
Citation: Shamseldin, M.A.; Khaled,

E.; Youssef, A.; Mohamed, D.;

Ahmed, S.; Hesham, A.; Elkodama,

A.; Badran, M. A New Design

Identification and Control Based on

GA Optimization for An

Autonomous Wheelchair. Robotics

2022, 11, 101. https://doi.org/

10.3390/robotics11050101

Academic Editors: Med Amine Laribi

and Saïd Zeghloul

Received: 4 August 2022

Accepted: 15 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

A New Design Identification and Control Based on GA
Optimization for An Autonomous Wheelchair
Mohamed A. Shamseldin * , Eissa Khaled, Abdelrahman Youssef, Diaaeldin Mohamed, Shady Ahmed,
Abdallah Hesham , Amira Elkodama and Mohamed Badran

Department of Mechanical Engineering, Faculty of Engineering and Technology, Future University in Egypt,
New Cairo 11835, Egypt
* Correspondence: mohamed.abelbbar@fue.edu.eg

Abstract: The daily lifestyle of an average human has changed drastically. Robotics and AI systems
are applied to many fields, including the medical field. An autonomous wheelchair that improves
the degree of independence that a wheelchair user has can be a very useful contribution to society.
This paper presents the design and implementation of an autonomous wheelchair that uses LIDAR
to navigate and perform SLAM. It uses the ROS framework and allows the user to choose a goal
position through a touchscreen or using deep learning-based voice recognition. It also presents
a practical implementation of system identification and optimization of PID control gains, which
are applied to the autonomous wheelchair robot. Input/output data were collected using Arduino,
consisting of linear and angular speeds and wheel PWM signal commands, and several black-
box models were developed to simulate the actual wheelchair setup. The best-identified model
was the NLARX model, which had the highest square error (0.1259) among the other candidate
models. In addition, using MATLAB, Optimal PID gains were obtained from the genetic algorithm.
Performance on real hardware was evaluated and compared to the identified model response. The
two responses were identical, except for some of the noise due to the encoder measurement errors and
wheelchair vibration.

Keywords: system identification; genetic algorithm (GA); PID controller; wheelchair; navigation

1. Introduction

Nowadays, Autonomous Mobile Robots (AMRs) play an important role in a wide
range of applications and fields, including, but not limited to, institutions, airports, malls,
hospitals, and factories. AMR is a type of robot that is programmed to avoid obstacles
and perform complex tasks in flexible and intelligent ways with little human interaction,
so it can be considered an innovative technology able to improve efficiency and ensure
precision, enhance speed, and increase safety in many fields [1]. AMRs usually operate
in an unknown and unpredictable environment, so they are designed to be capable of
understanding, scanning, and navigating the surrounding environment, thus differing
from Autonomous Guided Vehicles (AGVs), which rely on a predefined path and physical
guidance [2–4]. Multiple AMRs, called Multi-Agent Robot Systems (MARSs), can perform
complex missions by distributing the tasks and sharing data between multiple collaborating
robots physically engaged with each other, providing the benefits of reduced time and
energy consumption, robustness, and efficiency of the system, achieving better results than
each robot individually [5–8].

AMRs use a sophisticated set of sensors and actuators, and different types of control
algorithms to perform various tasks, such as obstacle avoidance (OA) [9–12], navigation [13,14],
and simultaneous localization and mapping (SLAM) [15–18]. SLAM is a method where the
robot builds a 2D map of an unknown environment and simultaneously localizes itself in
that map. Then, it can plan the shortest collision-free path to its location goal [19]. Hence, the

Robotics 2022, 11, 101. https://doi.org/10.3390/robotics11050101 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11050101
https://doi.org/10.3390/robotics11050101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-3993-2265
https://orcid.org/0000-0003-1103-6060
https://orcid.org/0000-0003-2487-8646
https://doi.org/10.3390/robotics11050101
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11050101?type=check_update&version=2

Robotics 2022, 11, 101 2 of 21

robot’s positioning is an important aspect for the tasks AMRs can perform, either indoors or
outdoors. There are various sensors used to collect data for the abovementioned tasks, such as
cameras [20–22], depth sensors [23], LIDAR [21,24], laser range sensors [17,25], and ultrasonic
sensors [26,27]. After collecting the data from the robot, then comes the issue of making it able
to direct itself from the current position to the desired destination following the predefined
path. This is the control algorithm’s role. Different control strategies have been proposed to
control the robot’s trajectory planning. Path planning and robot motion can be controlled by
classical control methods such as PID/PI controller [28–30]; modern control methods such as
fuzzy control [31,32]; the visual odometry technique, which estimates the robot’s movement
in the third dimension and updates the robot’s position continuously [1]; deep reinforcement
learning (DRL), which can deal effectively with uncertain environments [2]; and several
optimization algorithms, such as the Kalman filter [18,33,34] and genetic algorithms [35,36].
The construction of control rules for the angular, linear, and acceleration of the nonholonomic
wheeled mobile to trace the desired path is the control problem for trajectory tracking. The
control strategy seeks to reduce the discrepancy between the intended and actual track. Sensor
errors that are measured from both internal and external sources are the cause. Additionally,
slippage, disruptions, and noise are to blame. The nonholonomic constraint prevents the
mobile robot from moving quickly in the direction orthogonal to its wheel axis.

Advanced control methods, including adaptive control, variable structure control,
fuzzy control, and neural networks, can be used to solve this issue. Implementing self-
tuning adaptive control systems presents many challenges, including the inability to
maintain trajectory control in the midst of jarring disruptions or loud noises. This is due
to the possibility that the parameter estimator could produce false findings in the face of
jarring shocks or significant noise. The implementation of a variable structure controller is
simple but challenging. This is due to the potential for a sudden shift in the control signal,
which could have an impact on how the system functions [37]. Although it takes greater
computer power and data storage space, a neural-network-based motor control system
has a strong ability to solve the system’s structure uncertainty and disturbance [38]. The
majority of the time, fuzzy control theory offers nonlinear controllers that can execute a
variety of complicated nonlinear control actions, even for uncertain nonlinear systems [39].
An FLC does not necessitate exact knowledge of the system model, such as the poles and
zeroes of the system transfer function, unlike conventional control designing [40]. Fewer
calculations are required by a fuzzy logic control system based on an expert knowledge
database, but it is unable to accommodate the new rules. The fundamental challenge
in using conventional PID controllers is selecting the control parameters accurately [41].
Random or even manual configuration of these control parameters may result in the system
not responding as anticipated, especially when there are system uncertainties [42,43]. Only
when the plant model is defined as first-order with dead time is the Ziegler–Nichols method
used. Algorithms for optimization have recently been created. Examples include fruit
fly optimization, particle swarm optimization, and genetic algorithms (GAs) (FFO) [44].
In [45], GA optimization is used to find the optimal PID control parameters for a multi-input
multi-output (MIMO) nonlinear system for the twin rotor of the helicopter.

