalves 1,2 , Tiago Ribeiro 3,4 , António Fernando Ribeiro 3,4,* , Gil Lopes 5 and Paulo Flores 1,2

1 Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal;
id8699@alunos.uminho.pt (F.G.); pflores@dem.uminho.pt (P.F.)

2 Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
3 Department of Industrial Electronics, University of Minho, 4800-058 Guimarães, Portugal;

id9402@alunos.uminho.pt
4 Centro ALGORITMI, University of Minho, 4800-058 Guimarães, Portugal
5 Department of Communication Sciences and Information Technologies, University Institute of Maia—ISMAI,

4475-690 Maia, Portugal; alopes@ismai.pt
* Correspondence: fernando@dei.uminho.pt

Abstract: Forward kinematics is one of the main research fields in robotics, where the goal is
to obtain the position of a robot’s end-effector from its joint parameters. This work presents a
method for achieving this using a recursive algorithm that builds a 3D computational model from
the configuration of a robotic system. The orientation of the robot’s links is determined from the
joint angles using Euler Angles and rotation matrices. Kinematic links are modeled sequentially,
the properties of each link are defined by its geometry, the geometry of its predecessor in the
kinematic chain, and the configuration of the joint between them. This makes this method ideal for
tackling serial kinematic chains. The proposed method is advantageous due to its theoretical increase
in computational efficiency, ease of implementation, and simple interpretation of the geometric
operations. This method is tested and validated by modeling a human-inspired robotic mobile
manipulator (CHARMIE) in Python.

Keywords: forward kinematics; computational mechanics; robot manipulator kinematics; 3D
robot modeling

1. Introduction

The control of robotic manipulators is strongly linked to the study of their motion.
Forward kinematics refers to the process of determining the position and orientation of a
robotic end effector with known joint parameters [1]. Although by definition, the position
and orientation of all links are not required to solve a forward kinematics problem, in
this paper, the goal is to obtain the complete definition of all the link’s orientations and
positions to fully describe the robot’s 3D configuration.

The most used method for the kinematic analysis of robotic manipulators is the
Denavit–Hartenberg parameters [1]. This approach concisely allows the characterization
of each link using four parameters, providing a compact definition of a robot’s kinematic
structure. However, this methodology has two drawbacks. The first is fixing the choice
of axes, which is defined by the orientation of the joints. This prevents researchers from
picking a more natural axes orientation based on the configuration of the kinematic links,
where each axis could be associated with a specific physical meaning (for example, using
the z-axis for heights, or the length of parts). The second is that calculations are made based
on homogeneous transformations. These [4 × 4] matrices define rotations and translations
in a single operation, however, the last line of the matrix does not contain any relevant
information, being constituted by 0 s and 1 s to allow algebraic operations. These additional
multiplications reduce the computational efficiency of the forward kinematics analysis.

Robotics 2022, 11, 15. https://doi.org/10.3390/robotics11010015 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11010015
https://doi.org/10.3390/robotics11010015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0003-4110-5215
https://orcid.org/0000-0002-5909-0827
https://orcid.org/0000-0002-6438-1223
https://orcid.org/0000-0002-9475-9020
https://orcid.org/0000-0002-7013-4202
https://doi.org/10.3390/robotics11010015
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11010015?type=check_update&version=1


Robotics 2022, 11, 15 2 of 20

A known solution to this problem is to divide translations and rotations into different
operations [2].

This paper presents an alternative generalizable methodology that intends to deal
with both of these limitations. This method is based on a recursive algorithm that builds
a 3D model of the robot from its base, to its end-effector. The algorithm progresses along
the kinematic chain, determining the rotation matrix R0

i that defines the orientation of
each link i. This matrix is obtained from the orientation of the preceding link R0

i−1, and
the relative orientation between the current link and its predecessor Ri−1

i . The rotation
between consecutive links is defined using Euler Angles. After the orientation of a link
is determined, its position is obtained from the joint coordinates resulting from the 3D
modeling of its predecessor i− 1. This process provides the necessary information for the
definition of the geometry of each of the robot’s links, the determination of the position
and orientation of these links, and their three-dimensional representation.

This method was implemented in Python using the numpy library for matrix and trigonom-
etry operations, and Matplotlib for the 3D plotting of the robot’s points to allow the observation
of its behavior in a 3D graphical interface. For validation, the algorithm was used to analyze
CHARMIE [3], a human-inspired mobile manipulator robot (Figure 1). This robot also serves as
an example throughout the paper to better explain the developed algorithm.

Figure 1. 3D model of the CHARMIE mobile manipulator in a CAD software (left) and in the
developed kinematics simulation environment (right). On the left, the robot’s kinematic links are
color coded and named.

In Figure 1 the robot’s base is shown as a single kinematic link. At this stage, the
behaviour of the omnidirectional locomotive system was not considered (the wheels and
suspension system are represented, but they do not move in relation to the robot). In-
stead, as a simplification, the robot was modeled as having its base sliding (in the x and
y axes) about the floor using two linear actuators, and rotating (around the z-axis) using
a revolute actuator. The arms and end-effector shown in the CAD model are mere place-
holdes, since one of the results from this kinematic analysis is the study responsible for
dimensioning them.

The main contribution of this paper is the presentation and explanation of a methodol-
ogy for the study of forward kinematics. This methodology produces a computationally
defined 3D model of a robot, which can be used for a set of relevant analyses in the field of



Robotics 2022, 11, 15 3 of 20

robotics. Two examples of these applications are the studies being conducted in CHARMIE,
where this kinematic model is being used not only as the starting point to build a simu-
lation environment for the training of a neural network to control the robot’s motion and
trajectories, but also for multibody dynamics analysis, where the recursive Newton Euler
algorithm described in [4] is used to compute the robot’s inverse dynamics. The cited
Newton Euler algorithm is fully compatible with the methodology presented in this paper,
directly using the information obtained from it (positions, configuration of each link, and
orientations between consecutive bodies in the form of rotation matrices).

To fully describe and validate this methodology, the paper is structured as follows: in
Section 2 a Literature Review is provided, where several methods for the 3D representation
of rotations are listed and described, followed by a justification of the choice of method for
this paper; Section 3 presents, formulates, explains and describes the recursive algorithm
developed in this paper, dividing it into three simple steps; Section 4 provides an example
of application of this methodology, using it to build a 3D model of the CHARMIE mobile
manipulator, defining the robot and explaining how the modeling of some of its particu-
larities was dealt with; Section 5 finishes the paper discussing results and commenting on
possible future works.

