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Abstract: In metal sheet processing for automotive application, it is crucial to guarantee high robot
dynamics for reduced cycle times and adequate components accuracy to be competitive in the market.
Since the two aspects are closely and inversely related, the problem becomes challenging. After
the first cutting tests, the Cartesian Robot prototype displayed insufficient dimensional accuracy
when undergoing high accelerations. The solution hereby proposed is the design of a Tuned Mass
Damper (TMD), working in shear mode, to reduce the robot vibration amplitude. To this end, an
initial assessment of the robot frequency response and natural frequencies was performed both by
using a Finite Element (FE) model of the machine and experimentally. Further, frequency response
analyses were carried out to evaluate the TMD effectiveness and to highlight possible criticalities
from the manufacturing point of view. On a numerical level, the proposed design can damp the
machine resonant frequencies, also showing a certain grade of tunability before operation and
in-plane orientation insensitiveness thanks to the use of cylindrically shaped springs.

Keywords: vibration absorber; TMD; shear mode; passive vibration control; Cartesian robot; mechanical
design

1. Introduction

Vibrations and relative control strategies are a delicate and wide matter, especially
when dealing with the dimensional accuracy of a component cut by an automated ma-
chine. No vibration control technique can be a priori defined better than another, and it
strongly depends on the mechanical system being dealt with: application field, design
requirements and constraints, project phase, cost-to-benefit ratio, and so on. Over the years,
different control solutions have been developed and can be sub-divided into [1]: struc-
tural modification [2], material selection [3], vibration isolation [4], addition of vibration
absorbers/neutralizers, vibration damping [5], and source modification [6].

The present paper deals with the unwanted vibrations and relative control strategy
of a Computer Numerical Control (CNC) Cartesian robot prototype designed for metal
sheet processing in the automotive field. A Cartesian robot displays a serial configuration
of its three motors, in which each of them can perform a linear movement, i.e., prismatic
actuator, thus creating a parallelepiped-shaped working volume. The structure can either
be a cantilever beam or a Gantry/RAM one. A Cartesian robot offers some advantages: they
are generally easy to design, install and maintain, display a high workspace-to-footprint
ratio as well as flexibility, and have a simpler inverse kinematic solution. A closed form
exists due to the presence of the linear axes. For the above-mentioned reasons, they find
applications in different fields, such as Coordinate Measurement Machines (CMMs), ma-
chining, assembling, laser processing, and pick-and-place. Given the broadness of the
matter, and the purpose of the present paper, the overview is limited to some key aspects
of the multi-axis machining application, such as reduction of the cycle time and of the
dimensional and geometrical tolerances. In particular, when undergoing high accelerations,
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a Cartesian robot may suffer from positional accuracy errors both due to axis error propaga-
tion and reduced stiffness, especially in cantilever structures and elevated moving masses.
Widely used methods involve controlled approaches such as software modification, for
example, optimal control methodology [7], modification for motion ramp generation [8,9],
hardware modification of electric linear motors (e.g., flexible mounting [10]), and active and
semi-active vibration absorbers. In addition, error compensation techniques [11], structural
and topology optimization of load-carrying components, i.e., basement and column, by
minimizing the strain energy or maximizing the eigenvalues [12–14], are the strategies typi-
cally used to face the previously-exposed issues. Alongside them, Tuned Mass Dampers
(TMDs) have found application in the robotics field as well [15–18], Multi-TMD applications
can be found mainly for chatter mitigation [19–21] and to reduce vibrations of structures
with varying dynamics [22]. After the first cutting test performed on the real prototype, it
was quite evident how the high impulse forces arising from the electric motors excited the
machine resonant frequencies, thus leading to unacceptable components quality.

