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Abstract: The adoption of Digital Twin (DT) solutions for industrial purposes is increasing among
small- and medium-sized enterprises and is already being integrated into many large-scale companies.
As there is an increasing need for faster production and shortening of the learning curve for new
emerging technologies, Virtual Reality (VR) interfaces for enterprise manufacturing DTs seem to be a
good solution. Furthermore, with the emergence of Industry 5.0 (I5.0) paradigm, human operators
will be increasingly integrated in the systems interfaces though advanced interactions, pervasive
sensors, real time tracking and data acquisition. This scenario is especially relevant in collaborative
automated systems where the introduction of immersive VR interfaces based on production cell
DTs might provide a solution for the integration of the human factors in the modern industrial
scenarios. This study presents experimental results of the comparison between users controlling
a physical industrial robot system via a traditional teach pendant and a DT leveraging a VR user
interface. The study group involves forty subjects including experts in robotics and VR as well as
non-experts. An analysis of the data gathered in both the real and the virtual use case scenario is
provided. The collected information includes time for performing a task with an industrial robot,
stress level evaluation, physical and mental effort, and the human subjects’ perceptions of the physical
and simulated robots. Additionally, operator gazes were tracked in the VR environment. In this
study, VR interfaces in the DT representation are exploited to gather user centered metrics and
validate efficiency and safety standards for modern collaborative industrial systems in I5.0. The
goal is to evaluate how the operators perceive and respond to the virtual robot and user interface
while interacting with them and detect if any degradation of user experience and task efficiency
exists compared to the real robot interfaces. Results demonstrate that the use of DT VR interfaces
is comparable to traditional tech pendants for the given task and might be a valuable substitute of
physical interfaces. Despite improving the overall task performance and considering the higher stress
levels detected while using the DT VR interface, further studies are necessary to provide a clearer
validation of both interfaces and user impact assessment methods.

Keywords: digital twin; human–robot interaction; industrial robotics; virtual reality

1. Introduction

There is a growing body of literature recognizing the importance of digital twin
(DT) in numerous research fields. An increase in the number of publications involv-
ing industrial human–robot interaction (HRI) and human–robot collaboration (HRC), in
particular, demonstrates the focus of DT research in which virtual implementations of phys-
ical robot cells enable safe and efficient tools for system evaluation, training, and offline
programming [1]. Despite the growing prevalence of DT in such applications, however,
there is relatively little known about the human factors that drive and impact DTs of
manufacturing systems [1]. Significant efforts continue to move toward human-centric
design and implementation. Villani et al. [2], for example, present an extensive overview
on HRC in industrial settings focusing on the main topics of safety, applications, and

Robotics 2022, 11, 113. https://doi.org/10.3390/robotics11050113 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11050113
https://doi.org/10.3390/robotics11050113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-8134-8636
https://orcid.org/0000-0001-9692-2058
https://orcid.org/0000-0002-8330-1989
https://orcid.org/0000-0003-2349-0340
https://doi.org/10.3390/robotics11050113
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11050113?type=check_update&version=1


Robotics 2022, 11, 113 2 of 24

intuitive human–machine interfaces (HMI). That study presents alternative solutions to
the traditional interfaces (i.e., based on keyboards and mouse, or teach pendants), namely
walk-through programming, teach-by-demonstration methods, multimodal natural user
interfaces (NUI; e.g., vision-based gesture recognition and audible speech recognition),
and augmented, virtual or tangible user interfaces (TUI). That survey further points out
the advantages of these innovative approaches in terms of reduction of time and costs
related to the robot programming task and safety assessment, while also highlighting the
importance of evaluating human factors such as stress, workload, and mental safety.

A number of practical reasons for pursuing DT solutions of manufacturing processes
exist; and the number of challenges facing such implementations are plentiful. Technology
transfer, retrofitting legacy robots, and adopting novel digital technologies in the historically
manual and analog systems leveraged by small- and medium-sized enterprises are among
the principal challenges [2]. Documenting the approaches and impacts of introducing
DT in existing workcells is, therefore, expected to be both illuminating and beneficial in
future iterations.