2. Literature Review

The forward kinematic analysis can be tackled as a matter of obtaining the 3D configu-
ration of a group of bodies (links) from a set of known conditions (joint parameters). It is
possible to fully define a rigid body in 3D space with its orientation and the coordinates
of one of its points. The position of a point, in Euclidian space, is easily described using
three coordinates: x, y, and z, however, defining three-dimensional rotations, often denoted
SO(3), is a more complex topic. Several formalisms have been developed for this purpose,
they can be used together, and the conversion between them is a well-studied process.
In this Literature Review, some of the main notations used in the field of robotics for the
description of 3D rotations are listed and described, followed by a few examples of works
that use them. This section finishes by presenting and justifying the method chosen for
this paper.

Rotation Matrices are [3 × 3] matrices commonly used to define the rotation between
two coordinate frames i and j. A rotation matrix Ri

j describes the rotation from frame i
to frame j. These matrices represent the dot product between the basis vectors [x̂i, ŷi, ẑi]
and [x̂j, ŷj, ẑj] of the two considered frames [2]. When multiplying the coordinates of
a point P with the rotation matrix Ri

j, the result is a transformation which follows the
rotation defined between frames i and j. This can be used to convert the coordinates of
points between references with different orientations. Rotation matrices can be combined
by simple matrix multiplication (Ri

k = Ri
j Rj

k), allowing the representation of a limitless
sequence of rotations. Due to the simplicity of their manipulation, they are often used
to describe rotations obtained from the application of different formalisms, such as Euler
Angles [5].

The Denavit—Hartenberg convention is one of the most used notations for the kine-
matic analysis of serial manipulators. Four parameters are used to describe the transforma-
tions between each consecutive element of the kinematic chain: ai and αi describe the link’s
length and twist; di and θi describe the joint’s offset and angle [6]. To apply this method, a
set of reference axes are attached to the links of the kinematic chain. The definition of these
references is based on the orientation and position of the joints and follows a set of rules
and conventions usually described by a set of steps (such as presented in [1]), to guarantee
the cohesion of the resulting Denavit–Hartenberg parameters. From these four parameters,
a [4 × 4] homogeneous transformation matrix is constructed containing information re-
garding the rotation and translation between each consecutive pair of links. These matrices
can be combined, multiplied, and easily manipulated like the aforementioned rotation
matrices. Mostly used for serial manipulators, this method is highly advantageous due
to: representing robot kinematics in a compact form; producing consistent results thanks



Robotics 2022, 11, 15 4 of 20

to the rigid and detailed methodology; the vast amount of algorithms and works already
developed for it. Examples of papers using this notation are available in [7–9].

Euler angles represent any rotation of a three-dimensional object as a sequence of three
consecutive rotations. These rotations can be extrinsic (around the fixed motionless original
xyz axes) or intrinsic (around the rotating coordinate axes of the considered body). The
sequence of rotations uses proper Euler angles if the first and third rotations are around the
same axis, or Tait–Bryan angles if all three rotations are around different axes. Depending
on the research field, different authors use different names, and axes, to define Euler angles,
so it is important to verify the nomenclature used in each work. There are two well-known
limitations related to the use of Euler angles. The first is the Euler Angle singularity, which
occurs when the angle of the second rotation is π/2 or −π/2. In these cases, the first and
third Euler Angles can vary independently, both controlling the same degree of freedom,
resulting in an infinite number of possible combinations for defining a single orientation.
The second problem, gimbal lock, also occurs for the same values of the second rotation.
Due to two rotation axes being aligned, a degree of freedom is lost, which prevents the
system from immediately doing determined motions. These limitations can be corrected,
or become severe problems, depending on the intended applications. An explanation of
these limitations, and ways to address them, is available in [10]. Some examples of works
using the Euler-Angles notation are [11–13].

A quarternion is a four-dimensional vector, represented by 4 scalar entities, which can
be harnessed to compute rotations on points and vectors in three dimensions. They are one
of the major alternatives to rotation matrices, and are commonly used due to their high
efficiency in computer calculations and their ease of interpolation. They also avoid both
previously described problems related to Euler Angles. It should be noted that quarternions
have their limitations, such as a reduce in efficiency when calculating the rotation of a
vector [14]. The formulas required for the use of quaternions are well-known, but the
understanding of these formulas, and underlying principles, is complex [14]. Some works
allow a deeper understanding of quaternions, such as the paper [14], and the books [15,16].
A survey is presented in [17] which reviews and compares methods for the computation of
quaternions from rotation matrices. Quaternions are used in the following works: [18,19].

Another possible method for the computational analysis of multi-body kinematics is
screw theory (usually alongside Lie groups). In screw theory, two three-dimensional vectors
are used to represent: the position and orientation of a rigid body; the linear and angular
velocity of a rigid body; a force and a couple [20]. The two vectors define the Plücker
coordinates of a line in space (the position and direction of the screw axis), the magnitude
of the screw, and its pitch. These four factors completely define a screw [20]. Using screw
theory in conjunction with Lie algebra se(3), associated with Lie group SE(3) [21], it is
possible to develop recursive algorithms that solve the kinematics of multi-body problems
with high computational efficiency [22]. Some examples of works that use Screw Theory
are [23–25].

Regarding the methodology used in this paper, the rotation between two consecutive
bodies is defined using ZXZ intrinsic Euler angle rotations. These rotations can be easily
converted into other formalism [5] (such as rotation matrices that can be more conveniently
manipulated), the comprehension of their geometry is straightforward, and they allow
a free choice of local axes for each link (it may become beneficial to program a constant
rotation to guarantee convenient axes orientation). Since most used joints in robotics rotate
around a single axis (revolute joints), problems regarding singularities and the gimbal
lock are easily avoided with the choice of local orientation. More complex joints (such
as spherical joints) can be modeled using a single complex Euler angle rotation, or as a
sequence of rotations with one degree of freedom around the same point. The rotations
obtained from the Euler angles are converted into rotation matrices, and all following
mathematical operations are made using said matrices.



Robotics 2022, 11, 15 5 of 20

3. Recursive Algorithm for the Computation of Forward Kinematics

The structure of the developed recursive forward kinematics algorithm is illustrated
in Figure 2. This algorithm computes the positions of the robot’s links from known joint
configurations. After running this algorithm from link 0 (the global reference) to the robot’s
end-effector, the coordinates and orientations of all bodies in the kinematic chain are fully
defined. The calculations are made sequentially, using information regarding both the
current link i and the previous link i− 1.