The solution hereby proposed is the design of a TMD, working in shear mode, able
to exploit some of the characteristics of the modes of the structure to provide a simple yet
effective improvement. A TMD is a mechanical device useful for the vibration control of a
structure. In its simplest form, it consists of a mass and a spring sized in such a way that
its natural frequency is close to or better tuned to the one of the structure that has to be
neutralized. Since the two sub-systems are elastically coupled, the motion of the TMD is
wide enough to produce inertia forces that perfectly balance external excitations acting
on the structure, thus resulting in a null movement of the structure at that frequency. The
strong limitation is that it works perfectly fine in a narrow frequency band. The use of
an additional damper for the vibration absorber allows reducing vibrations on a slightly
wider one [23]. Consequently, the simultaneous management of more than one mode is not
immediate if a proper design is not carried out. The TMD was first patented by German
engineer Frahm in 1911 [24]. From that moment, a great development was carried out
both in mechanical and civil engineering. Den Hartog developed a closed-form solution
for the optimal selection of frequency ratio ropt and damping ratio ξopt as a function of
the mass ratio µ for an undamped single-DoF system for the case of mass excitation or
base excitation [25]. Rana and Soong proposed a parametric study investigating the effect
of detuning, as well as a simplified design approach and example for the application
of a TMD on a particular mode of a multi-DoFs system [26]. Optimal design methods
to control vibrations arising from different sources were investigated [27], as well as
different optimization criteria to be applied in the design of a dynamic damper [28], and
different numerical approaches were developed, such as Genetic Algorithms (GA), particle
swarm [29] or global optimization algorithm EVOP [30]. Passive dynamic dampers are
the most consolidated ones, even though in recent years, alternative practical designs such
as the inerter-based ones [31] have found application as well as the Coupled TMD for the
simultaneous management of more than one mode [32]. Along with the passive technology,
adaptive TMDs [33,34] were also developed in order to eliminate the above-mentioned
narrow frequency-band limitation and allow a frequency shift of the mechanical device
over a certain domain. This solution may be quite useful in mechanical systems in which
either mass/inertia or stiffness change over time as the system natural frequencies get
consequently modified. The proposed design is a single Degree of Freedom (s-DoF) TMD.
Differently from previously analyzed solutions, it presents cylindrically shaped springs, in a
parallel configuration and working in shear mode. This design choice guarantees the same
stiffness independently of the angular coordinate. This feature allows for simultaneous
vibration control along different oscillation directions at a specified frequency, thus also
resulting in an additional degree of flexibility for mounting. Tunability before operation is
possible by the addition of small masses.

This paper is organized as follows. Firstly, the Cartesian robot prototype descrip-
tion and assessment through the outputs of experimental tests and modal and frequency
response FEM analyses are proposed. In Section 3, a practical design procedure is pre-
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sented together with a frequency response parametric analysis as a function of the dynamic
damper mass and stiffness distribution. In the last part of this section, possible criticalities
using a simplified numerical model are evaluated. In Section 4, conclusions and possible
developments are highlighted.

2. CNC Robot
2.1. Robot Description

The robot object of the present paper was born to perform rapid movements for metal
sheet cutting in the automotive field. Being an innovative machine, still in the prototype
phase for which design confidentiality applies, a complete description is not provided.
Nonetheless, it can be considered as a robot composed of a “host machine”, i.e., a Cartesian
robot that translates the “head” in the space. The head can perform the required rotations
to completely define the position and attitude of the end-effector, with a certain grade of
redundancy. This kind of design guarantees the machine to really be competitive on the
cycle time, even though the linear axes do not show particular differences with respect to
the benchmark because the slow movements of the heavy components are reduced to a
minimum by an intelligent coordination of the machine axes. In Figure 1, an illustration
is presented. Due to its innovative and alternative design, the “head” cannot be shown,
which is why a portion of Figure 1 is blurred.
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Figure 1. Cartesian robot prototype.

The machine presents a welded steel basement (1), constrained to the ground on
six points by means of M20 screws (2). On the basement, magnetic plates (3) and tracks
(4) are screwed. The movement of the prismatic column (6) is allowed by the magnetic
interaction between the electric linear motors, located at its bottom and not visible in
Figure 1, and the magnetic plates (3). The six slides screwed under the column (5) create
a shape coupling with the basement tracks (4), thus allowing a precise guiding system.
The movement along the Z axis can be performed by the Z-Carriage (8) based on the same
actuation principle as already exposed and guided by the column tracks (7). Six slides,
not visible in the figure, are used also in this case and screwed on the back surface of the
Z-Carriage. The movement along the Y direction is performed by the Y-Group (9), protected
and sustained by a steel cover, on which two tracks and magnets are screwed. In this case,
the motor allowing the movement is mounted on the Z-Carriage, and the slides used are
four. In Table 1, moving masses, motor forces, and kinematic parameters are listed for each
direction. Particularly, it provides an indication of the mass that must be moved along the
specific direction, the nominal and peak force the motors are able to provide along that
direction and, consequently, the maximum acceleration the system can reach. The stroke is
a design constraint connected to the working volume that must be reached, a function of
the workpiece dimensions. Given the maximum acceleration, stroke, and by assuming a
triangular velocity profile, the maximum speed for each direction is reported as well.
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Table 1. Dynamic and kinematic parameters as a function of the motor axis.

Direction Moving
Mass (kg)

Nominal
Force (N)

Peak Force
(N)

Acceleration
(m/s2)

Speed
(m/s)

Stroke
(mm)

X 2026 10,000 20,000 10 5 2400
Y 360 2500 4700 10 4 1270
Z 569 6000 12,000 10 2 325

2.2. Cutting Test and Experimental Dynamic Evaluation

Figure 2 displays a sample cut by the machine during the first cutting test. It may be
observed that the cut is not straight; rather, some oscillations are present. It is evident how
the oscillation of the end-effector has a higher impact in correspondence with the direction
changes, getting damped as it advances.