This study presents an application of DT in industrial robotic applications with a
specific focus on the human factors that drive utility and adoption of DT technologies.
A design of experiments is proposed to capture both quantitative and qualitative data
regarding operator use and preferences of physical and virtual interfaces. A study involv-
ing forty (N = 40) volunteers through Tallinn University of Technology is leveraged to
evaluate and verify the test methodology and initiate a validation of the specific tools. The
central hypothesis of the work is that the DT with enabled immersive technologies user
interface can be adopted as a task/safety standards validation tool for Industrial robotic
applications which involve human–robot interactions (HRI). The study aims at detecting if
any degradation of user experience and task efficiency exists when using immersive user
interfaces in comparison to real robot tech pendant. What we aim for is to introduce user
impact evaluation within the DT VR interface prior to the actual adoption of the technology
in real world use cases and at the same time find which are the most appropriate metrics to
detect the efficiency and effectiveness of the proposed tools in respect to HRC tasks.

1.1. Related Studies

Several publications illustrate both the state of practice and emerging advancements in
the field of DT augmented and virtual reality (AR/VR) interfaces for robot programming,
training, and safety assessment. Nevertheless, not many works propose a standardization
of evaluation methods for human factors and a ground base comparison of interaction
efficiency between real and virtual environments able to define a set of metrics relevant and
applicable to non use case specific scenarios. The horizon of studies, methods and tools
in this respect is wide and heterogeneous. The following subsection attempts organizing
them based on specific use cases and applications relevant for this study.

1.1.1. Input Modality Evaluation

The topic of NUI in HRI for industrial and service robots is discussed by Berg and
Lu [3]. Their review mentions control interfaces based on gesture and speech recognition
in combination with virtual and augmented reality, portable devices, or eye-tracking, high-
lighting the importance of a multimodal approach to HRC. The study by Krupke et al. [4]
presents an experimental setup comparing mixed reality (MR) robot interaction and control
based on heading position and direct selection, with speech input for task and action
commitment. A virtual robot arm is used in a pick-and-place task, and is synchronized
and superimposed over the display of a physical robot, allowing for movement preview
in MR and facilitating the robot programming task and procedure. Experimental results
confirm that heading-based selection of controls to be faster, more precise, and less de-
manding on the user. Their tests assess operator performance through commonly-used
questionnaires, namely the National Aeronautics and Space Administration’s Task Load
Index (NASA-TLX, [5]), the System Usability Scale (SUS, [6]), the AttrakDiff Usability
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Questionnaire [7], and objective metrics like completion time and accuracy. The study
by Whitney et al. [8] compares 2D and DT based immersive VR interfaces aimed at robot
control in a simple object stacking task. The evaluation of different control interfaces
includes direct manipulation, keyboard and monitor, hand position tracking with monitor
visualization, hand position tracking in combination with virtual reality. User tests, together
with NASA-TLX and SUS responses, indicate that the VR interface is more efficient, faster,
with a lower workload and higher usability than the monitor and keyboard one. Hand
position tracking is also an important key advantage in robot manipulation in combination
with both monitor based and VR visualization methods. Direct manipulation proves to be
the best type of interface for the given task overall. A VR DT interface for aircraft engines
performance control is presented by Tadeja et al. [9]. Information and nominal performance
maps are synchronized with both real and digital representations of engines, allowing for
real-time visualization and manipulation in the immersive environment. Several VR-based
interfaces and interaction methods, such as pinch based hand manipulation and gaze
tracking, are tested by a limited number of users in the performance of a specific engine
inspection and control task using the proposed application. An extensive set of metrics and
questionnaires are employed in this study to detect user health, workload and reactions
to the virtual scenario, such as sickness and flow. Among the others the author mention
the Simulation Sickness Questionnaire [10], Flow Short Scale [11], NASA-TLX and Igroup
Presence Questionnaire [12]. The study by Laaki et al. [13] makes use of a virtual reality DT
environment for the remote teleoperation of a Universal Robot UR3 robotic arm to simulate
a remote surgery scenario. The study focuses on security, reliability of the connection over
a mobile network and usability of the system. The importance of Quality of Experience
(QoE) and the assessment of human factors, such as sense of presence, visual fatigue,
cyber-sickness, and system acceptance in VR based teleoperation tasks is discussed by
Concannon et al. [14]. The study presents a framework for QoE assessment by employing
a DT simulation in VR and tries to establish the impact of network delay by using implicit
and objective metrics. User physiological data such as heart rate, electrodermal activity,
eye-tracking focus of attention and environment interaction variables are used as a base for
user experience assessment.