This paper is an extension of the work in [33]. Real input/output data are collected
experimentally from a six-wheel autonomous differential wheelchair that operates a SLAM
task. The robot wheelchair uses different input devices, indicating its ability to operate
in both manual and automatic modes, such as a joystick for speed/position control, an
ultrasonic sensor for detecting and avoiding obstacles, and a PRLIDAR (SLAMTECH,
Shanghai, China) sensor for map construction, and it is controlled using an ROS framework
that allows the user to choose the predefined goal position by using the touchscreen or
voice recognition mode. Right and left wheel PWM signals are measured using feedback
encoders taken as the input data. Two system identification methods are estimated using
the collected data with Matlab software version 9.9 (US). Several candidate models are
designed to simulate the actual wheelchair, and a SIMULINK model is obtained to build
a closed-loop form using the PID control. Two PID controllers are used where one of

Robotics 2022, 11, 101 3 of 21

them is for the robot’s linear speed control and the other is for angular speed control, and
their output is applied to the kinematics equations of the differential drive mobile robot.
Tuning these PID controllers can be achieved using trial and error, which can consume
a large amount of time, so this paper presents one of the alternative and more accurate
methods, the genetic algorithm (GA) optimization method, to find the optimal PID gains,
and a comparison between the performance of the estimated model and the actual robot is
obtained based on experimental results.

The paper is prepared as follows. Firstly, the experimental setup is presented. Sec-
ondly, system identification is explained. Thirdly, the proposed controller techniques are
demonstrated. Fourthly, the experimental results are illustrated. Finally, the conclusion is
discussed. The paper is prepared as follows. Firstly, the experimental setup is presented.
Secondly, system identification is explained. Thirdly, the proposed controller techniques
are demonstrated. Fourthly, the experimental results are illustrated. Finally, the conclusion
is discussed.

2. Autonomous Wheelchair Experimental Setup
2.1. Experimental Setup Structure

In this design, the wheelchair would be working with a six-wheel chassis to make it
easier to rotate in a 360-degree circle and flexible enough to move indoors and outdoors.
Some pipes are used in this design to free up space in the middle and make a box for
batteries and controllers. The wheelchair contains two electrical control boxes fixed inside
the chassis, as shown in Figure 1. Control box 1 consists of two lead acid batteries, a
buck converter, three batteries with 3.5 volts each, and a battery charging circuit. Control
box 2 encloses Arduino mega 2560, Raspberry Pi 3, motor driver, and power terminal PCB.
The final design is made from a pipe system connected by joints. Two fixed wheels, four
freewheels, a chair made from leather, and head support are included. In addition, the
wheelchair system was enhanced with RPLIDAR sensor to allow it to make a map while
moving, with eight ultrasonic sensors for obstacle avoidance purposes, and two feedback
encoders coupled with the motors.

Figure 1. The experimental wheelchair setup: (a) the front view of the experimental wheelchair;
(b) the top view of the experimental wheelchair; (c) the solid work design.

Arduino Mega is used as a data acquisition device, and pulses are counted using
Arduino built-in Interrupts. For each sample (50 ms), the distance S that each wheel has
traveled can be expressed as

S = encoderPulsescount∗
πD

PPR ∗ Gearratio
(1)

Robotics 2022, 11, 101 4 of 21

where S is the traveled distance, D is the wheel diameter and PPR is the pulse per revo-
lution. Then, encoder_pulses_count is set to zero at each sample, so that the difference is
only recorded in each loop to save memory, and the Int32 message is used due to the high
number of pulses of the high-resolution encoder.

After determining the distance each wheel has traveled (Sr and Sl are the distances of
the right and left wheel, respectively), it is the center of the robot that is of interest. This
complies with the Unicycle model kinematics illustrated in Equation (2); the distance
traveled by the center of the robot is taken as the average of distance traveled by the
two wheels.

Sc =
Sr + Sl

2
(2)

The angle θ, representing the robot’s orientation, can then be defined as shown in
Equation (3), where l is defined as the distance between the two wheels of the robot. It is
assumed that the robot always moves in a planar 2D motion so the angle θ is about the z axis.

θ =
Sl − Sr

l
(3)

The position and orientation of the robot can be expressed as a vector of displacements
in the x and y directions, and the angle θ defines the orientation.

As follows


dx
dy
dθ

 =


Sc cos(θ)
Sc sin(θ)

Sl−Sr
l

 and the absolute position of the robot can be

expressed as 
x
y
θ

 =


x + Sc cos(θ)
y + Sc sin(θ)

θ + Sl−Sr
l

 (4)

Velocities (vx is the velocity in the x direction; is the velocity in the y direction and
vy is the ω rotational velocity) can be calculated accordingly by dividing the change in
position vector, and substituting it will obtain

vx
vy
ω

 =


dx
dt
dy
dt
dθ
dt

 (5)

Figure 2 shows the kinematics of the differential drive mobile robots, illustrating some
of the parameters used.

Figure 2. Robot Kinematics.

Robotics 2022, 11, 101 5 of 21

2.2. Wheelchair Mathematical Model

Consider a nonlinear MIMO system of the form:

.
p = f(p) +

m

∑
i=2

uigi(p) = f(p) + G(p)uy1 = h1(p) (6)

ym = hm(p) (7)

The MIMO system has a vector relative degree (ρ1, ρ2, ..., ρm) if the following matrix
is nonsingular:

A(p) =


Lg1 Lρ1−1

f h1(p) · · · Lgm Lρ1−1
f h1(p)

Lg1 Lρ2−1
f h2(p) · · · Lgm Lρ2−1

f h2(p)
...

Lg1 Lρm−1
f hm(p)

· · ·
· · ·

...
Lgm Lρm−1

f hm(p)

 (8)

 .
x
.
y
.
θ

 =

cos(θ) 0
sin(θ) 0

0 1

[v
ω

]
(9)

 .
x
.
y
.
θ

 =

cos(θ)
sin(θ)

0

 v +

0
0
1

ω (10)

.
p = g1(p)v + g2(p)ω (11)

where

g1(p) =̂

cos(θ)
sin(θ)

0

 and g2(p) =̂

0
0
1

 (12)

The system can be represented in the form:

.
p = f(p) +

m

∑
i=1

uigi (p) = 0 + g1(p)u1 + g2(p)u2 (13)

For the trajectory tracking problem, the natural outputs of the system are:

y1 = x and y2 = y (14)

Therefore,

A(p) =

[
Lg1 Lρ1−1

f h1(p) Lg2Lρ1−1
f h1(p)

Lg1 Lρ2−1
f h2(p) Lg2 Lρ2−1

f h2(p)

]
(15)

Let us assume that the relative degree of the system is (ρ1, ρ2) = (1, 1).

