Assisted Operation of a Robotic Arm Based on Stereo Vision for Positioning near an Explosive Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. User Interface and Support (UI)
2.1.1. Positioning
2.1.2. Operator Image Adjustment
2.1.3. Target Selection
2.2. Stereo Vision Analysis
Algorithm 1 Triangulation Method |
|
2.3. Object Tracking Algorithm
2.4. Robotic Arm Control
2.5. Evaluation Methodology
3. Results and Discussion
3.1. Performance of the Proposed Algorithm
3.2. Experimental Evaluation Results
3.3. Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vittoria, S.; Lahlou, G.; Torres, R.; Daoudi, H.; Mosnier, I.; Mazalaigue, S.; Sterkers, O. Robot-based assistance in middle ear surgery and cochlear implantation: First clinical report. Eur. Arch. Otorhinolaryngol. 2021, 278, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, S.; Niaki, F.A.; Tomaszewski, M.; Gill, J.S.; Chen, Y.; Jia, Y.; Mears, L.; Krovi, V. Digital Human and Robot Simulation in Automotive Assembly using Siemens Process Simulate: A Feasibility Study. Procedia Manuf. 2019, 34, 986–994. [Google Scholar] [CrossRef]
- Yamamoto, T.; Takagi, Y.; Ochiai, A.; Iwamoto, K.; Itozawa, Y.; Asahara, Y.; Ikeda, K. Human Support Robot as Research Platform of Domestic Mobile Manipulator. In RoboCup 2019: Robot World Cup XXIII. RoboCup 2019; Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.A., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11531. [Google Scholar] [CrossRef]
- Jahanshahi, H.; Jafarzadeh, M.; Sari, N.N.; Pham, V.-T.; Huynh, V.V.; Nguyen, X.Q. Robot Motion Planning in an Unknown Environment with Danger Space. Electronics 2019, 8, 201. [Google Scholar] [CrossRef]
- Tuba, E.; Strumberger, I.; Zivkovic, D.; Bacanin, N.; Tuba, M. Mobile Robot Path Planning by Improved Brain Storm Optimization Algorithm. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Bandala, M.; West, C.; Monk, S.; Montazeri, A.; Taylor, C.J. Vision-Based Assisted Tele-Operation of a Dual-Arm Hydraulically Actuated Robot for Pipe Cutting and Grasping in Nuclear Environments. Robotics 2019, 8, 42. [Google Scholar] [CrossRef]
- Ichter, B.; Pavone, M. Robot Motion Planning in Learned Latent Spaces. IEEE Robot. Autom. Lett. 2019, 4, 2407–2414. [Google Scholar] [CrossRef]
- Arm, P.; Zenkl, R.; Barton, P.; Beglinger, L.; Dietsche, A.; Ferrazzini, L.; Hutter, M. SpaceBok: A Dynamic Legged Robot for Space Exploration. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6288–6294. [Google Scholar] [CrossRef]
- Grigore, L.Ș.; Oncioiu, I.; Priescu, I.; Joița, D. Development and Evaluation of the Traction Characteristics of a Crawler EOD Robot. Appl. Sci. 2021, 11, 3757. [Google Scholar] [CrossRef]
- Jiang, J.; Luo, X.; Xu, S.; Luo, Q.; Li, M. Hand-Eye Calibration of EOD Robot by Solving the AXB = YCZD Problem. IEEE Access 2022, 10, 3415–3429. [Google Scholar] [CrossRef]