Figure 2. Flowchart of the developed recursive algorithm for the computation of forward kinematics.

In Figure 2, the boxes with stronger outlines represent the steps where the orientation
(in the form of a rotation matrix) and position (in the form of coordinates) of the link are
defined. With this information, additional data (such as linear and angular velocities and
accelerations) can be calculated.

The algorithm is divided into three main steps, which are described in greater detail—
accompanied by an example—in the following subsections:

1. Definition of the geometry of link i;
2. Rotation of link i into its current orientation;
3. Translation of link i into its current position.

The following terms are used to define and name points and axes in this paper:

• x′iy
′
iz
′
i—The local coordinate axis of link i;

• x′′i y′′i z′′i —The coordinate axis of link i after considering the link’s rotation to its ac-
tual orientation;

• xyz—The global reference axis;
• Ai—The origin of link i, placed on the connection point between link i and link i− 1;
• Bi—The connection point between link i and link i + 1;
• Ci—The link’s center of mass (important for posterior dynamics calculations);
• Di—The position of the joint between link i and link i + 1 considering a linear joint

displacement di+1 of 0.
• Pi—Refers to all points of link i.

If the joint after a link is revolute, point B′i is fixed and equal to D′i . However, if this
joint is prismatic, this point will move based on the position of the linear actuator. These
calculations must be made in local coordinates when analyzing link i, so that when iteration
i + 1 begins, the position of the origin of link i + 1 in global coordinates is already known.
This is done using the equation:



Robotics 2022, 11, 15 6 of 20

B′i = D′i + di+1v′di+1
, (1)

where di+1 is the linear displacement of the prismatic joint between link i and link i + 1,
and v′di+1

the unit vector defining the orientation of this prismatic joint in relation to the
x′iy
′
iz
′
i local axes.
The rotation matrix associated with an intrinsic ZXZ Euler rotation, defined by the

angles (Z1, X2, and Z3), is obtained from [5]:

ZXZEuler(Z1, X2, Z3) =

c1c3 − s1c2s3 −c1s3 − s1c2c3 s1s3
s1c3 + c1c2s3 c1c2c3 − s1s3 −c1s2

s2s3 s2c3 c2

, (2)

where c represents a cosine function, s a sine function, and the indexes 1, 2, and 3 the
corresponding angles (angle of the 1st rotation around the z-axis, angle of the 2nd rotation
around the new x-axis, angle of the 3rd rotation around the z-axis after the first two rotation
are applied).

If the local coordinate axes for two consecutive links are aligned when the associ-
ated joint rotation angle θi is 0, the rotation matrix Ri−1

i between them can be directly
determined using:

Ri−1
i =


ZXZEuler(0, θi, 0) if rotation axis is x
ZXZEuler(π/2, θi, 0) if rotation axis is y
ZXZEuler(0, 0, θi) if rotation axis is z

, (3)

in this equation, the orientation of the joint axis and the joint rotation angle θi are used to
define the inputs for Equation (2).

The orientation of link i, defined by R0
i , is then determined using:

R0
i = R0

i−1Ri−1
i , (4)

where the rotation matrix R0
i−1, which defines the orientation of link i− 1 in relation to

reference 0 (already determined in iteration i− 1 of the algorithm), is multiplied by the
rotation matrix Ri−1

i determined in the previous Equation (3).
The P′′i points of link i rotated into its current orientation (expressed in the x′′i y′′i z′′i

axes) are obtained using: P′′i x
P′′i y
P′′i z

 = R0
i

P′i x
P′i y
P′i z

, (5)

where the rotation matrix R0
i is used to rotate the P′i points in the local axes of link i around

point A′i.
A last equation then determines the coordinates of the points Pi of link i expressed in

the xyz global axes: Pix
Piy
Piz

 =

P′′i x
P′′i y
P′′i z

+

Bi−1x
Bi−1y
Bi−1z

, (6)

where the coordinates of point Bi−1 (determined in the previous iteration of the algorithm)
are used to translate the P′′i points of the rotated axes of link i into their correct position
and orientation.

In particular cases, a joint may not be directly actuated, and additional calculations
are required based on the geometry of the robot. Examples of this are given in Section 4.2.

This simple algorithm can model robots with different configurations and purposes.
Besides CHARMIE, studied in the following sections, Figure 3 shows three examples of
kinematic models obtained using this method: (a) a mobile quadruped robot similar to



Robotics 2022, 11, 15 7 of 20

SPOT from Boston Dynamics [26]; (b) a fixed serial manipulator similar to KUKA KR
500-3 [27]; and (c) a mobile hexapod similar to the one presented in [28].

Figure 3. Examples of robots modeled using the proposed recursive algorithm: (a) a quadruped
robot; (b) a fixed serial manipulator; (c) a hexapod robot.

These three models were made as follows:

• Quadruped robot—First, the main body of the robot was created. Then, a single leg
was modeled. The leg model was replicated four times, and each of them was placed
in its respective connection point to the body (a constant rotation altered the origin
orientation between legs on the left and the right side of the robot). This resulted in a
fully defined kinematic model controlled by 12 joint angles (3 for each leg). To study
the robot’s locomotion, the model can be placed in a simulation environment that
considers the dynamic interactions between the feet and the floor.

• Fixed serial manipulator—To build this model, each body was created in local coordi-
nates, and then the robot was assembled with the proposed algorithm. This model is
controlled by the angles of the 6 revolute joint. This analysis is similar to problems
commonly tackled using Denavit-Hartenberg parameters.

• Hexapod robot—Modeling the hexapod was similar to the quadruped robot, with the
main difference being the use of a π/3 rotation between each leg in relation to the
body. The resulting kinematic model is controlled by 18 joint angles (3 for each leg).
Similar to the quadruped robot, after interaction with the floor is defined, this model
can be used to study locomotion.

The use of this algorithm provides the same advantages for the study of these three
robots as for CHARMIE. Besides the resulting models being compatible with other methods,
they are inherently parametric and modular. As an example, this allows doing a parametric
study of the limb length for the mobile robots to minimize actuator torque or maximize
locomotion velocity. All shown models can also be used for machine learning applications.

The algorithm’s behaviour will now be explained and illustrated by using it to model
the head (link 8c) of the CHARMIE robot. At this iteration, the algorithm has already finish
running for all links leading to link 8c, which produces the model shown in Figure 4.



Robotics 2022, 11, 15 8 of 20

Figure 4. Starting configuration for the application example of the recursive algorithm. The robot has
been completely modeled with the exception of its head (link 8c).