1.1.2. Human Robot Collaboration and Work Cell Optimization

The literature is rife with examples of evaluations to demonstrate and assess DT in
HRC applications. Matsas et al. [15] describe a VR HRC environment for the performance
of complex tasks in a collaborative industrial use case. The VR scenario is enriched by
audio-visual cues, cognitive aids, and interaction metaphors. The reported evaluation of
the system gives positive results in term of acceptance. In particular, the users appreciated
the system aids and cues, particularly when turning into potential danger and collisions
warnings and alerts. Despite proposing several user experience evaluation metrics the
study fails in providing a standardized assessment of user perception and experience in
the system by utilizing a custom made questionnaire. Similarly, Oyekan et al. [16] explore
the effectiveness of VR in developing HRC strategies. An experimental DT is employed
in the evaluation of human reaction to unexpected robot movements while carrying out
a human-fed, pick-up-and-transfer task. A variety of different metrics are considered,
including head acceleration, head and neck energy metrics, direction and angle of human
reaction and Head Injury Criteria-based force related danger of the robot movement. The
study suggests that VR DT can help determining and understanding human reactions to
robot movements facilitating the definition of HRC strategies in a safe and controlled envi-
ronment. In this study, a custom questionnaire is employed to capture the users reactions to
robot behaviours. Complimentary to this, DT is also leveraged as a tool for HRC task design
and wok cell design optimization. An architecture for DT MR environment aimed training
and based on a modular experimental collaborative robot assembly plant is described by
Sievers et al. [17]. The study by Yap et al. [18] presents a VR projection-based environ-
ment for robot control and programming. Taking into account ergonomics parameters for
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each worker, the Virtual Wall hardware architecture includes head and hand-manipulator
tracking, polarized glasses and filters, active stereo glasses with a non-polarized projection
screen. The system aims at the design and optimization of the cell layout and, in a second
phase, at the use of the validated setup in the robot programming task. Once validated
the robot paths are transferred to the real robot for testing. The study by Malik et al. [19]
describes a framework for a VR-based HRC process design. A DT of the robotic cell and
a human avatar are employed for collision analysis, reach, vision and placement tests of
the robotic cell modules and components. A virtual interface allows the user to interact
with the environment and the robot end effector. The validated robot positions are saved
for later use in the real world robotic cell and synchronized with the physical robot. The
study in Pérez et al. [20] validates the layout design of a multi-robot industrial cell in VR
making use of existing DT cell components. The experiments described in the study by
Peruzzini et al. [21], attempt a holistic description and modeling of an operator involved
in an industrial vehicle assembly task. The goal is to improve and optimize the assembly
workspace and find corrective actions for possible emerging issues. This study constitutes
an interesting example of assessment of the impact of the adopted technologies and evalu-
ation methods on the user, and the validation of the design approach for the specific use
case, being as well applicable to HRI scenarios. A large number of subjective and objective
metrics are collected and analyzed during experimental sessions in the real scenario, in
VR and in mixed reality. Bio sensors, motion capture, video recordings and eye tracking
are involved in collecting information over heart rate, breath rate, temperature, eye gaze
and pupil dilation, body position and movements. Both physiological and psychological
response are employed in the assessment of mental workload, comfort, ergonomics param-
eters, posture, visibility, and occlusion. The occupational repetitive actions (OCRA, [22])
Index and RULA score are used together with heuristic analysis in the assessment of er-
gonomics of the workstation while NASA-TLX questionnaire is employed for subjective
workload evaluation.