- Postigo-Malaga, M.; Supo-Colquehuanca, E.; Matta-Hernandez, J.; Pari, L.; Mayhua-López, E. Vehicle location system and monitoring as a tool for citizen safety using wireless sensor network. In Proceedings of the 2016 IEEE ANDESCON, Arequipa, Peru, 19–21 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Vidal, Y.S.; Supo, C.E.; Ccallata, C.M.; Mamani, G.J.; Pino, C.B.; Pinto, P.L.; Espinoza, E.S. Analysis and Evaluation of a EOD Robot Prototype. In Proceedings of the 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 1–4 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Song, X.; Yang, Y.; Choromanski, K.; Caluwaerts, K.; Gao, W.; Finn, C.; Tan, J. Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 3769–3776. [Google Scholar] [CrossRef]
- Paxton, C.; Ratliff, N.; Eppner, C.; Fox, D. Representing Robot Task Plans as Robust Logical-Dynamical Systems. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 5588–5595. [Google Scholar] [CrossRef]
- Cio, Y.S.L.K.; Raison, M.; Ménard, C.L.; Achiche, S. Proof of Concept of an Assistive Robotic Arm Control Using Artificial Stereo-vision and Eye-Tracking. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2344–2352. [Google Scholar] [CrossRef] [PubMed]
- Rafael Verano, M.; Jose Caceres, S.; Abel Arenas, H.; Andres Montoya, A.; Joseph Guevara, M.; Jarelh Galdos, B.; Jesus Talavera, S. Development of a Low-Cost Teleoperated Explorer Robot (TXRob). Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2022, 13. [Google Scholar]
- Vilcapaza Goyzueta, D.; Guevara Mamani, J.; Sulla Espinoza, E.; Supo Colquehuanca, E.; Silva Vidal, Y.; Pinto, P.P. Evaluation of a NUI Interface for an Explosives Deactivator Robotic Arm to Improve the User Experience. In HCI International 2021—Late Breaking Posters. HCII 2021; Stephanidis, C., Antona, M., Ntoa, S., Eds.; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2021; Volume 1498. [Google Scholar] [CrossRef]
- Nadarajah, S.; Sundaraj, K. A survey on team strategies in robot soccer: Team strategies and role description. Artif. Intell. Rev. 2013, 40, 271–304. [Google Scholar] [CrossRef]
- Zhao, J.; Han, T.; Ma, X.; Ma, W.; Liu, C.; Li, J.; Liu, Y. Research on Kinematics Analysis and Trajectory Planning of Novel EOD Manipulator. Appl. Sci. 2021, 11, 9438. [Google Scholar] [CrossRef]
- Du, Y.C.; Taryudi, T.; Tsai, C.T.; Wang, M.S. Eye-to-hand robotic tracking and grabbing based on binocular vision. Microsyst. Technol. 2021, 27, 1699–1710. [Google Scholar] [CrossRef]
- Wang, M.S. Eye to hand calibration using ANFIS forstereo vision-based object manipulation system. Microsyst. Technol. 2018, 24, 305–317. [Google Scholar] [CrossRef]
- Esteves, J.S.; Carvalho, A.; Couto, C. Generalized geometric triangulation algorithm for mobile robot absolute self-localization. In Proceedings of the 2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692), Rio de Janeiro, Brazil, 9–11 June 2003; Volume 1, pp. 346–351. [Google Scholar] [CrossRef]
- Dune, C.; Leroux, C.; March, E. Intuitive human interaction with an arm robot for severely handicapped people—A One Click Approach. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; pp. 582–589. [Google Scholar] [CrossRef]
- Kim, D.; Lovelett, R.; Behal, A. An empirical study with simulated ADL tasks using a vision-guided assistive robot arm. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 504–509. [Google Scholar] [CrossRef]