3.1. Modeling Link i in Its Local Coordinates Axis

The first step is the construction of a 3D model of the link being analyzed in its local
coordinates. The origin of each link, identified as point A′i, is placed on the point where
link i is connected to link i− 1. The geometry of each link can be defined by any number of
points (or other methods, such as surfaces or equations).

A coherent choice of local axes orientation for the 3D models facilitates the implemen-
tation of the algorithm. In this example, z′i represents the positive height of complex parts,
or the length of tubes, the positive y′i points to the front of the part, and the x′i axis points
from left to right.

To demonstrate this step, Table 1 shows the local coordinates of the CHARMIE robot’s
head (link 8c). Since this is the end of a kinematic chain, point B′i corresponds to the
end-effector (in this example, it is a point in the top of the robot’s head, but the position of
a camera could also be considered). Equation (1) defines the position of B′8c being the same
as D′8c because the joint after link 8c has no motion (in this case, it is a fixed point).

Table 1. Coordinates (in millimeters) of the relevant points of the robot’s head (link 8c) in the x′8cy′8cz′8c
local axes.

Point x y z Point x y z Point x y z

A′8c 0 0 0 G′8c −84.75 0 41 M′8c −84.75 110 −9
B′8c −14.75 20 201 H′8c 55.25 0 −9 N′8c 55.25 110 201
C′8c −11.83 15.23 75.68 I′8c −84.75 0 −9 O′8c 55.25 −70 201
D′8c −14.75 20 201 J′8c 55.25 110 −9 Q′8c −84.75 −70 201
E′8c 0 0 41 K′8c 55.25 −70 −9 R′8c −84.75 110 201
F′8c 55.25 0 41 L′8c −84.75 −70 −9

Figure 5 shows the 3D model obtained from the points of Table 1. The head is
represented in a 3D plot by drawing lines between the relevant points. Points B′8c to
D′8c were not illustrated since they are only relevant for internal calculations, not for the
graphical representation of the head.



Robotics 2022, 11, 15 9 of 20

Figure 5. 3D Model of the robot’s head (link 8c) in CAD (left), and in the computational simulation in
the x′8cy′8cz′8c local axes (right). With the exception of the axes of the global reference (xyz), represented
points and axes have sub-index (8c) but this notation was omitted for simplification.

It should be noted that if the goal is to obtain the solution of the forward kinematics
with maximum computational efficiency, each link can be simplified to only contain points
B′i and D′i (when the following joint is revolute, only B′i is needed).

3.2. Rotating Link i to Its Current Orientation

In the second step of the algorithm, the orientation of link i is determined. In this
work, intrinsic proper Euler rotations along the ZXZ axes are used to describe the rotation
between each pair of consecutive links.

Since the local axes were chosen fulfilling the conditions for Equation (3), it can be used
together with Equation (2) to obtain the rotation matrix R7c

8c. If the axes were not aligned,
constant angles could be added to Equation (3) to include the change of orientation.

Knowing the orientation of link 7c about the global reference R0
7c, which was deter-

mined in the previous iteration of the algorithm, and the rotation between link 7c and link
8c, the orientation R0

8c of link 8c is obtained using Equation (4).
With the orientation of link 8c determined, it is now possible to rotate it to its current

configuration. A new auxiliary reference, x′′8cy′′8cz′′8c, is created to represent link 8c after its
rotation. This rotation is applied to all P′8c points of the link using Equation (5).

Figure 6 shows the robot’s head, and its corresponding points, after being rotated to a
specific configuration. This orientation is calculated using data resulting from all iterations
until the current one is reached, indirectly utilizing information from the rotation of all
revolute joints along the kinematic chain.

3.3. Moving Link i to Its Current Position

With link 8c in its correct orientation, the only step left is the translation to its current
position. The coordinates of the connecting point B7c between link 7c and link 8c in the xyz
global axes were already determined in iteration 7c of the algorithm. Since the model of
link 8c was built around this same connection point in its local reference (A′8c), the global
coordinates are obtained by adding the coordinates of point B7c to all previously rotated
points P′′8c using Equation (6).



Robotics 2022, 11, 15 10 of 20

Figure 6. 3D Model of the robot’s head in the computational simulation in the rotated x′′8cy′′8cz′′8c axes.
The labeling of points A–G was omitted. The non-rotated position of the head is shown in dotted
grey lines. With the exception of the axes of the global reference (xyz), all points and axes represented
have sub-index (8c) but this notation was omitted for simplification.

The coordinates of B7c are used for all P8c points since they all follow the same
translation. With this step finished, link 8c becomes modeled in its current position with its
current orientation, as shown in Figure 7.

Figure 7. 3D Model of the robot’s head in the computational simulation in the xyz global axes. The
labeling of points A–I was omitted. The head after rotation, but before translation, is shown in dotted
grey lines (left). On the (right), the head is shown with the whole robot also being visible. With the
exception of the axes of the global reference (xyz), all points and axes represented have sub-index (8c)
but this notation was omitted for simplification.



Robotics 2022, 11, 15 11 of 20

4. Application of the Algorithm for the CHARMIE Robot

To validate the proposed algorithm, and provide a further understanding of how it
is applied to a practical example, this section describes the process of using it to model
CHARMIE [3], a human-inspired mobile manipulator robot (Figure 1).

The application of the algorithm to an ongoing project also proved its usefulness by
successfully serving as a basis for two studies:

• Develop a 3D environment for multibody dynamic analysis—Using the recursive
Newton-Euler algorithm for the inverse dynamics analysis presented in [4], together
with the algorithm described in this paper, a 3D multibody dynamic analysis of the
CHARMIE robot has been built. This study was fundamental for the mechanical
project of the robot and the choice of actuators. Results from this methodology were
validated both using benchmarks from literature, and comparing results to other
multibody simulation software (WorkingModel4D and CoppeliaSim).

• Analyse and train neural network solutions for trajectory control—The forward kine-
matic analysis defines the robot’s configuration as a function of its joint positions.
After defining limits for the joints, and a set of conditions that determine the success
and failure of a trajectory generation (example: a collision is a failure, and getting into
an intended position is a success), a neural network can be trained to control the joint
actuators to find optimal trajectories. By hiding the visual interface of the developed
algorithm, high computational efficiency is achieved, optimal for neural network train-
ing. By also including contact between bodies (using, for example, the mathematical
models in [29]) this method will be used to train CHARMIE for manipulation tasks,
such as picking and placing of objects.