A(p) =

[
Lg1 L0

f h1(p) Lg2L0
f h1(p)

Lg1 L0
f h2(p) Lg2 L0

f h2(p)

]
=

[
Lg1 h1(p) Lg2h1(p)
Lg1 h2(p) Lg2 h2(p)

]
(16)

Lg1 h1(p) =
∂h1

∂x
g1(p) = cos(θ) (17)

Lg2 h1(p) =
∂h1

∂x
g2(p) = 0 (18)

Lg1 h2(p) =
∂h2

∂x
g1(p) = sin(θ) (19)

Robotics 2022, 11, 101 6 of 21

Lg2 h2(p) =
∂h2

∂x
g2(p) = 0 (20)

A(p) =
[

cos(θ) 0
sin(θ) 0

]
(21)

g1(p) =̂

cos(θ)
sin(θ)

0

 and g2(p) =̂

0
0
1

 (22)

We conclude that A(p) is singular, and the relative degree is not (1, 1). The problem is
that the input u1 or v appears in the derivative of both outputs, while the input u2 (orω)
does not.

Let us try to make v appear later in a higher-order derivative of the output.

V = ζ (23)

.
ζ = τ (24)

The new representation of the system is

A(p) =
[

cos(θ) 0
sin(θ) 0

]
(25)

v appears in the derivative of both outputs. ω does not appear in the derivative of
any output.

.
x = ζ cos(θ) (26)
.
y = ζ sin(θ) (27)

.
ζ = τ (28)
.
θ = ω (29)

The new system with the extended state is:

.
x = ζ cos(θ) (30)

.
y = ζ sin(θ) (31)

.
ζ = τ (32)
.
θ = ω (33)

In a compact form
.
p = f(p) + g1(p)τ+ g2(p)ω (34)

where

p =


x
y
ζ

θ

, f(p) =


ζcos(θ)
ζsin(θ)

0
0

, g1(p) =


0
0
1
0

, g2(p) =


0
0
0
1


Lg1 h1(p) =

∂h1

∂x
g1(p) = 0 (35)

Lg2 h1(p) =
∂h1

∂x
g2(p) = 0 (36)

Lg1 h2(p) =
∂h2

∂x
g1(p) = 0 (37)

Lg2 h2(p) =
∂h2

∂x
g2(p) = 0 (38)

Robotics 2022, 11, 101 7 of 21

The inputs do not appear in the first-order derivative of the outputs. Let us see the
second-order derivatives.

A(p) =
[

Lg1 Lfh1(p) Lg2Lfh1(p)
Lg1 Lfh2(p) Lg2 Lfh2(p)

]
(39)

First, we have to calculate Lf h1(p) and Lf h2(p):

Lf h1(p) =
[
1 0 0 0

]
ζcos(θ)
ζsin(θ)

0
0

 = ζcos(θ) (40)

Lf h2(p) =
[
0 1 0 0

]
ζcos(θ)
ζsin(θ)

0
0

 = ζsin(θ) (41)

Now we calculate the entries of A(p):

Lg1Lf h1(p) =
[
0 0 cos(θ) −ζsin(θ)

]
0
0
1
0

 = cos(θ) (42)

Lg2Lf h1(p) =
[
0 0 cos(θ) −ζsin(θ)

]
0
0
0
1

 = −ζsin(θ) (43)

Lg1Lf h2(p) =
[
0 0 sin(θ) cos(θ)

]
0
0
1
0

 = sin(θ) (44)

Lg2Lf h2(p) =
[
0 0 sin(θ) ζcos(θ)

]
0
0
0
1

 = ζcos(θ) (45)

Therefore, A(p) is given by

A(p) =
[

cos(θ) −ζsin(θ)
sin(θ) ζcos(θ)

]
, |A(p)| = ζ (46)

3. System Identification

Using experimental input and output data, system identification aims to establish the
model system’s parameters. There are three fundamental steps in the process of developing
a model. The input and output data come first. This information is gathered through the
experiment. The set of candidate models comes next. From the pool of potential models,
we must study the most suited model.

The general linear transfer function of the wheelchair system may be written as the
following Equations (47) and (48).

.
x(s) =

k
an·Sn + an−1· Sn−1 + . . . + a0

vr(s) +
k

bn·Sn + bn−1· Sn−1 + . . . + b0
vl(s) (47)

Robotics 2022, 11, 101 8 of 21

.
θ(s) =

k
cn·Sn + cn−1· Sn−1 + . . . + c0

vr(s) +
k

dn·Sn + dn−1· Sn−1 + . . . + d0
vl(s) (48)

where
.
x(s) is the linear speed of the wheelchair,

.
θ(s) is the angular speed of the wheelchair,

vr(s) is the input voltage for the right motor, and vl(s) is the input voltage for the left motor.
The n is the system order and k, an, . . . , a0, bn, . . . , b0, cn, . . . , c0, and dn, . . . , d0 are the
estimated parameters of the approximate transfer function.

It is well-known that linear models cannot accurately describe a nonlinear system [3].
By raising the order of the linear system, the model’s accuracy can be improved. However,
it is frequently the case that increasing order is unable to substantially increase model
accuracy. As a result, the nonlinearities (such as friction and backlash) must be explicitly
included in the system [16].

In this study, we attempt to model such systems using the nonlinear ARX model structure,
where AR denotes the autoregressive portion and X denotes the additional input. As seen in
Figure 3, a nonlinear ARX model can be thought of as an expansion of a linear model.

Figure 3. The structure of a nonlinear ARX model.

These models are defined as those that have a nonlinear dependence on their parame-
ters. For example, see Equation (49).

f (x) = h0

(
1− e−h1x

)
+ e (49)

To illustrate how this is achieved, first the relationship between the nonlinear equation
and the data can be expressed generally as

yi = f (xi; h0, h1,, hm) + ei (50)

where yi is a measured value of the dependent variable, f (xi; h0, h1,, hm) is a function
of the independent variable xi and a nonlinear function of the parameters h0, h1,, hm,
and ei is a random error.