Robotics 2022, 11, 103 4 of 20 
 

 

The stroke is a design constraint connected to the working volume that must be reached, 
a function of the workpiece dimensions. Given the maximum acceleration, stroke, and by 
assuming a triangular velocity profile, the maximum speed for each direction is reported 
as well. 

Table 1. Dynamic and kinematic parameters as a function of the motor axis. 

Direction Moving Mass 
(kg) 

Nominal Force 
(N) 

Peak 
Force (N) 

Acceleration 
(m/s2) 

Speed 
(m/s) 

Stroke 
(mm) 

X 2026 10,000 20,000 10 5 2400 
Y 360 2500 4700 10 4 1270 
Z 569 6000 12,000 10 2 325 

2.2. Cutting Test and Experimental Dynamic Evaluation 
Figure 2 displays a sample cut by the machine during the first cutting test. It may be 

observed that the cut is not straight; rather, some oscillations are present. It is evident how 
the oscillation of the end-effector has a higher impact in correspondence with the direction 
changes, getting damped as it advances. 

 
Figure 2. Cut sample. 

A preliminary analysis identified the problem in the fact that the change in direction, 
made possible by the acceleration of a different axis, led to impulse forces exciting the 
machine natural frequencies. These oscillations were quite visible during the machine 
working at maximum performances. Moreover, analyzing the cutting edges in Figure 2, 
an indirect frequency oscillation estimation can be carried out to obtain a first 
approximation of its value. The average distance, dmean, between two peaks is around 2.5 
mm. Given the cutting speed, vcut, equal to 50 mm/s, the frequency estimate, fest, can be 
computed as: 𝑓௦௧ = 𝑣௨௧𝑑 = 20 Hz (1) 

The low-frequency value appeared to be consistent with the oscillation frequency of 
a mechanical system, a hypothesis initially confirmed by the indications of the control 
system. In particular, the reconstructed signal relative to the square trajectory of Figure 2, 
measured by the position transducer of the linear axes, did not show any significant 
position error oscillations, thus confirming the oscillation was taking place independently 
of the control system and confirming the mechanical nature. Therefore, additional 
measurements were performed with the aim of evaluating the displacement response 
frequency spectrum. They were carried out using Sequoia FastTracer, a triaxial MEMS 
accelerometer, allowing a maximum sampling frequency of 2500 samples/s per channel, 
with a dynamic output of ±5 g, whose axes were oriented along those of the machine. The 
single measurement consisted in providing a single impulse acceleration on a single axis 

Figure 2. Cut sample.

A preliminary analysis identified the problem in the fact that the change in direction,
made possible by the acceleration of a different axis, led to impulse forces exciting the
machine natural frequencies. These oscillations were quite visible during the machine
working at maximum performances. Moreover, analyzing the cutting edges in Figure 2, an
indirect frequency oscillation estimation can be carried out to obtain a first approximation
of its value. The average distance, dmean, between two peaks is around 2.5 mm. Given the
cutting speed, vcut, equal to 50 mm/s, the frequency estimate, fest, can be computed as:

fest =
vcut

dmean
= 20 Hz (1)

The low-frequency value appeared to be consistent with the oscillation frequency of a
mechanical system, a hypothesis initially confirmed by the indications of the control system.
In particular, the reconstructed signal relative to the square trajectory of Figure 2, measured
by the position transducer of the linear axes, did not show any significant position error
oscillations, thus confirming the oscillation was taking place independently of the control
system and confirming the mechanical nature. Therefore, additional measurements were
performed with the aim of evaluating the displacement response frequency spectrum.
They were carried out using Sequoia FastTracer, a triaxial MEMS accelerometer, allowing
a maximum sampling frequency of 2500 samples/s per channel, with a dynamic output
of ±5 g, whose axes were oriented along those of the machine. The single measurement
consisted in providing a single impulse acceleration on a single axis and then recording the
data arising from the accelerometer applied at a specific point. The measurements were
repeated in the same way, for each of the seven measuring points, indicated in Figure 3 as:
Ground (G), Basement Constraint (BC), Basement Top (BT), Basement Guide (BG), Column
Top (CT), Y axis Cover (YC), and B axis Group (BG) and for each of the three different
axes accelerations. On top of that, they were performed by considering the machine in
the most critical configuration, namely Z and Y axes at their stroke ends, and the least
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critical configuration, namely Z and Y axes at their stroke starts. The reason behind this
choice was to understand how much the robot resonant frequency could vary in these limit
positions. For the sake of conciseness, only the measurements of the Column Top (CT)
point are reported (Figures 4–6) for each motor impulse, in a comparison between the most
(stroke end) and least (stroke start) critical configurations.
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From the analysis of Figures 4–6, it is possible to appreciate that:

• As expected, the machine presents a resonant frequency shift between the most critical
configuration, 20 Hz, and the least one, 24 Hz. This happens because the moment of
inertia with respect to the constraint, i.e., the column base, reduces as the masses are
closer to it.