- Goyzueta, D.V.; Guevara, M.J.; Montoya, A.A.; Sulla, E.E.; Lester, S.Y. Analysis of a user interface based on multimodal interaction to control a robotic arm for EOD applications. Electronics 2022, 11, 1690. [Google Scholar] [CrossRef]
- Bradski, G.R. Computer vision face tracking for use in a perceptual user interface. Intel Technol. J. 1998. [Google Scholar]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. [Google Scholar] [CrossRef]
- Bangor, A.; Kortum, P.T.; Miller, J.T. An empirical evaluation of the system usability scale. Int. J. Hum. -Comput. Interact. 2008, 24, 574–594. [Google Scholar] [CrossRef]
- Montoya, A.; Pari, L.; Elvis, S.C. Design of a User Interface to Estimate Distance of Moving Explosive Devices with Stereo Cameras. In Proceedings of the 2021 6th International Conference on Image, Vision and Computing (ICIVC), Qingdao, China, 23–25 July 2021; pp. 362–366. [Google Scholar] [CrossRef]
- Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799. [Google Scholar] [CrossRef]
- Murray, D.; Jennings, C. Stereo vision based mapping and navigation for mobile robots. In Proceedings of the International Conference on Robotics and Automation, Albuquerque, NM, USA, 20–25 April 1997; Volume 2, pp. 1694–1699. [Google Scholar] [CrossRef]
- Corke, P. Robotics, Vision and Control, Fundamental Algorithms in Matlab, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Sooksatra, S.; Kondo, T. CAMSHIFT-Based Algorithm for Multiple Object Tracking; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Yu, Y.; Bi, S.; Mo, Y.; Qiu, W. Real-time gesture recognition system based on Camshift algorithm and Haar-like feature. In Proceedings of the 2016 IEEE International Conference on Cyber Technology in Automation, CONTROL, and Intelligent Systems (CYBER), Chengdu, China, 19–22 June 2016; pp. 337–342. [Google Scholar] [CrossRef]
- Xiu, C.; Ba, F. Target Tracking Based on the Improved Camshift Method; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Corke, P.I. A Simple and Systematic Approach to Assigning Denavit–Hartenberg Parameters. IEEE Trans. Robot. 2007, 23, 590–594. [Google Scholar] [CrossRef]
- Trucco, E.; Verri, A. Introductory Techniques for 3-D Computer Vision; Prentice Hall: Hoboken, NJ, USA, 1998. [Google Scholar]
- Fetić, A.; Jurić, D.; Osmanković, D. The procedure of a camera calibration using Camera Calibration Toolbox for MATLAB. In Proceedings of the 2012 Proceedings of the 35th International Convention MIPRO, Opatija, Croatia, 21–25 May 2012; pp. 1752–1757. [Google Scholar]
- Zhang, G.; Ouyang, R.; Lu, B.; Hocken, R.; Veale, R.; Donmez, A. A Displacement Method for Machine Geometry Calibration. CIRP Ann. 1988, 37, 515–518. [Google Scholar] [CrossRef]
- Lee, R.; Wu, T.e.; Guo, J. An Adaptive Cross-Window stereo camera Distance Estimation technology and its system implementation for multiple applications. In Proceedings of the 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 24–27 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Lin, Q.; Cheng, L. Moving Object Distance Estimation Method Based on Target Extraction with a Stereo Camera. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019; pp. 572–577. [Google Scholar] [CrossRef]