This model can be expressed in an abbreviated form by omitting the parameters

yi = f (xi) + ei (51)

The nonlinear model can be expanded in a Taylor series around the parameter values:

f (xi)j+1 = f (xi)j +
∂ f (xi)j

∂h0
· ∆h0 +

∂ f (xi)j

∂h1
· ∆h1 (52)

where j = the initial guess, j + 1 = the prediction, ∆h0 = h0,j+1 − h0,j, and ∆h1 = h1,j+1 − h1,j,
and substituting Equation (51) into Equation (52) will result in Equation (53).

yi − f (xi)j =
∂ f (xi)j

∂h0
· ∆h0 +

∂ f (xi)j

∂h1
· ∆h1 + ei (53)

Robotics 2022, 11, 101 9 of 21

or in matrix form
{D} =

[
Zj
]
{∆H}+ {E} (54)

where
[
Zj
]

is the matrix of partial derivatives of the function evaluated at the initial guess j,

[
Zj
]
=


∂ f1/∂h0 ∂ f1/∂h1
∂ f2/∂h0 ∂ f2/∂h1

.
∂ fn/∂h0 ∂ fn/∂h1

 (55)

where n = the number of data points.
The vector {D} contains the differences between the measurements and the function values,

{D} =


yi − f (x1)
y2 − f (x2)
.
yn − f (xn)

 (56)

The vector {∆A} contains the changes in the parameter values,

{∆H} =


∆h0
∆h1

.
∆hm

 (57)

Applying linear least-squares theory to Equation (10),{[
Zj
]T · {D}} =

[
Zj
]T[Zj

]
{∆H}

{∆H} =
[[

Zj
]T[Zj

]]−1 {[
Zj
]T · {D}} (58)

for {∆H}, which can be employed to compute improved values for the parameters, as in

h0,j+1 = h0,j + ∆h0

h1,j+1 = h1,j + ∆h1 (59)

Two input/two output data had been collected using Arduino and ROS. The right
and left motors receive a PWM command ranging from −255 to 255 as demonstrated in
Figure 4. The output position and orientation data are calculated using differential drive
robot kinematics equations as follows: each motor has an Omron E6B2-CWZ6C incremental
rotary encoder that provides 2000 PPR resolution with two channels 90o out of phase to
determine the direction of rotation. The collected data are summarized in Figure 5.

Figure 4. Block diagram of wheelchair through open-loop mode.

Robotics 2022, 11, 101 10 of 21

Figure 5. The collected input/output data from the wheelchair are listed as: (a) input duty cycle for
left motor; (b) input duty cycle for right motor; (c) actual angular speed of wheelchair; (d) actual
linear speed of the wheelchair.

A black box that takes two inputs and two outputs is needed. A MIMO model was
estimated using the system identification toolbox to adapt to the nonlinearities in the
mapping from inputs to outputs. The NLARX model will be used and compared with
three-transfer function models (three poles and two zeros, six poles and three zeros, twelve
poles and six zeros) (Appendix A). The NLARX could achieve a lower mean squared error
and was more suitable to use with SIMULINK for optimizing PID controller gains, as
demonstrated in Table 1.

Table 1. The mean square error of obtained identified model.

Parameter Error (MSE)

tf1 2.791
tf2 2.632
tf3 5.625

nlarx1 0.1259

Figure 6 shows the four models’ comparison and fitness to training data. Transfer
function models were better at estimating the angular speed output but could not capture
the relation between inputs and the linear speed; thus, we used the NLARX model. It
can noted that the zoomed-in area confirms that the NLARX model can track the actual
behavior of the wheelchair experimental setup.

Robotics 2022, 11, 101 11 of 21

Figure 6. The actual response of the wheelchair mobile robot and the candidate identified models’
responses: (a) the linear motion response; (b) the rotational motion response.

4. GA-Based PID Control

The transfer function of the PID controller is K(s) = KP + Ki
s + Kds, where Kp, Ki, kd

are proportional, integral, and differential gains, respectively. Each component of a PID
controller serves the following purpose: the proportional component lowers the system’s
error reactions to disturbances, the integral component removes the steady-state error, and
the derivative component dampens the dynamic response and increases system stability [8].
Selecting the three parameters for the PID controller that are appropriate for the controlled
plant is a challenge. There are other ways to establish the PID controller’s parameters,
such as Ziegler–Nichols and trial-and-error; however, the majority of these approaches
are unreliable. The GA serves as a tool for various design processes to solve complex
optimization challenges. It overcomes the problems with traditional optimization methods,
such as using broad ranges rather than generating millions of probabilities to obtain the
optimum function. Convergence is slow and occurs at local minima and maxima based
on an educated guess. Calculation of derivatives takes time. Additionally, the GA does
numerous parallel optimum point searches. So, the parameters for PID controllers were
found using distinct cost function genetic algorithm techniques in this work.

This cost function as shown in Equation (60) minimizes the integrated square error e(t).

f1 =
∫ ∞

0
(e(t))2dt (60)

The systematic diagram for the wheelchair in a closed-loop form is illustrated in
Figure 7. It can be noted that the system consists of two PID controllers. The first is for
the angular speed, and the second is for the linear speed. In addition, the output of the
controllers is a pulse width modulation (PMW) which can adapt to the motor speed.

Robotics 2022, 11, 101 12 of 21

Figure 7. The block diagram of the wheelchair in a closed-loop form.

A highly helpful technique for searching and optimizing a variety of engineering and
scientific challenges is the genetic algorithm (GA). In this thesis, the GA is used to adjust
the PID controller parameters in order to employ distinct cost functions to identify the best
solutions. Here, we model it using the MATLAB Genetic Algorithm Toolbox. The first
and most important stage is to encode the issue onto the appropriate GA chromosomes,
followed by population construction. Some studies advise having 20–100 chromosomes per
population. The likelihood of obtaining the best outcomes will increase with the number of
chromosomes. We employ 80 chromosomes in each generation, though, because we have
to take the execution time into account.

The six parameters Kp, Ki, Kd, K′p, K′i, and K′d of each chromosome have different value
constraints depending on the cost functions utilized. In order to achieve the best results,
the starting values of Kp, Ki, Kd, K′p, K′i, and K′d are derived from the Ziegler–Nichols
rule. According to Equation (61), the population in each generation is represented by an
80 × 7 matrix, depending on the population’s chromosomal count.

Q =


Kp1 Ki1 Kd1 K′p1 K′i1 K′d1 F1

Kp2 Ki2 Kd2 K′p2 K′i2 K′d2 F2

..

..
Kpn Kin Kdn K′pn K′in K′dn Fn

 (61)

where n: number of chromosomes.
Each row is one chromosome that comprises Kp, Ki, Kd, K′p, K′i, and K′d values, and

the last column is added to accommodate fitness values (F) of corresponding chromosomes.
The final values of Kp, Ki, Kd, K′p, K′i, and K′d are determined by minimizing a certain cost
function, as demonstrated in Figure 8.