• The 20 Hz frequency always shows a higher displacement with respect to the 24 Hz
one, even though along the X direction, for each axis movement, the displacement
difference is not remarkable. This may be because the oscillation along the X direction
is a consequence of the column bending about the Y axis. The bending about the Y
axis depends on the distance between the column constraint, i.e., the slide, and the
center of mass position of the Y-Group along directions Z and X. When the Y-Group
is at its stroke start, the distance between center of mass and slide reduces in the Z
direction, thus inducing a change in frequency, but the distance between center of
mass and slide along the X direction remains unchanged, thus keeping a relatively
high oscillation amplitude.

2.3. Machine Modal and Frequency Response FEM Analysis

To further investigate the problem from the dynamic standpoint, a Finite Element
(FE) model of the complete machine was created in the MSC Apex Computer-Aided
Engineering (CAE) environment. Surface, tetra, and hexa elements were used depending
on the component to find a proper balance between modeling accuracy and computation
time. A comparison between the complete model and a reduced one was carried out to
reduce the simulation time. The reduced model (Figure 7) differs from the original one for
the representation of the Y-Group and the head, which are substituted by a concentrated
mass and inertia. The concentrated mass and inertia, which take into account both the arm
of the robot, the spindle, and the head, are connected to the Z-Carriage by means of rigid
connectors. Moreover, the software gives the possibility to precisely indicate where to locate
the concentrated mass and inertia, which, in this case, were placed in the center of mass of
the replaced sub-unit. The value of concentrated mass and inertia were derived from CAD
evaluation, after the exact material was assigned to each component. As previously stated,
a complete model was created, and the decision to perform the analyses on the reduced one
is mainly related to the fact that no relevant differences are present between the outputs of
the two models, mainly because the Y-Group is much more rigid with respect to the mass it
had to bear. On top of that, the reduced model allows for a simulation time reduction of
30% with respect to the complete one.
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2.3.1. Modal Analysis

Initial modal analyses were performed to identify possible model criticalities and
simplifications. The machine was modeled in its most critical configuration; therefore,
modal frequencies in the range of 20 Hz were expected according to the outputs of the
experimental measurements. This was not the case after the first trial, where the machine
global natural frequencies resulted to be higher. Hence, a model tuning was necessary to
identify and correct the stiffening arising from the incorrect modeling choices. In particular:

• A constraint sensitivity analysis was run on the basement constraints. The output
frequencies were dependent on the constraint condition. In the initial configuration, a
displacement constraint was directly applied to the surface area corresponding to the
screw under-head. In the final model instead, a part of the screw was modeled as well,
by considering the part emerging from the ground as a cantilever beam, connected in
turn to the basement hole by means of an RBE3 connection.

• Flexible beam elements with RBE3 node distribution were used, instead of rigid beams
with RBE2 distribution, to model the screws between tracks and basement, slides and
column, and tracks and column.

The combination of the two mentioned changes led to a frequency reduction of up to
30% for the most relevant modes. In addition to this, the modal analysis of the complete
model was run to identify which were the modes and natural frequencies characterizing
the structure on the 10 lowest ones. The Effective Mass Fraction (EMF) [35,36] was used to:

• Evaluate if the 10 modes are sufficient to completely characterize the structure from a
dynamic point of view. In general, if the sum over the modes of the EMFs for each
direction falls around 80–90%, there is no need to consider higher-order modes.

• Define which modes are relevant, since the EMF provides an indication of the energy
associated with each mode. In Table 2, the effective mass fraction is reported as a
function of the mode number and displacement direction. In this case, six modes were
considered as global ones, namely Mode No. 1–8, because they have a non-negligible
(<10−1) EMF along a particular direction.

In Figures 8–13, a graphic representation of the global modes is depicted. As it is
possible to notice, the first two modes represent a pure column bending about the X and Y
directions, respectively. They are not only quite close to the 20 Hz value, but they also have
the highest percentage of EMF along the Y direction and X direction, respectively. This
consideration is consistent with the experimental evaluation, even though a certain error
margin is present. It is true that there is not a unique mode, but both are close to the value
of interest and show a displacement along the same directions found in the experiments.
The higher-order frequencies lead to more complicated modal shapes. These considerations
result to be quite an important feature of the system and were exploited for the design of
the dynamic damper since:
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• The low-frequency modes are the critical ones during operation, as confirmed by
experimental characterization, i.e., cut samples and dynamic measurements;

• A single mass damper can provide a fast and efficient solution for the simultaneous
vibration control of both modes since they are close in frequency;

• The maximum oscillation amplitude of the first two modes is in correspondence with
the column top;

• The column top provides enough space to host the dynamic damper without inducing
heavy design modification on the already existing prototype.