- Guevara, J.; Pari, P.; Vilcapaza, D.; Supo, E.; Sulla, E.; Silva, Y. Compilation and Analysis of Requirements for the Design of an Explosive Ordnance Disposal Robot Prototype Applied in UDEX-Arequipa. In Proceedings of the HCI International 2021 23rd International Conference on Human-Computer Interaction, Virtual, 24–29 July 2021. [Google Scholar] [CrossRef]
Joint | Joint Name | d | a | ||
---|---|---|---|---|---|
1 | Waist | 0 | /2 | ||
2 | Shoulder | 0 | 0 | ||
3 | Elbow | 0 | 0 | ||
4 | Forearm | 0 | 0 | /2 | |
5 | Wrist | 0 | 0 |
0.30 m | 0.40 m | 0.35 m | 0.10 m |
---|
N° | Real Coordinate (cm) | Reached Coordinate (cm) | Error (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | X | Y | Z | |
1 | 20.7 | 12.9 | 73.2 | 20.1 | 12.8 | 71.7 | 2.9 | 0.8 | 2.0 |
2 | 20.1 | 11.6 | 71.8 | 19.7 | 11.5 | 70.7 | 2.0 | 0.9 | 1.5 |
3 | 18.9 | 11.2 | 69.2 | 18.1 | 10.9 | 68.7 | 4.2 | 2.7 | 0.7 |
4 | 18.2 | 10.7 | 67.8 | 17.4 | 10.6 | 66.2 | 4.4 | 0.9 | 2.4 |
5 | 17.3 | 10.1 | 65.3 | 16.8 | 10.0 | 64.9 | 2.9 | 1.0 | 0.6 |
6 | 16.5 | 9.6 | 63.1 | 16.0 | 9.2 | 62.7 | 3.0 | 4.2 | 0.6 |
7 | 14.8 | 9.0 | 59.9 | 14.2 | 8.7 | 59.4 | 4.0 | 3.3 | 0.8 |
8 | 13.9 | 8.4 | 55.4 | 13.1 | 8.2 | 55.0 | 5.8 | 2.4 | 0.6 |
9 | 13.1 | 7.8 | 51.1 | 12.7 | 7.6 | 50.8 | 3.0 | 2.6 | 0.6 |
10 | 12.6 | 7.2 | 48.2 | 11.8 | 7.0 | 47.5 | 6.3 | 2.8 | 1.5 |
11 | 11.4 | 6.5 | 46.6 | 11.1 | 6.1 | 45.9 | 2.6 | 6.2 | 1.5 |
12 | 10.3 | 6.1 | 43.2 | 9.9 | 6.0 | 42.8 | 3.9 | 1.6 | 0.5 |
13 | 9.5 | 5.7 | 42.1 | 9.2 | 5.4 | 40.9 | 3.2 | 5.3 | 2.9 |
14 | 8.7 | 5.3 | 40.7 | 8.4 | 5.0 | 39.9 | 3.4 | 5.7 | 2.0 |
15 | 8.0 | 5.0 | 39.0 | 7.6 | 4.9 | 38.4 | 5.0 | 2.0 | 1.5 |
NASA-TLX | SUS | |||
---|---|---|---|---|
Traditional Method | Proposed Method | Traditional Method | Proposed Method | |
Average | 15.13 | 8.25 | 46.65 | 82.51 |
Standard deviation | 2.78 | 2.96 | 8.45 | 8.07 |
Standard error | 1.13 | 1.21 | 2.18 | 2.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya Angulo, A.; Pari Pinto, L.; Sulla Espinoza, E.; Silva Vidal, Y.; Supo Colquehuanca, E. Assisted Operation of a Robotic Arm Based on Stereo Vision for Positioning near an Explosive Device. Robotics 2022, 11, 100. https://doi.org/10.3390/robotics11050100
Montoya Angulo A, Pari Pinto L, Sulla Espinoza E, Silva Vidal Y, Supo Colquehuanca E. Assisted Operation of a Robotic Arm Based on Stereo Vision for Positioning near an Explosive Device. Robotics. 2022; 11(5):100. https://doi.org/10.3390/robotics11050100
Chicago/Turabian StyleMontoya Angulo, Andres, Lizardo Pari Pinto, Erasmo Sulla Espinoza, Yuri Silva Vidal, and Elvis Supo Colquehuanca. 2022. "Assisted Operation of a Robotic Arm Based on Stereo Vision for Positioning near an Explosive Device" Robotics 11, no. 5: 100. https://doi.org/10.3390/robotics11050100
APA StyleMontoya Angulo, A., Pari Pinto, L., Sulla Espinoza, E., Silva Vidal, Y., & Supo Colquehuanca, E. (2022). Assisted Operation of a Robotic Arm Based on Stereo Vision for Positioning near an Explosive Device. Robotics, 11(5), 100. https://doi.org/10.3390/robotics11050100