Robotics 2022, 11, 101 13 of 21

Figure 8. The GA optimization tuning process.

The GA steps can be summarized as follows: the first step is selecting the search
interval. This stage necessitates knowledge, experimentation, or assumption based on
the system eigenvalues that characterize the system stability region. In the second step,
the population is created at random inside the search window. In the third step, based
on the cost function, chromosomes from the present generation (population) are chosen
(reproduced) to be parents to the following generation. In the fourth step, children’s new
chromosomes retain a lot of their parents’ traits.

Having a model to control, we applied PID controllers using the same scheme used
with the Arduino; that is, one PID takes on the linear speed error, and another one handles
the angular speed error. Then, the optimization was applied using the genetic algorithm
and the Integral Time Weighted Absolute Error, ITAE, as an objective function.

The resulting PID gains were as follows for the linear speed PID (Kp = 64.3182,
Ki= 5.6344, Kd = 4.0823) and for the angular speed PID (K′p= 40.061, K′i= 24.0089,
K′d = 1.0923).

5. Experimental Results

This section illustrates the experimental results where the obtained parameters of
the PID’s controllers will be applied practically and then compared with the simulated
results with MATLAB Simulink to validate the identified model. In addition, the navigation
experiment results will be presented. Figure 9 demonstrates a comparison between the
wheelchair linear and angular speed responses in two cases. The first case considers
the response of the identified model based on the NLARX model. The second case is
the actual autonomous wheelchair response. It can be noted that the actual response is
approximately identical to the simulated results, which ensures that the obtained identified
model is accurate and can simulate the actual autonomous wheelchair. Moreover, the

Robotics 2022, 11, 101 14 of 21

actual response suffers from shuttering due to the measured signal noise of the encoder
and wheel vibration.

Figure 9. The linear and angular speed for both the identified model and the actual wheelchair.

Autonomous robot navigation refers to giving the robot a goal position inside a map,
and the robot should move from its initial position to the goal position without any input
from the user, achieving the constraint of following the shortest and safest collision-free
path, as well as parameter constraints such as when accelerations and velocities are limited
within a certain range. Autonomous navigation requires a number of tasks to be performed.
Figure 10 summarizes the subproblems in autonomous navigation, along with some famous
algorithms that solve these problems.

Figure 10. The subproblems in autonomous navigation, along with some famous algorithms.

The navigation methodology steps of the wheelchair is demonstrates in Figure 11.

Robotics 2022, 11, 101 15 of 21

Figure 11. The block diagram of the navigation steps for the autonomous wheelchair.

For a robot to autonomously navigate in an unknown environment, it needs to localize
itself inside this environment and find out what this environment looks like at the same
time, a problem referred to as the simultaneous localization and mapping problem, or
SLAM for short. SLAM is a well-known problem in robotics, and many approaches to
solving it have been made. Scan matching algorithms, such as hector_slam, are one of
the algorithms of interest, as an implementation of this algorithm is available as an open-
source ROS package. Scan matching makes use of the high scanning rate of modern laser
scanners; it tries to align new scans with the existing map built from previous scans to best
describe the environment and find the robot’s position. hector_slam uses Gauss–Newton
optimization to align the scans with each other; the coordinates of the scan endpoints are a
function of the robot’s position in the world, which is described using a rigid transformation
as follows:

Si(ζ) =

(
cos(ψ)
sin(ψ)

− sin(ψ)
cos(ψ)

)(
Si,x
Si,y

)
+

(
px
py

)
(62)

where ζ represents the robot’s pose and S is the vector representing the scan endpoint coor-
dinates, in 2D. hector_slam aims to find the transformation described by ζ =

〈
px
∣∣py
∣∣ψ〉 T

which would best align the new scans to the map built from the previous scans, which also
represents the robot’s position and is represented by

ζ∗ =
argmin

ζ

n

∑
i=1

[1−M(Si(ζ))]
2 (63)

where M(Si(ζ)) returns the map value at the given coordinates of (Si(ζ)).
A famous representation of maps used in robotics is grid occupancy maps, where

maps consist of grid cells that hold the probability of each cell being occupied. After the
robot has built its map and found itself inside it, it is given a goal position to move to;
starting from an estimated initial position, path planning algorithms find the shortest path
to follow that is collision-free. A famous algorithm that is used to find the shortest path
between two points is Dijkstra’s algorithm. The algorithm finds the shortest distance to
all points from the starting point, which is computationally inefficient. An improvement
of Dijkstra’s algorithm is the A* algorithm, which uses the same principles but adds a
heuristic function to the algorithm; this allows the algorithm to find a path that may not be
optimal, but is good enough, and does that much faster in terms of computational time.

With the knowledge of the set of points that the robot must follow with certain
velocities, the path, there must a low-level controller that makes sure the robot’s linear and

Robotics 2022, 11, 101 16 of 21

angular speeds are correctly updated and adjusted to track the given path. This is the most
significant contribution of our work.

Input from the user is given using a GUI that is shown on a 5” touchscreen, which we
use as our desktop environment. A photo of our simple, proof-of-concept GUI is shown
next (Figure 12).

Figure 12. Simple GUI built using the Tkinter Python library.

The user can select one of the places as the go-to destination, and predetermined
position and orientation inside the destination are then sent to the ROS navigation stack as
a new navigation goal. As for the ease-of-access feature, we added the ability to choose
the destination number using voice recognition. We used a TensorFlow [2] deep learning
library to build a speech command recognition model that recognizes digits 0–9. The model
was trained on the public speech command dataset [3]. The model was converted to the
tf.lite format to be able to perform inference on the Raspberry Pi.

Using the LIDAR, and after having the odometry and required transforms ready,
navigation trials started. Using the hector slam package, multiple maps of different en-
vironments were created, and we faced a problem in that sometimes the map became
distorted, which affected the navigation stack performance.

Figure 13 shows a map of the workshop created by hector slam. Figure 12 also shows
an example of the maps becoming distorted, depending on how the robot is moved and
how the scanning occurs. As a solution to this problem, we tried to use Gmapping to
perform a SLAM alternative to hector slam. Although it achieved better maps, Gmapping
uses Odometry as opposed to hector slam, which means it is highly affected by the encoder
reading, which has noise.

Figure 14 shows some of the experiments using the ROS navigation stack. The robot
planned a global path and a local path to arrive at the given goal; however, the performance
was not accurate, as the navigation stack requires many parameters to be set, and more
tuning was needed.

Robotics 2022, 11, 101 17 of 21

Figure 13. Two maps created by hector_slam showing the occurrence of case distortion.

Figure 14. RVIZ showing robot model receiving navigation goal.