Table 2. Effective Mass Fractions (EMFs).

Mode Frequency
(Hz)

EMF
X Direction

(-)

EMF
Y Direction

(-)

EMF
Z Direction

(-)

1 19.5 7.3 × 10−4 4.1 × 10−1 4.2 × 10−3

2 23.7 3.7 × 10−1 6.0 × 10−5 3.5 × 10−2

3 43.4 5.9 × 10−4 1.0 × 10−3 8.2 × 10−4

4 47.6 4.6 × 10−3 3.5 × 10−4 3.6 × 10−3

5 50.6 1.1 × 10−2 1.3 × 10−1 1.3 × 10−1

6 53.0 2.0 × 10−1 2.1 × 10−3 1.8 × 10−1

7 68.1 4.6 × 10−2 2.9 × 10−1 1.1 × 10−1

8 75.4 3.6 × 10−1 1.2 × 10−2 1.3 × 10−1

9 80.1 2.8 × 10−5 7.7 × 10−2 2.2 × 10−1

10 90.6 7.6 × 10−5 5.8 × 10−2 3.0 × 10−3
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2.3.2. Frequency Response Analysis

The aim of the frequency response analysis was to identify how the structure re-
sponded to sinusoidal excitations in a specific frequency band that can be excited during
the machine motion. A unit force was applied along the X and Y directions, and the
application point was the concentrated mass connected to the rest of the structure. A point
sensor, where the software evaluates the response, was placed on the column top (Figure 7)
and used as a comparison parameter for all the analyses. The frequency band, resolution,
and damping values used for the analyses are reported in Table 3.

Table 3. Frequency response analysis setting parameters.

Quantity Value

Frequency band (Hz) 16–26
Frequency resolution (Hz) 0.1

Fx (N) 1
Fy (N) 1

Critical damping fraction (-) 0.02

In Figure 14, the response for the directions X, Y, and Z is plotted as a function of the
frequency. As it can be appreciated, the maximum of the oscillation amplitude is reached
for the first mode, along the Y direction.
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The critical points analyzed so far can be summarized as follows.

• Experimental analysis showed the column oscillating along the X and Y directions at
20 Hz when the Z-Carriage and Y-Group were at their stroke ends, and at 24 Hz when
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they are completely retracted; therefore, the damping device has to be able to provide
simultaneous oscillation neutralization along two different directions.

• The numerical model showed some reasonable discrepancies with respect to the
experimental results, even though it provided consistent and useful information.
Despite these differences, the numerical model was exploited for the dynamic damper
tuning, by acting on the most critical frequency, aware of the fact that some differences
may be present in practice.

These considerations lead to the dynamic damper design:

• To provide the same stiffness independently of the direction, which leads to the choice
of a cylindrically shaped spring.

• To keep the mass ratio as low as possible to secure the Cartesian robot performances.
• To be tuned at a frequency close to 20 Hz, as it was the most dangerous, but with

the possibility of changing the frequency slightly, depending on the actual resonant
frequency of the machine in operating condition. Therefore, additional masses were
considered, to be added in a simple way to the principal one. Being the masses
small with respect to the whole structure, no significant variations are induced in the
mass ratio.

• To realize a compact design to be assembled on the column top.

The procedure followed in order to design the dynamic damper is hereby reported. It
includes how the dynamic damper mass was selected as a function of the mass ratio, how
the dynamic damper stiffness was defined as a function of the tuning frequency, and how
the geometric parameters of the spring, such as height and surface area, were selected.

• The mass ratio µ, between the dynamic damper mass md and the structure mass Mr,
was selected, and the dynamic damper mass was evaluated according to Equation (2).
In order to make the initial evaluation easier, an initial mass ratio of 1.55% was selected,
valid both for the X direction and the Y direction. The main idea behind this was to
avoid too heavy a dynamic damper, but still allow the dynamic damping capabilities
and use the same mass along both directions.

µ =
md
Mr

(2)

• The stiffness of the dynamic damper, kd, was computed by relying on a simple 1-DoF
equivalent model as follows.

kd = ω2
dmd (3)

where
ωd = 2π fd (4)

• Diameter D, height h, and shear modulus G were selected according to Equation (5).
The geometric parameters are related to the dynamic damper spring dimensions,
whilst the shear moduli to its material.

kd =
πGD2

4h
(5)

• CAD design was carried out.
• FEM modal and frequency response analyses were performed to verify the proposed

solution.