1.1.3. Ergonomics and Safety Evaluation

From a more safety and user-centric perspective, Harvard et al. [23] present a simu-
lation and communication architecture intended to design and evaluate assembly lines,
manufacturing processes, and workstations. The system employs a DT VR interface al-
lowing for efficient and safe configuration and validation test of the workstation setup
and ergonomics. The user based evaluation is, in this case, achieved by adopting a Per-
ception Neuron Pro sensor-embedded suit, for body posture and skeleton detection, and
leveraging the Rapid Upper Limb Assessment (RULA, [24]) ergonomics scoring tool. Like-
wise, an experimental comparison of robot collision prediction and control via direct
supervision, monitor and mouse interface and a mixed reality system is presented by
Rosen et al. in [25]. Experimental results show that the MR interface is significantly more
efficient, direct, and easier than monitor visualization and control while not being signifi-
cantly less efficient and usable than the direct supervision of the robot. The study makes
use of the NASA-TLX and SUS to determine user workload and assess system usability
for the three interaction methods. With respect to user training and safety assessment in a
HRC industrial setting, Moniri et al. [26] propose a remote collaborative setup supported
by eye-tracking and virtual reality. The system is meant for online remote tutoring, training,
and assistance. The experimental setup encompasses two synchronized workstations, a
real and a virtual one. The system can track the position of the objects involved in the
task, the robot manipulator orientation, user head position, and eye movements. Focus of
attention information for each user can be visualized by the remote assistant during the
pick-and-move task. Object collision avoidance is discussed by Wassermann et al. [27].
The monitor-based augmented reality application allows for the visualization of bounding
boxes around real objects involved in a pick-and-place task. The system can detect and
visualize the collision of the virtual robot with the bounding boxes by changing their color
in real-time. Several robot safety behaviors are tested by Vosniakos et al. [28] making
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use of the virtual environment presented by Matsas et al. [15]. The study explores the
effectiveness of HRC collision avoidance methods such as speed reduction and move back
strategy. Similarly, the work by Maragkos et al. [29] aims at developing a collision avoid-
ance system based on slow down strategy and alternative movement path on a traditional
industrial robot for safe HRC and programming. The system implements a VR DT of the
real robot where the virtual space is mapped and subdivided in 3D regions which are sub-
sequently checked for the presence of the human avatar. The experimental study presented
by Manou et al. [30] adopts a virtual reality robotic cell twin for the assessment of collision
detection and robot movement paths generated by manually operating a sensor-enabled
teaching tool in a lead-through programming method session.