Navigation testing proceeded by gathering parameters from the LIDAR (SLAMTECH,
China) sensor and the encoder to properly perform navigation. An issue during testing was
that once synchronization was lost between the Arduino and Raspberry Pi, the wheelchair
activated recovery behavior mode. It may move in a circular path around its center or
try to find the path with the least obstacles to move on. Another issue was that obstacles
appearing on the map remained on the map. This issue caused the errors in navigation and
the path planning process. Moreover, once in recovery mode, the wheelchair might start
to rotate around itself as obstacles remain around it on the map. The autonomous mode
was tested in an indoor environment. A map was built by the robot using the hector slam
mapping package. It was then loaded by the map server package and received by the amcl
localization package, and moved base to perform the navigation goal. Figure 15 displays
the room where tests were conducted. Features of the map generated are highlighted and
shown in Figure 16.

Figure 15. The area used in testing the navigation, where positions 1 and 2 are marked.

Robotics 2022, 11, 101 18 of 21

Figure 16. Map of the area scanned.

Costmaps were performed by the move_base package. Figure 17 shows the global
costmap and the local costmap, highlighted in the blue color scheme.

Figure 17. Stack of the static map, global map, and the local map layers above each other.

First, navigation trials showed that move_base parameters needed more tuning, espe-
cially the speed and acceleration limits. The robot was taken to several different areas to
proceed with testing. The navigation system showed great results in wide areas; however,
in smaller areas and narrow paths, the results show the need for extra testing and tunning
of the navigation stack parameters.

6. Conclusions

This paper presents practical steps to develop an identified model for an autonomous
wheelchair system that considers a multi-input multi-output system. Input/output data
were collected from an autonomous differential drive wheelchair controlled using the ROS
framework, taking as input the right and left wheel PWM command. These data were
used to estimate a black-box model using MATLAB, where several candidate models were
obtained to find the best among them. Two methods of system identification were used;
the first was linear least square with different orders while the second method was the
nonlinear least square. The comparison between the candidate models made it obvious
that the identified model based on the NARX was the best. A closed-loop form using two
PID controllers was built where one of them controls the linear speed of the robot, and
the other one controls the angular speed. The genetic algorithm (GA) was used to find the
optimal PID gains based on a certain cost function. The obtained parameters were applied
to the identified model and the actual system. The results show that the two responses
are nearly identical. Several input devices were used as speed/position references, such

Robotics 2022, 11, 101 19 of 21

as voice recognition, joystick (manual mode), and a LiDAR sensor (autonomous mode).
Additionally, it uses the ROS (Version 2, US) framework and allows the user to choose a
goal position. The results show that the performance of the autonomous wheelchair had
been improved.

Author Contributions: Data curation, A.Y.; Formal analysis, D.M.; Investigation, A.E.; Methodology,
M.A.S.; Project administration, M.A.S. and M.B.; Resources, S.A.; Software, E.K. and A.H.; Supervision,
M.A.S. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Future University in Egypt.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The first transfer function is as follows.
.
x
vr

= 1.673e−05 s +1.764e−07
s3+0.01824 s2+0.01273 s +0.0002027 ,

.
θ
vr

= −0.2832 s +0.0008572
s3+7.872s2+9.623s +5.239e−14

.
x
vl

= 0.0008044 s −0.000378
s3+0.19s2+1.582 s +0.2628 ,

.
θ
vl

= 0.1437 s −0.0006926
s3+3.142s2+5.032s +0.00693

The second transfer function is as follows.
.
x
vr

=
−0.0004945 s3 − 0.002009 s2 − 0.001493 s − 0.0002872

s6 + 0.02042 s5 + 7.021 s4 + 0.1188 s3 + 8.408 s2 + 0.07459 s + 0.9306
.
θ

vr
=

−2.161 s3 + 0.005219 s2 − 0.08788 s + 0.0001255
s6 + 3.436s5 + 61.78 s4 + 73.85 s3 + 2.536 s2 + 2.976 s + 0.001749

.
x
vl

=
0.001521 s3 − 0.0009319 s2 + 4.506e− 05 s − 0.0004364

s6 + 0.01796s5 + 6.043s4 + 0.06923s3 + 6.177s2 + 0.0358 s + 0.63
,

.
θ

vl
=

1.741 s3 + 0.01593 s2 + 0.1816 s − 0.000145
s6 + 13.41 s5 + 40.55 s4 + 63.62 s3 + 5.752 s2 + 6.208 s + 0.01837

The third transfer function is as follows.

.
x
vr

=
−0.03159 s6 − 0.05123 s5 − 0.1097 s4 − 0.1791 s3 − 0.0239 s2 − 0.1088 s + 0.005021

s12 + 0.2621 s11 + 31.07 s10 + 7.854 s9 + 265.5 s8 + 64.09 s7 + 805 s6 + 184.9 s5 + 824.2 s4 + 176.3 s3 + 201.2 s2 + 35.1 s + 4.937
,

.
θ

vr
=

−0.0006663 s6 + 0.0001131s5 − 6.213e − 05 s4 + 1.012e− 05 s3 − 9.041e− 07 s2 − 1.028e− 08s− 1.92e− 09
s12 + 0.1185 s11 + 3.919s10 + 0.446 s9 + 1.909 s8 + 0.1687 s7 + 0.29 s6 + 0.01516 s5 + 0.01504 s4 + 0.0002723 s3 + 0.0001998 s2 + 6.911e− 07s + 4.458e− 07

.
x
vl

=
−0.006174 s6 + 0.003168 s5 − 0.01016 s4 + 0.003669 s3 − 0.002674 s2 + 0.0005294 s − 0.0001571

s12 + 0.04923 s11 + 12.11 s10 + 0.4911 s9 + 44.27 s8 + 1.478 s7 + 57.19 s6 + 1.53 s5 + 27.72 s4 + 0.5157s3 + 5.346s2 + 0.0504s + 0.351
,

.
θ

vl
=

−0.0006663 s6 + 0.0001131s5 − 6.213e − 05 s4 + 1.012e− 05 s3 − 9.041e− 07 s2 − 1.028e− 08s− 1.92e− 09
s12 + 0.1185 s11 + 3.919s10 + 0.446 s9 + 1.909 s8 + 0.1687 s7 + 0.29 s6 + 0.01516 s5 + 0.01504 s4 + 0.0002723 s3 + 0.0001998 s2 + 6.911e− 07s + 4.458e− 07

The fourth model, NARX, is as follows. larx1 = nonlinear ARX model with two outputs and two inputs.
Inputs: vr, vl, Outputs: x_dot, theta_dot Standard regressors corresponding to the orders: na = [2 0; 0 2],
nb = [2 2; 2 2], nk = [1 1; 1 1]. For output 1: x_dot(t−1), x_dot(t−2), vr(t−1), vr(t−2), vl(t−1), vl(t−2). For output
2: theta_dot(t−1), theta_dot(t−2), vr(t−1), vr(t−2), vl(t−1), vl(t−2). Nonlinearities: For output 1: wavenet with
38 units, For output 2: wavenet with 3 units. Sample time: 0.05 s

References

1. Raharja, N.; Ma’arif, A.; Adiningrat, A.; Nurjanah, A.; Rijalusalam, D.; Sánchez-López, C. Empowerment of mosque community
with ultraviolet light sterilisator robot. J. Pengabdi. Dan Pemberdaya. Masy. 2021, 1, 95–102.