It is planned to manufacture the masses in lead and the cylindrical spring in Styrene–
Butadiene Rubber (SBR) and the whole structure in steel. These materials were chosen
to guarantee higher compactness. An additional consideration on SBR is due, since the
commercial components available generally do not display indications about Young (E) nor
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shear modulus. For this reason, they were evaluated as a function of the Shore A hardness,
S, according to the Gent semi-empirical formula [37].

E =
0.0981(56 + 7.62336 S)
0.137505(254− 2.54 S)

(6)

G =
E

(1 + 2ν)
(7)

3.1. Single Spring Design

The first design was the dynamic damper depicted in Figure 15a, characterized by the
parameters listed in Table 4. As visible from the figure, the design foresees a steel support
(1) that creates an interface between the dynamic damper and the machine. The rubber
element (2) is glued to the support on the lower surface and to the mass (3) on the upper
surface. A circular groove 2 mm deep is made on both the support and the mass to allow
a proper gluing of the spring element. The additional disks (4), which can be added or
subtracted, allow the tunability of the damper. A modal analysis was run to evaluate if the
natural frequency of the equivalent simple 1-DoF model and the numerical one matched.
This point was important to verify if the spring element actually worked in shear mode
and to ensure a higher control level on the dynamic damper parameters.
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Table 4. Dynamic damper parameters, single spring, and parallel springs design.

Quantity Single Spring
Design

Parallel Springs
Design

fd,1-DoF (Hz) 20.3 20.1
fd,Num (Hz) 15.2 19.0

md (kg) 29.5 29.6
Bm (mm) 195 130
Wm (mm) - 170
Hm (mm) 93 121

kd,tot (kN/m) 478.9 472.9
Dk (mm) 115 115
Hk (mm) 32 32
Gk (MPa) 1.5 0.8

S (Shore A) 65 50

Unfortunately, this was not the case, since the results showed relevant differences
between the 1-DoF natural frequency and the numerical one, 20.3 Hz against 15.2 Hz,
respectively. This difference can be justified by the fact that the mass is characterized by a
remarkable height with respect to the spring one, thus inducing a higher center of mass and
a consequent imbalance that also produces a rotational movement of the mass, as depicted
in Figure 15b,c.
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3.2. Parallel Springs Design

An alternative design is proposed as depicted in Figure 16a. In this case, two parallel
and identical springs (2) are used to ensure the dynamic damper works in shear mode.
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Figure 16. Dynamic damper, single spring CAD design (a), and mode shapes at 19.0 Hz (b,c).

As can be appreciated from Figure 16a, the design foresees a steel support (1) on which
a groove 2 mm deep is machined to allow the proper placing of the cylindrical rubber
element (2). The same applies for the top and bottom surfaces of the central mass (3) and
the superior cover (4). The two springs are glued to the damper external structure on their
top and bottom surfaces. As in the previous design, there is the possibility to add or remove
masses (5) in order to tune the dynamic damper. As a first step of the damper design, a
modal analysis was performed to verify whether the dynamic damper oscillated at the
desired natural frequency. As shown in Figure 16b,c, the first natural frequency resulted
to be quite close to the equivalent 1-DoF one. In Table 4, dynamic damper parameters are
reported in a comparison with the first design. As can be noticed, a higher correlation
between the 1-DoF simplified model and the numerical one can be found in the present
design, because this configuration allows the spring element to actually work in shear
mode. As a consequence, a higher control on the design is exerted, the damper behaves
as expected, and possible modifications may be estimated in a more accurate way just by
relying on the simplified model.

3.2.1. TMD Tuning

In order to mimic realistic working conditions, frequency response analyses were
performed on the machine with the damper on top of it. The decision was to attach
the dynamic damper on the column top, as it is the highest oscillation amplitude point;
therefore, the dynamic damper is expected to exert the maximum beneficial effect in that
position. Furthermore, a damper tuning was realized by adding or subtracting small
masses, 1.7 kg each, with the aim of minimizing the maximum oscillation amplitude. The
analyses were still carried out according to Table 3 and referred to the same model presented
in Figure 7. In Figure 17, the Frequency Response Functions (FRFs) as a function of the
dynamic damper mass are reported for each direction. From the analysis of Figure 17, the
following observations can be drawn:

• With a mass of 34.7 kg (green thick curve), the FRF maximum along the Y direction
can be reduced by 50%, even though two peaks are present, as expected. It must also
be highlighted that in this numerical calculation the additional damping of the rubber
element was not considered; therefore, a higher reduction may be expected from a
practical point of view.