In the following subsections, CHARMIE’s kinematic structure is described, followed
by an explanation of the auxiliary calculations required to both correctly model the robot’s
forward kinematics, and to extract data regarding the configuration of components that
were not modeled directly. This section finishes by presenting a comparative study, made
using WorkingModel4D, to validate the obtained results.

4.1. Definition of the Robot’s Kinematic Chain

The first step for analyzing CHARMIE was organizing its kinematic structure by
defining and naming its links and joints. The result from this process is shown in Figure 8,
which schematically represents the kinematics of the robot. The manipulator was modeled
as a single serial kinematic chain from the global reference to its upper body and then split
into three different serial kinematic chains, one for the left arm (chain a), one for the right
arm (chain b), and one for the head (chain c). The end of both arms also splits into the two
halves of the end effectors claws. The motion of both halves of each claw is controlled by a
single actuator (joint 13a and joint 13b).

Next, all information required to run the algorithm was prepared and computed. This
includes the coordinates of the points considered for each link in their local coordinates,
and the Ri−1

i matrices obtained using Equation (3). This information is listed in Table 2. For
simplicity, only the coordinates of points B′i (enough to model the robot’s kinematics) are
shown. Since link 5 is connected to three different links, it has three different B′i associated.
Despite being connected to two links, links 12a and 12b have a single B′i due to both halves
of the end effector having the same origin. Links 13a1, 13a2, 13b1, 13b2, and 9c have no B′i
because they are end effectors, not connected to any following link.

This information (and the coordinates of the other points to draw each link) was
enough to build the model of Figure 1. The only exceptions were Joints 4 and 5 which, due
to not being directly actuated, required additional calculations.



Robotics 2022, 11, 15 12 of 20

Figure 8. Schematic representation of the kinematic chain of the CHARMIE mobile manipulator.

Table 2. Information regarding the coordinates of the B′i points (in millimeters) and the Ri−1
i rotation

matrices for the kinematic model of the CHARMIE robot. Variables marked with * were determined
indirectly using the methods described in Section 4.2.

Iteration (i) B′i Ri−1
i

0 [0; 0; 36.8] + d1[1; 0; 0] ZXZEuler(0, 0, 0)
1 [0; 0; 0] + d2[0; 1; 0] ZXZEuler(0, 0, 0)
2 [0; 0; 0] ZXZEuler(0, 0, 0)
3 [0; 0; 290] + d4* [0; 0;−1] ZXZEuler(0, 0, θ3)
4 [0; 0; 434] ZXZEuler(0, 0, 0)

5
B5a = [−200; 3; 460];
B5b = [200; 3; 460];

B5c = [0; 0; 495]
ZXZEuler(0, θ5*, 0)

6a [0; 0; 30] ZXZEuler(π/2,−π/2, 0)
7a [0; 0; 61.5] ZXZEuler(0, 0, θ7a)
8a [0; 0; 145] ZXZEuler(0, θ8a, 0)
9a [0; 0; 145] ZXZEuler(0, 0, θ9a)
10a [0; 0; 140] ZXZEuler(0, θ10a, 0)
11a [0; 0; 140] ZXZEuler(0, 0, θ11a)
12a [0; 0; 15] ZXZEuler(0, θ12a, 0)
13a1 X ZXZEuler(π/2, θ13a, 0)
13a2 X ZXZEuler(π/2,−θ13a, 0)
6b [0; 0; 30] ZXZEuler(π/2, π/2, 0)
7b [0; 0; 61.5] ZXZEuler(0, 0, θ7b)
8b [0; 0; 145] ZXZEuler(0, θ8b, 0)
9b [0; 0; 145] ZXZEuler(0, 0, θ9b)
10b [0; 0; 140] ZXZEuler(0, θ10b, 0)
11b [0; 0; 140] ZXZEuler(0, 0, θ11b)
12b [0; 0; 15] ZXZEuler(0, θ12b, 0)



Robotics 2022, 11, 15 13 of 20

Table 2. Cont.

Iteration (i) B′i Ri−1
i

13b1 X ZXZEuler(π/2,−θ13b, 0)
13b2 X ZXZEuler(π/2, θ13b, 0)
6c [0; 0; 46.3] ZXZEuler(0, 0, 0)
7c [14.8;−5.3; 18.3] ZXZEuler(0, 0, θ7c)
8c [−14.8; 20; 201] ZXZEuler(0, θ8c, 0)
9c X ZXZEuler(0, 0, 0)

4.2. Auxiliary Calculations for Complex Joints

The recursive algorithm presented in Section 3 can model any link from known joint
values. However, in some practical examples, joints are not directly actuated, and it is
necessary to establish the correspondence between the actuator position and the joint value.
This happens in two joints of CHARMIE: joint 4, a prismatic joint actuated indirectly by
a linear actuator; and joint 5, a revolute joint controlled by a linear actuator. Since these
calculations can be applied to similar situations in other robots, they are explained in detail.

4.2.1. Joint 4

Joint 4 of CHARMIE is a prismatic joint indirectly actuated by a linear actuator. The
goal is to establish a relation between the length of the linear actuator c3 and the linear
displacement of joint 4 d4. The relevant geometric features for this calculation are shown in
Figure 9.

Figure 9. Schematic representation of the geometry of joint 4 between link 3 and link 4 of the
CHARMIE robot.



Robotics 2022, 11, 15 14 of 20

For these calculations, global coordinates from link 4 cannot be used (because at this
stage of the algorithm, this link is not modeled yet), but the local coordinates can since
they only depend on the link’s geometry, which is constant. First, an auxiliary point F3
was included in link 3, which corresponds to the endpoint of the linear actuator. The y′

coordinate of this point is fixed, and can be used to determine a3 using the expression:

a3 = F′3y− E′3y. (7)

With this value and the current lenght of the actuator c3, the auxiliary angle α3 can
be determined:

α3 = acos(
a3

c3
). (8)

This angle allows the height b3 to be obtained:

b3 = c3sin(α3), (9)

which then allows the height of the auxiliary point F′3z to be determined:

F′3z = E′3z + b3. (10)

With F′3z determined, and D′3 being a known and fixed point, e3 is calculated using:

e3 = F′3z− D′3z. (11)

The height b4 is only dependant on the geometry of link 4, and is calculated using:

b4 = F′4z− A′4z. (12)

It then becomes possible to calculate d4 using:

d4 = b4 − e3. (13)

By combining Equations (7)–(13), the relation between d4 and c3 is obtained, resulting
in equation:

d4 = F′4z− E′3z− c3sin
(

acos
(

F′3y− E′3y
c3

))
+ D′3z. (14)

Point A′4z was removed from this equation since its value is 0. To allow reproducibility
of results, the required geometric values for this step are shown in Table 3.