2. Paola, D.D.; Milella, A.; Cicirelli, G.; Distante, A. An autonomous mobile robotic system for surveillance of indoor environments.
Int. J. Adv. Robot. Syst. 2010, 7, 19–26. [CrossRef]

3. Murthy, V.M.; Kumar, S.; Singh, V.; Kumar, N.; Sain, C. Autonomous mobile robots designing. J. Glob. Res. Comput. Sci. 2011, 2,
126–129.

4. Nurmaini, S.; Tutuko, B. Intelligent Robotics Navigation System: Problems, Methods, and Algorithm. Int. J. Electr. Comput. Eng.
2017, 7, 3711–3726. [CrossRef]

http://doi.org/10.5772/7254
http://doi.org/10.11591/ijece.v7i6.pp3711-3726

Robotics 2022, 11, 101 20 of 21

5. He, W.; Krupa, A.; Li, Z.; Chen, C.P. A Survey of Human-centered Intelligent Robots: Issues and Challenges. IEEE/CAA J. Autom.
Sin. 2017, 4, 602–609. [CrossRef]

6. Boudra, S.; Berrached, N.-E.; Dahane, A. Efficient and secure real-time mobile robots cooperation using visual servoing. Int. J.
Electr. Comput. Eng. (IJECE) 2019, 10, 3022–3034. [CrossRef]

7. Rasheed, A.A.A.; Abdullah, M.N.; Al-Araji, A.S. A review of multi-agent mobile robot systems applications. Int. J. Electr. Comput.
Eng. (IJECE) 2022, 12, 3517–3529. [CrossRef]

8. Manikandan, N.; Kaliyaperuma, G. Collision avoidance approaches for autonomous mobile robots to tackle the problem of
pedestrians roaming on campus road. Pattern Recognit. Lett. 2022, 160, 112–121. [CrossRef]

9. Alatise, M.B.; Hancke, G. A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods. IEEE Access 2020,
8, 39830–39846. [CrossRef]

10. Wahyono, E.P.; Ningrum, E.S.; Dewanto, R.S.; Pramadihanto, D. Stereo vision-based obstacle avoidance module on 3D point
cloud data. Telecommun. Comput. Electron. Control. 2020, 18, 1514–1521. [CrossRef]

11. DAS, S.K. Local path planning of mobile robot using critical-point bug algorithm avoiding static obstacles. IAES Int. J. Robot.
Autom. (IJRA) 2016, 5, 182–187. [CrossRef]

12. Hayet, T.; Jilani, K. A navigation model for a multi-robot system based on client/server model. In Proceedings of the International
Conference on Control, Decision and Information Technologies 2016, Saint Julian’s, Malta, 6–8 April 2016.

13. Abdulredah, S.H.; Kadhim, D.J. Developing a real time navigation for the mobile robots at unknown environments. Indones. J.
Electr. Eng. Comput. Sci. (IJEECS) 2020, 20, 500–509. [CrossRef]

14. Ryc, M.D.; Versteyhe, M.; Debrouwere, F. Automated guided vehicle systems, state-of-the-art control algorithms and techniques.
J. Manuf. Syst. 2020, 54, 152–173. [CrossRef]

15. Le-AnhM, T.; Koster, B. A review of design and control of automated guided vehicle systems. Eur. J. Oper. Res. 2006, 171, 1–23.
[CrossRef]

16. Ravankar, A.A.; Hoshino, Y.; Ravankar, A.; Jixin, L.; Emaru, T.; Kobayashi, Y. Algorithms and a Framework for Indoor Robot
Mapping in a Noisy Environment Using Clustering in Spatial and Hough Domains. Int. J. Adv. Robot. Syst. 2015, 12, 27. [CrossRef]

17. Ravankar, A.; Ravankar, A.A.; Hoshino, Y.; Emaru, T.; Emaru, T. On a Hopping-Points SVD and Hough Transform-Based Line
Detection Algorithm for Robot Localization and Mapping. Int. J. Adv. Robot. Syst. 2016, 13, 98. [CrossRef]

18. MathWorks 2022. Available online: https://www.mathworks.com/discovery/slam.html (accessed on 6 June 2022).
19. Köseoğlu, M.; Çelik, O.M.; Pektaş, Ö. Design of an autonomous mobile robot based on ROS. In Proceedings of the International

Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017.
20. Moreno, L.E.; Armingol, J.; Garrido, S.; de la Escalera, A.; Salichs, M.A. A Genetic Algorithm for Mobile Robot Localization Using

Ultrasonic Sensors. J. Intell. Robot. Syst. 2002, 34, 135–154. [CrossRef]
21. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach.

Intell. 2007, 29, 1052–1067. [CrossRef]
22. Liang, J.; Qiao, Y.-L.; Guan, T.; Manocha, D. OF-VO: Efficient Navigation Among Pedestrians Using Commodity Sensors. IEEE

Robot. Autom. Lett. 2021, 6, 6148–6155. [CrossRef]
23. Mart’ınez, F.; Jacinto, E.; Mart´ınez, F. Obstacle detection for autonomous systems using stereoscopic images and bacterial

behaviour. Int. J. Electr. Comput. Eng. (IJECE) 2020, 10, 2164–2172. [CrossRef]
24. Wang, Y.-T.; Peng, C.-C.; Ravankar, A.A.; Ravankar, A. A Single LiDAR-Based Feature Fusion Indoor Localization Algorithm.

Sensors 2018, 18, 1294. [CrossRef] [PubMed]
25. Engelhard, N.; Endres, F.; Hess, J.; Sturm, J.; Burgard, W. Real-Time 3d Visual Slam with a Hand-Held Camera. In Proceedings of

the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden, 13–15 April 2021.
26. Cox, I. Blanche-an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Trans. Robot. Autom. 1991, 7,

193–204. [CrossRef]
27. Fankhauser, P.; Bloesch, M.; Rodriguez, D.; Kaestner, R.; Hutter, M.; Siegwart, R. Kinect v2 for Mobile Robot Navigation:

Evaluation and Modeling. In Proceedings of the International Conference on Advanced Robotics (ICAR), Istanbul, Turkey,
27–31 July 2015.