• The dynamic damper is less effective in the X axis since the maximum amplitude
reduction is 20%.
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50–50%). The different stiffness distribution was obtained by using different geometries 
for the upper and lower springs. As shown in Figure 18, no significant differences are 
present between the first two designs (case 50–50% and 70–30%) in the forced response. 
The situation is different for the third case (12.5–87.5%) for which the dynamic damper 
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3.2.2. Stiffness Distribution Analysis

As a last design step, frequency response analyses were run to understand if a different
stiffness distribution of the two springs, by keeping the equivalent one constant as well as
the mass, would have allowed a reduction of the maximum amplitude. For this reason, a
not optimally tuned damper was voluntarily used as the starting condition (case 50–50%).
The different stiffness distribution was obtained by using different geometries for the upper
and lower springs. As shown in Figure 18, no significant differences are present between
the first two designs (case 50–50% and 70–30%) in the forced response. The situation is
different for the third case (12.5–87.5%) for which the dynamic damper presents a lower
natural frequency that changes the response of the system. The reason is that the springs
do not work in shear mode.
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3.2.3. Damping Estimation

All the analyses performed so far do not take into account the internal damping effect
provided by the dynamic damper. As previously stated, it is planned to manufacture the
springs in an elastomeric material, Styrene–Butadiene Rubber (SBR) to be precise; therefore,
a viscoelastic behavior is to be expected. More generally, viscoelastic materials display both
viscous and elastic properties when undergoing deformations, thus implying a dependency
of their properties on time. When undergoing harmonic stress cycles, they exhibit a
hysteresis cycle, since the strain ε lags the stress σ by a certain angle φ. For the case being,
it is assumed the deformations are small enough to consider a linear viscoelastic response
of the material. The stress–strain relation can be then written according to Equation (8).{

σ = σ0 cos(ωt + φ) = σ0e(iωt+φ)

ε = ε0 cos(ωt) = ε0eiωt (8)
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The Young modulus E*, expressed by the ratio between the strain and the stress, is a
complex quantity, that can be written according to Equations (9) and (10).

E∗ =
σ0e(iωt+φ)

ε0eiωt = Eeiφ (9)

E∗ = E(cosφ + i sinφ) = E′ + iE′′ (10)

in which the real part E′ is defined as the storage modulus and provides the elastic behavior
of the material, whilst the imaginary part E′′ is defined as the loss modulus and provides the
damping behavior of the material. Their ratio η can be expressed according to Equation (11)
and corresponds to the loss factor of the material.

η =
E′′

E′
= artan(φ) (11)

Equivalently, the same considerations can be expressed to the stiffness of a structural
component, thus obtaining, as per Equations (12) and (13)

K∗ = K(cosφ + i sinφ) = K′ + iK′′ (12)

η =
K′′

K′
= artan(φ) (13)

From a practical point of view, in order to implement these considerations on the FE
model and perform the frequency response analysis, an equivalent viscous damping was
computed according to Equation (14).

Ceq =
ηK′

ω
(14)

where:

• Ceq is the equivalent viscous damping set in the FE model.
• η is the material loss factor.
• K′ is the spring stiffness (Table 4).
• ω is the average frequency of the frequency band in which the analyses were performed

(Table 3).

The styrene–butadiene rubber mechanical and dynamic properties are influenced by
the working temperature, as indicated in [38]; therefore, frequency response analyses were
run to evaluate:

• How much the robot response was affected by the damping effect of the elastomeric
material.

• How the robot response may vary as a function of the working temperature, con-
sidering that the loss factor shows a linear dependence on the temperature for the
considered range of 20–60 ◦C.

In Figure 19, the results of these analyses are reported, compared to the cases in which
damping is neglected (no damping) and no dynamic damper is assembled on the structure.

In an ideal case, the machine would be working at a temperature around 20 ◦C, but
due to the heat generated during the cutting process for the specific application, the external
temperature may reach values up to 40 ◦C in the cutting chamber. An additional analysis
was performed assuming the energy dissipated by the damper may induce the elastomeric
material temperature increase up to 60 ◦C. This is a strong assumption, but conservative
from the damping effect point of view, since the material loss factor is inversely proportional
to the temperature variation. It can be noticed that relevant temperature variations do not
significantly affect the response of the system, thus guaranteeing a maximum amplitude
reduction to a great extent anyway. As can be appreciated from Figure 19, the damping
estimation leads to favorable outcomes, in the sense that the maximum of the response
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results is highly reduced. In the best case scenario (T = 20 ◦C and η = 0.26), along the Y
axis, an additional reduction of 50.9% can be reached with respect to the undamped case,
thus providing an overall maximum amplitude reduction of 75.1% with respect to the case
without dynamic damper. The same considerations hold for the X direction as well, where
an overall reduction of 53.1% can be reached.
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3.2.4. Criticalities Evaluation

Once the design was assessed, possible criticalities that might be present after the
machining and assembly of the different components were investigated. In detail, the
following variations with respect to the ideal case were analyzed:

• Uncertainties of the Young and consequently of the shear moduli.
• Imperfect gluing of the components.