Table 3. Coordinates (in millimeters) of the relevant points for the calculations of joint 4 in their
respective local coordinates.

Point x y z Point x y z

D′3 0 0 290 F′3 0 162.5 -Calculated-
E′3 0 257.5 99.5 F′4 0 162.5 383

4.2.2. Joint 5

Joint 5 of CHARMIE is a revolute joint actuated by a linear actuator between links 4
and 5. The goal is to establish the relation between the configuration of the linear actuator
c4 and the rotation of the joint θ5. The geometric features used in this calculation are
represented in Figure 10.



Robotics 2022, 11, 15 15 of 20

Figure 10. Schematic representation of the geometry of joint 5 between link 4 and link 5 of the
CHARMIE robot.

As in the previous example, only local coordinates (related to the parts’ geometry)
or lengths (constant regardless of the chosen reference) are used. The angle θ5 can be
determined from two auxiliary angles, α4 and β5, using the expression:

θ5 = α4 + β5 − π/2 , (15)

where α4 can be calculated using:

α4 = atan
(

H′4z− B′4z
H′4y− B′4y

)
, (16)

and β5 using the expression:

β5 = atan
(

E′5y− A′5y
E′5z− A′5z

)
. (17)

The points required for obtaining β5 are only dependant on the geometry of link 5,
therefore, they can be determined directly. However, α4 requires the coordinates of point H′4,
which are dependant on the geometry of link 4, the geometry of link 5, and the length of
the actuator c4.

The coordinates of H′4 were calculated as the intersection between two circumferences,
one with its center on point G′4 and radius c4, and the other centered on point B′4 with
radius a5. Radius c4 is obtained from the actuator length, and a5 from the expression:

a5 =
√
(E′5y− A′5y)2 + (E′5z− A′5z)2 . (18)

To calculate the intersection between two circumference, the distance between their
centers e4 is also needed, given by the expression:

e4 =
√
(B′4y− G′4y)2 + (B′4z− G′4z)2 . (19)



Robotics 2022, 11, 15 16 of 20

To facilitate the formulation of the intersection, two auxiliary mathematical parameters
were used. The first is l4, given by the expression:

l4 =
c4

2 − a5
2 + e4

2

2e4
, (20)

and the second is h4, calculated from the expression:

h4 = c4
2 − l42 , (21)

The coordinates of H′4 can then be determined using the pair of equations:

H′4y =
l4
e4
(B′4y− G′4y) +

h4

e4
(B′4z− G′4z) + G′4y , (22)

H′4z =
l4
e4
(B′4z− G′4z) +

h4

e4
(B′4y− G′4y) + G′4z . (23)

By combining Equations (15)–(23), the expression establishing the relation between θ5
and e4 is obtained. This expression is not be presented in its extended form due to its size,
which would hinder its comprehension.

To allow the results to be reproducible, Table 4 shows the coordinates of all geometric
features used for this calculation.

Table 4. Coordinates (in millimeters) of the relevant points for the calculations of joint 5 in their
respective local coordinates.

Point x y z Point x y z Point x y z

B′4 0 0 434 G′4 0 87.5 383 E′5 0 122.5 380

4.3. Auxiliary Calculations to Extract Relevant Data from the Model

After the model is obtained, a set of data not modeled directly can be obtained from it.
One example for this, in the CHARMIE robot, is the configuration of the springs

included between links 4 and 5. The connection points between these springs, S′4 and
S′5, are placed on the local coordinates, but the global configuration of the spring is not
explicitly defined. After the recursive algorithm runs, the spring length ls can be easily
obtained by calculating the distance between the two connection points S4 and S5 in the
global coordinate reference, as shown in the following equation:

ls =
√
(S5x− S4x)2 + (S5y− S4y)2 + (S5z− S4z)2 . (24)

Any angle αs can also be calculated by defining a triangle using three distances: ls; as;
bs. The value of these distances can be determining using Equation (24), and the value of
the angle is then calculated by applying the law of cossines in the form:

αs =

(
l2
s + b2

s − a2
s

2lsbs

)
, (25)

where as is the opposite side of the triangle to the internal angle being calculated.
Using integration, it becomes possible to evaluate problems over time. A possible

method for obtaining the angular velocity, angular acceleration, and linear acceleration
of all links is to use the forward iterations of the recursive algorithm from chapter 7.5.2
of [4]. The inputs of this method are the information obtained in this algorithm (rotation
matrices and coordinates of points A′i, B′i and C′i ), and the known inputs from the forward
kinematics analysis (joint orientation, position, velocity, and acceleration).



Robotics 2022, 11, 15 17 of 20

4.4. Validation of Results

To validate the developed algorithm, the CHARMIE robot was also modeled in the
multibody simulation software WorkingModel4D. The same problem, a simple motion that
requires the movement of all joints, was solved using both methods to compare and verify
the results.

All actuators started with a position/angle of 0, except for d4 and θ5, actuated by the
linear actuators c3 and c4, which started in the positions c3 = 400 mm and c4 = 350 mm. All
joints were defined with a constant velocity. The angular velocity considered for the directly
actuated revolute joints was π/36 rad/s, and the linear velocity for the linear actuators
5 mm/s. The three exceptions were joints θ7c and θ8c, both with an angular velocity of
π/72 rad/s, and the linear actuator c4, with a linear velocity of 2.5 mm/s. To analyse a
single set of coordinates, the claw end effectors were replaced with a point at their center—
this corresponds to changing Table 2 by: removing rotations θ13a and θ13b; and changing
the value of B′12a and B′12b to [0; 0; 140]. The robot was simulated under these conditions for
a period of 20 s. Figure 11 shows a side-by-side comparison of frames captured from both
simulation environments, and Figure 12 compares the extracted coordinates of the center
of the left arm end effector (link 13a).

Figure 11. Comparison of the robot’s configuration for the same problem analysed using the recursive
algorithm presented in this paper (left), and WorkingModel4D (right).



Robotics 2022, 11, 15 18 of 20

Figure 12. Comparison between the results for the end-effector position 13a for the same conditions
analysed using both the recursive algorithm and WorkingModel4D.