28. Tan, G.; Zeng, Q.; Li, W. Intelligent PID controller based on ant system algorithm and fuzzy inference and its application to bionic
artificial leg. J. Cent. South Univ. Technol. 2004, 11, 316–322. [CrossRef]

29. Kantawong, S. Smart Wheelchair Stair Lift Using RFID Detection Method and Fuzzy-PI with PLC Ladder Control. Adv. Mater.
Res. 2014, 931, 1313–1317. [CrossRef]

30. Zhao, B.; Wang, H.; Li, Q.; Li, J.; Zhao, Y. PID Trajectory Tracking Control of Autonomous Ground Vehicle Based on Genetic
Algorithm. In Proceedings of the Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019.

31. Omrane, H.; Masmoudi, M.S.; Masmoudi, M. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation. Comput.
Intell. Neurosci. 2016, 2016, 9548482. [CrossRef]

32. Mac, T.T.; Copot, C.; De Keyser, R.; Tran, T.D.; Vu, T. MIMO Fuzzy Control for Autonomous Mobile Robot. J. Autom. Control. Eng.
2016, 4, 65–70. [CrossRef]

33. Elkodama, A.; Saleem, D.; Ayoub, S.; Potrous, C.; Sabri, M.; Badran, M. Design, Manufacture, and Test a ROS Operated Smart
Obstacle Avoidance Wheelchair. Int. J. Mech. Eng. Robot. Res. 2020, 9, 931–936. [CrossRef]

34. Thrun, S.; Burgard, W.; Fox, D. Probabilistic robotics. Commun. ACM 2002, 45, 52–57. [CrossRef]

http://doi.org/10.1109/JAS.2017.7510604
http://doi.org/10.11591/ijece.v10i3.pp3022-3034
http://doi.org/10.11591/ijece.v12i4.pp3517-3529
http://doi.org/10.1016/j.patrec.2022.06.005
http://doi.org/10.1109/ACCESS.2020.2975643
http://doi.org/10.12928/telkomnika.v18i3.14829
http://doi.org/10.11591/ijra.v5i3.pp182-189
http://doi.org/10.11591/ijeecs.v20.i1.pp500-509
http://doi.org/10.1016/j.jmsy.2019.12.002
http://doi.org/10.1016/j.ejor.2005.01.036
http://doi.org/10.5772/59992
http://doi.org/10.5772/63540
https://www.mathworks.com/discovery/slam.html
http://doi.org/10.1023/A:1015664517164
http://doi.org/10.1109/TPAMI.2007.1049
http://doi.org/10.1109/LRA.2021.3090660
http://doi.org/10.11591/ijece.v10i2.pp2164-2172
http://doi.org/10.3390/s18041294
http://www.ncbi.nlm.nih.gov/pubmed/29690624
http://doi.org/10.1109/70.75902
http://doi.org/10.1007/s11771-004-0065-7
http://doi.org/10.4028/www.scientific.net/AMR.931-932.1313
http://doi.org/10.1155/2016/9548482
http://doi.org/10.12720/joace.4.1.65-70
http://doi.org/10.18178/ijmerr.9.7.931-936
http://doi.org/10.1145/504729.504754

Robotics 2022, 11, 101 21 of 21

35. Hajiyev, C.; Soken, H.; Vura, S. State Estimation and Control for Low-Cost Unmanned Aerial Vehicles; Springer: Cham, Switzerland,
2015; p. 51.

36. Liu, F.; Liang, S.; Xian, D.X. Optimal path planning for mobile robot using tailored genetic algorithm. Indones. J. Electr. Eng. 2014,
12, 206–213. [CrossRef]

37. Harun, S.; Ibrahim, M.F. A genetic algorithm based task scheduling system for logistics service robots. Bull. Electr. Eng. Inform.
(BEEI) 2019, 8, 206–213. [CrossRef]

38. Shamseldin, M.A. An Efficient Single Neuron PID—Sliding Mode Tracking Control for Simple Electric Vehicle Model. J. Appl.
Nonlinear Dyn. 2022, 11, 1–15. [CrossRef]

39. Xu, X.; Zhang, Y.; Luo, Y.; Chen, D. Robust bio-signal based control of an intelligent wheelchair. Robotics 2013, 2, 187–197.
[CrossRef]

40. Shamseldin, M.A. Optimal COVID-19 Based PD/PID Cascaded Tracking Control for Robot Arm Driven by BLDC Motor. WSEAS
Trans. Syst. 2021, 20, 217–227. [CrossRef]

41. Copot, C.; Muresan, C.; Ionescu, C.M.; Vanlanduit, S.; de Keyser, R. Calibration of UR10 robot controller through simple
auto-tuning approach. Robotics 2018, 7, 35. [CrossRef]

42. Guardeño, R.; López, M.J.; Sánchez, V.M. MIMO PID controller tuning method for quadrotor based on LQR/LQG theory. Robotics
2019, 8, 36. [CrossRef]

43. Carpio, M.; Saltaren, R.; Viola, J.; García, C.; Guerra, J.; Cely, J.; Calderón, C. A simulation study of a planar cable-driven parallel
robot to transport supplies for patients with contagious diseases in health care centers. Robotics 2021, 10, 111. [CrossRef]

44. Shamseldin, M.A. Optimal Coronavirus Optimization Algorithm Based PID Controller for High Performance Brushless DC
Motor. Algorithms Artic. 2021, 14, 193. [CrossRef]

45. Juang, J.G.; Huang, M.T.; Liu, W.K. PID control using presearched genetic algorithms for a MIMO system. IEEE Trans. Syst. Man
Cybern. Part C Appl. Rev. 2008, 38, 716–727. [CrossRef]

http://doi.org/10.11591/telkomnika.v12i1.3127
http://doi.org/10.11591/eei.v8i1.1437
http://doi.org/10.5890/JAND.2022.03.001
http://doi.org/10.3390/robotics2040187
http://doi.org/10.37394/23202.2021.20.24
http://doi.org/10.3390/robotics7030035
http://doi.org/10.3390/robotics8020036
http://doi.org/10.3390/robotics10040111
http://doi.org/10.3390/a14070193
http://doi.org/10.1109/TSMCC.2008.923890

	Introduction
	Autonomous Wheelchair Experimental Setup
	Experimental Setup Structure
	Wheelchair Mathematical Model

	System Identification
	GA-Based PID Control
	Experimental Results
	Conclusions
	Appendix A
	References