Starting from the optimal configuration of the dynamic damper and neglecting the
hysteretic damping effect, an uncertainty up to ±20% on the Young modulus was ana-
lyzed. In Figure 20, the values of the amplitude of the first two peaks of the FRF and the
corresponding frequencies are plotted as the elastic modulus changes in both the X and Y
directions. The following observations can be drawn:

• If the Young modulus decreases, the first peak amplitude decreases as well as its
frequency, on the contrary, the second peak increases in amplitude and decreases in
frequency along both the X and Y directions. As a result, the FRF shifts left. Overall, a
20% reduction of the Young modulus still guarantees the TMD effectiveness, but to a
reduced extent, as the FRF maximum decreases by 21% along the X axis and 4% along
the Y axis with respect to the case without dynamic damper.

• If the Young modulus increases, the first peak increases both in amplitude and fre-
quency, whilst the second peak decreases in amplitude and increases in frequency
along both the X and Y directions. A frequency increase happens in this case for the
two peaks of the FRF. A 20% increase in the Young modulus guarantees the TMD
effectiveness, but the FRF maximum decreases by 30% along the X direction and 22%
along the Y direction with respect to the case without the dynamic damper. From a
design point of view, if uncertainties on the material elastic modulus are high, it would
be then beneficial to select a stiffer material and perform the tuning of the damper by
adding more masses.

Another source of uncertainty might be the gluing of the surfaces, which may turn out
to be not perfectly uniform. This uncertainty was simulated by assuming different exten-
sions of the glued areas. The dynamic analyses were then performed for different “glued
contact surfaces”, each one characterized by a certain diameter, as shown in Figure 21.
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In Figure 22, the values of the first two peaks of the FRF and the corresponding
frequencies are plotted as the diameter of the glued surface changes in both the X and Y
directions. It can be noticed that the model shows a high sensitivity to the glue contact.
Between the complete gluing (100% of the diameter and lateral surface) and the 80% of
the diameter a remarkable decrease of the 1st peak amplitude, an increase in the 2nd peak
amplitude and frequency shift towards the right happens, consistently to what was already
observed in the Young modulus reduction. This is because when an adequate constraint
is not provided to the spring element, the rubber material is not completely involved in
supporting the mass along the shear deformation. This leads to a strong decrease in the
overall stiffness. In the limit condition (40% of the diameter), the dynamic damper has no
effect. This means that particular attention will have to be paid to the choice of glue and to
properly carry out the gluing of the components.
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4. Conclusions

For a high-precision robot involved in metal sheet cutting, it is crucial to guarantee the
required dimensional and geometrical tolerances when performing the cutting operation.
Since the above-mentioned robot is already in the development phase, the objective becomes
even more complicated when a solution must be found in order not to increase the time-
to-market or project cost of the machine. In this scenario, it is here proposed to use a
dynamic damper to shift the machine frequencies that most disturb the cutting phase and
to limit the amplitudes of vibrations. The proposed dynamic damper provides a fast and
low-cost solution because it avoids a relevant re-design of the main components, necessary
to guarantee a higher structural rigidity. It also avoids dismounting and re-assembling
operations, which require time. Four fixing holes are the requirement to allow the dynamic
damper to work as it should. Furthermore, the utilization of two cylindrically shaped
springs, working in shear mode in a parallel arrangement, determines a higher degree of
compactness and simplicity, since the stiffness is independent of the angular coordinate and
able to reduce vibration amplitudes along two orthogonal directions at the same time. On
top of that, the proposed design guarantees a certain grade of tunability before operation,
by means of small masses addition or subtraction. From a numerical standpoint, there
exists an optimal mass value, and consequent optimal frequency ratio, that leads to the
maximum response amplitude minimization, obtaining a reduction equal to 75% when
material hysteretic damping is considered as well. On the other hand, possible problems
may arise from the manufacturing point of view. As shown, a 20% negative deviation of
the Young modulus induces an oscillation amplitude decrease of just 21%, thus making it
convenient to use stiffer material, if uncertainties are high, and then tune the damper by
using a different mass. The uncertainty in the extension of the glued surfaces of the damper
components results to be the most critical aspect, leading to no damping effect in the worst-
case scenario due to an overall stiffness reduction. In conclusion, the proposed damper
design proved to be effective on a numerical basis. Manufacturing and experimental testing
on the robot prototype will be the following steps of the present research.
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