The figures illustrate that the robot’s behavior was identical in both environments.
The results from the extracted data are indistinguishable, with a complete overlap between
the graphic’s lines. This data compares positions directly, not orientations (due to the many
different notations available to define them), however, similar results for the positions
could only be obtained with the correct definition of all the angles in the kinematic chain
leading up to link 13a. The similar configuration of both robots, in Figure 11, further proves
the cohesion between the orientations defined in the two methods.

With these two unrelated sources providing the same results for the robot’s forward
kinematics, the validity of the proposed algorithm is proven.

5. Conclusions

In this paper, a simple, intuitive, and theoretically computational efficient three-step
recursive algorithm is presented to analyze the kinematics of robotic manipulators. From
known joint values, the algorithm fully defines the 3D configuration of a kinematic chain,
returning the orientation and position of each link described by rotation matrices and
Cartesian coordinates. This methodology was further explained by successfully applying
it to model CHARMIE, a mobile manipulator with a relatively high degree of complexity.
The results were validated by comparing them with the multibody dynamics software
WorkingModel4D.

All input data required to define the given example is provided with full transparency,
guaranteeing its replicability. This both exposes the results to external validation and allows
the presented problem to serve as a benchmark for 3D kinematic analysis.

After using this methodology, the following key advantages were identified:

• Modularity—Due to its recursive structure, models constructed with the proposed
algorithm have high modularity. Entire sections in the middle of the kinematic chain
can be altered with minimal effort, simplifying any changes made to both links
and joints.

• Speed of implementation—After the initial equations are defined, this method allows
a fast modeling of different kinematics structures. For reference, each of the models
shown in Figure 3 was made in approximately four hours (including the modeling of
each link in local coordinates and defining the 3D drawing of the visual interface).

• Full definition of the link’s models—The algorithm contains information regarding the
geometry of each of the links. This can be used for studies such as collision detection.

• Versatility—As previously stated, the implementation of this algorithm is less rigid
then the Denavit–Hartenberg parameters, freeing the choice of axes orientation for
each of the links. Any rotation and translation can be programmed between each of



Robotics 2022, 11, 15 19 of 20

the links, allowing the definition of any type of joint. More complex mechanisms can
be analysed using a process homologous to example (Section 4.2).

• Compatibility—This algorithm outputs: the Cartesian coordinates of each point in
each link in local coordinates; the Cartesian coordinates of each point in each link in
global coordinates; the orientation between each pair of successive links in the form
of rotation matrices; the orientation of each links in relation to the global reference
in the form of rotation matrices. This information can be inputted into a set of
already defined algorithms, such as the aforementioned example of inverse multibody
dynamic analysis [4].

With the increasing interest in robotics, the presented method can become a powerful
tool for computational analysis. It can be used to define a wide array of robots in three
dimensions, and the resulting models can act as a starting point for a set of more advanced
studies. In the CHARMIE project, this algorithm already functions as the basis for a
multibody dynamic analysis environment and will be used for neural network training.

Theory corroborates that this algorithm increases computational efficiency in com-
parison to using the Denavit–Hartenberg parameters [2], however, a relevant future study
would be running a set of tests to prove and quantify this improvement.

Author Contributions: Conceptualization, F.G. and G.L.; methodology, F.G.; software, F.G. and
T.R.; validation, A.F.R., G.L. and P.F.; formal analysis, F.G. and T.R.; investigation, F.G. and T.R.;
resources, A.F.R., G.L. and P.F.; data curation, F.G. and T.R.; writing—original draft preparation, F.G.;
writing—review and editing, T.R., A.F.R., G.L. and P.F.; visualization, F.G.; supervision, A.F.R., G.L.
and P.F.; project administration, G.L. and P.F.; funding acquisition, F.G., T.R., G.L. and P.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020. The author F.G. received funding through a doctoral
scholarship from the Portuguese Foundation for Science and Technology (Fundação para a Ciência
e a Tecnologia) [grant number SFRH/BD/145993/2019], with funds from the Portuguese Ministry
of Science, Technology and Higher Education and the European Social Fund through the Programa
Operacional do Capital Humano (POCH). The author T.R. received funding through a doctoral
scholarship from the Portuguese Foundation for Science and Technology (Fundação para a Ciência
e a Tecnologia) [grant number SFRH/BD/06944/2020], with funds from the Portuguese Ministry
of Science, Technology and Higher Education and the European Social Fund through the Programa
Operacional do Capital Humano (POCH).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study presents the data required to replicate its results.

Acknowledgments: This work has been supported by the CMEMS Research Centre and the Labora-
tory of Automation and Robotics (LAR) of University of Minho.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Rocha, C.R.Ã.; Tonetto, C.P.; Dias, A. Robotics and Computer-Integrated Manufacturing A comparison between the Denavit-

Hartenberg and the screw-based methods used in kinematic modeling of robot manipulators. Robot. Comput. Integr. Manuf. 2011,
27, 723–728. [CrossRef]

2. Waldron, K.; Schmiedeler, J. Kinematics. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 9–33.
[CrossRef]

3. Ribeiro, T.; Gonçalves, F.; Garcia, I.S.; Lopes, G.; Ribeiro, A.F. CHARMIE: A Collaborative Healthcare and Home Service and
Assistant Robot for Elderly Care. Appl. Sci. 2021, 11, 7248. [CrossRef]

4. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics Modelling, Planning and Control, 1st ed.; Springer: London, UK, 2009;
p. 632. [CrossRef]

http://doi.org/10.1016/j.rcim.2010.12.009
http://dx.doi.org/10.1007/978-3-540-30301-5_2
http://dx.doi.org/10.3390/app11167248
http://dx.doi.org/10.1007/978-1-84628-642-1


Robotics 2022, 11, 15 20 of 20

5. Aye, M.M.M. Analysis of Euler angles in a simple two-axis gimbals set. World Acad. Sci. Eng. Technol. 2011, 81, 389–394.
[CrossRef]

6. Corke, P. A Simple and Systematic Approach to Assigning Denavit-Hartenberg Parameters. IEEE Trans. Robot. 2007, 23, 590–594.
[CrossRef]

7. Ding, F.; Liu, C. Applying coordinate fixed Denavit-Hartenberg method to solve the workspace of drilling robot arm. Int. J. Adv.
Robot. Syst. 2018, 15 , 1729881418793283. [CrossRef]

8. Thomas, M.J.; Sanjeev, M.M.; Sudheer, A.P.; Joy, M.L. Comparative study of various machine learning algorithms and Denavit-
Hartenberg approach for the inverse kinematic solutions in a 3- PP SS parallel manipulator. Ind. Robot. Int. J. Robot. Res. Appl.
2020, 47, 683–695. [CrossRef]

9. Klug, C.; Schmalstieg, D.; Gloor, T.; Arth, C. A Complete Workflow for Automatic Forward Kinematics Model Extraction of
Robotic Total Stations Using the Denavit-Hartenberg Convention. J. Intell. Robot. Syst. 2019, 95, 311–329. [CrossRef]

10. Hemingway, E.G.; Reilly, O.M.O. Perspectives on Euler angle singularities, gimbal lock, and the orthogonality of applied forces
and applied moments. Multibody Syst. Dyn. 2018, 44, 31–56. [CrossRef]

11. Perrusquía, A.; Yu, W. Human-in-the-Loop Control Using Euler Angles. J. Intell. Robot. Syst. 2020, 97, 271–285. [CrossRef]
12. Ran, C.; Cheng, X. A Direct and Non-Singular UKF Approach Using Euler Angle Kinematics for Integrated Navigation Systems.

Sensors 2016, 16, 1415. [CrossRef]
13. Schappler, M.; Tappe, S.; Ortmaier, T. Resolution of Functional Redundancy for 3T2R Robot Tasks using Two Sets of Reciprocal

Euler Angles. In Advances in Mechanism and Machine Science; Uhl, T., Ed.; Springer International Publishing: Cham, Switzerland,
2019; pp. 1701–1710.

14. Goldman, R. Understanding quaternions. Graph. Model. 2011, 73, 21–49. [CrossRef]
15. Hamilton, W.R. Elements of Quaternions; Cambridge Library Collection—Mathematics, Cambridge University Press: Cambridge,

UK, 2010; [CrossRef]
16. Kuipers, J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality; Princeton

University Press: Princeton, NJ, USA, 1999.
17. Sarabandi, S.; Thomas, F. A Survey on the Computation of Quaternions From Rotation Matrices. J. Mech. Robot. 2019, 11, 021006.

[CrossRef]
18. Valverde, A.; Tsiotras, P. Spacecraft Robot Kinematics Using Dual Quaternions. Robotics 2018, 7, 64. [CrossRef]
19. Zupan, E.; Saje, M.; Zupan, D. Dynamics of spatial beams in quaternion description based on the Newmark integration scheme.

Comput. Mech. 2013, 51, 47–64. [CrossRef]
20. Huang, Z.; Li, Q.; Ding, H. Basics of Screw Theory. In Theory of Parallel Mechanisms; Springer: Dordrecht, The Netherlands, 2013;

pp. 1–16. [CrossRef]
21. Kecskeméthy, A. Lie-Group First-Order Operations in Rigid-Body Kinematics. In On Advances in Robot Kinematics; Springer:

Dordrecht, The Netherlands, 2004; pp. 57–66. [CrossRef]
22. Müller, A. Screw and Lie group theory in multibody kinematics. Multibody Syst. Dyn. 2018, 43, 37–70. [CrossRef]
23. Wu, A.; Shi, Z.; Li, Y.; Wu, M.; Guan, Y.; Zhang, J.; Wei, H. Formal Kinematic Analysis of a General 6R Manipulator Using the

Screw Theory. Math. Probl. Eng. 2015, 2015, 1–7. [CrossRef]
24. Chen, Q.; Zhu, S.; Zhang, X. Improved Inverse Kinematics Algorithm Using Screw Theory for a Six-DOF Robot Manipulator. Int.

J. Adv. Robot. Syst. 2015, 12, 140. [CrossRef]
25. Su, H.J.; Dorozhkin, D.V.; Vance, J.M. A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant

Mechanisms. J. Mech. Robot. 2009, 1, 41001–41009. [CrossRef]
26. Biswal, P.; Mohanty, P.K. Development of quadruped walking robots: A review. Ain Shams Eng. J. 2021, 12, 2017–2031. [CrossRef]
27. Li, B.; Tian, W.; Zhang, C.; Hua, F.; Cui, G.; Li, Y. Positioning error compensation of an industrial robot using neural networks and

experimental study. Chin. J. Aeronaut. 2021, 35, 346–360. [CrossRef]
28. Deepa, T.; Angalaeswari, S.; Subbulekshmi, D.; Krithiga, S.; Sujeeth, S.; Kathiravan, R. Design and implementation of bio inspired

hexapod for exploration applications. Mater. Today Proc. 2021, 37, 1603–1607. [CrossRef]
29. Flores, P.; Lankarani, H.M. Contact Force Models for Multibody Dynamics. In Solid Mechanics and Its Applications; Springer

International Publishing: Cham, Switzerland, 2016; Volume 226. [CrossRef]

http://dx.doi.org/10.5281/zenodo.1330465
http://dx.doi.org/10.1109/TRO.2007.896765
http://dx.doi.org/10.1177/1729881418793283
http://dx.doi.org/10.1108/IR-11-2019-0233
http://dx.doi.org/10.1007/s10846-018-0931-4
http://dx.doi.org/10.1007/s11044-018-9620-0
http://dx.doi.org/10.1007/s10846-019-01058-2
http://dx.doi.org/10.3390/s16091415
http://dx.doi.org/10.1016/j.gmod.2010.10.004
http://dx.doi.org/10.1017/CBO9780511707162
http://dx.doi.org/10.1115/1.4041889
http://dx.doi.org/10.3390/robotics7040064
http://dx.doi.org/10.1007/s00466-012-0703-0
http://dx.doi.org/10.1007/978-94-007-4201-7_1
http://dx.doi.org/10.1007/978-1-4020-2249-4_7
http://dx.doi.org/10.1007/s11044-017-9582-7
http://dx.doi.org/10.1155/2015/549797
http://dx.doi.org/10.5772/60834
http://dx.doi.org/10.1115/1.3211024
http://dx.doi.org/10.1016/j.asej.2020.11.005
http://dx.doi.org/10.1016/j.cja.2021.03.027
http://dx.doi.org/10.1016/j.matpr.2020.07.165
http://dx.doi.org/10.1007/978-3-319-30897-5

	Introduction
	Literature Review
	Recursive Algorithm for the Computation of Forward Kinematics
	Modeling Link i in Its Local Coordinates Axis
	Rotating Link i to Its Current Orientation
	Moving Link i to Its Current Position

	Application of the Algorithm for the CHARMIE Robot
	Definition of the Robot's Kinematic Chain
	Auxiliary Calculations for Complex Joints
	Joint 4
	Joint 5

	Auxiliary Calculations to Extract Relevant Data from the Model
	Validation of Results

	Conclusions
	References