1.1.4. Robot Programming

Similarly, DT is often leveraged for programming robotic tasks. A virtual environment
for training simulation and programming in proposed by Pérez et al. [31]. The operator
can interact with the robot through a virtual interface and assess the efficiency and safety
of the proposed robot trajectories. The system stores paths and trajectory information
from the virtual robot for further data analysis, training, and real robot programming.
A custom questionnaire is employed to assess users experience of the system. A mixed
reality robot programming interface making use of HoloLens is presented by Ostanin and
Klimchik [32]. A virtual robot is programmed by a set of AR interfaces, manipulators
and tools controlled by gesture inputs (tap, tap and hold). The system is tested for object
avoidance and the creation of linear, circular and rectangular task programming paths.
The AR interfaces allow the operator to modify (erase and scale) the proposed paths and
directly control the robot’s joints movements. The study in Nathaneal et al. [33], compares
performance metrics over different user groups programming a robot by means of a
traditional teach pendant, a non-immersive virtual environment and a virtual-augmented
system. The user performance evaluation focuses on timing, the number of coordinate
axis changes, and optimal piece positioning with the end effector. Several signals and
alerts are implemented in the virtual environment to facilitate the robot programming task.
Experimental results demonstrate that programming performance and time would benefit
from the augmented cues and signals implemented in the system. The study suggests
that the skills developed in the VR environment are transferred in the real case scenario
by facilitating learning of traditional interfaces and robot manipulation. A lead-through
offline programming approach based on augmented interfaces and a handheld pointer
is presented by Ong et al. [34]. The pointer is directly operated by the user to create and
modify paths related to different manufacturing tasks. Graphical cues real-time information
about manipulability and reachability for each proposed path. The application is tested
on a group of users confirming the usability of the system and a reduced amount of
programming time compared to traditional methods. User experience and system usability
are assessed based on a custom questionnaire and by comparing quantitative data collected
during different experimental sessions. A VR based system for robot programming in a
collaborative scenario is presented by Burghardt et al. [35]. Unfortunately, the study does
not provide quantitative data analysis on the comparison of traditional programming
methods and the proposed application.

Several publications propose an assessment and evaluation of the effectiveness of in-
teraction methods and hardware for DT interfaces, but only a few try to compare traditional
robot programming methods and immersive VR DT solutions. In this sense, it is important
to determine whether there is a degradation in the use of DT VR interfaces compared to
real robot teach pendants and establish if the former can be reliable and efficient substitute
for HRI. Moreover, the evaluation of human factors and the impact of the system on users’
interaction with VR interfaces are not frequent and, in most of the cited cases, use case
specific. Several aspects are determining the efficiency and effectiveness of VR interfaces
for HRC including the acceptance of the system, usability, users’ stress level, and workload.
By analyzing specific metrics in a real HRI and in a DT VR scenario, this study aims at the



Robotics 2022, 11, 113 6 of 24

comparison of performances in robot programming using traditional and VR interfaces
and the evaluation of their impact on the operator. We believe this type of assessment
should be performed prior to use case specific applications, addressing the need for metrics
and validation methods which would acknowledge the centrality of the operator in the
DT loop as part of the VR interface and at the same time address the effectiveness of a
DT system for robot control. To do so it is necessary to compare the control efficiency and
user interactions with the interface in the virtual environment compared to the physical
workspace and evaluate what is the impact of both on the operators. The hypothesis is that
the DT VR tools can be as efficient as their real counterpart with minor impact on the user
health, stress levels and performance indicators.

2. Methods

The experiments presented in this study consist of both physical and virtual tests
in identical work cells as showed in Figure 1. Both the physical and virtual robot con-
figurations were used to complete identical material handling tasks. The tasks consisted
of moving three cubes–located in different parts of the workspace to a predefined target
region. Each cube has a predefined starting position and must be picked up and moved to
the target region in a specified order. The robot is teleoperated by the human subject using
interfaces specific to the operating environment: experiments using the real robot were
performed using the teach pendant provided by the robot’s manufacturers (see Figure 1),
and experiments using the virtual robot leveraged a custom user interface displayed in the
simulated environment (see [36], and Section 2.3.1 for the description of this interface.

Figure 1. The design of experiments utilizes both physical and virtual representations of the work
cell. The physical trials (left) involve the operator using the robot’s teach pendant to manipulate the
end-of-arm tooling. The virtual trials use a VR interface (right) for commanding robot motions.

2.1. Human-Robot Interaction Metrology

Several different metrics and test methods for assessing and assuring HRI technology
performance are detailed in the literature (e.g., [37]). This broad spectrum of metrology
tools can make selecting appropriate test methods a significant challenge. Given this study’s
focus on the use of VR for HRI, a collection of metrics that capture interface utility and
operator reactions to the interface controls are warranted.

To capture the human operator’ interactions with the interface, a combination of
quantitative and qualitative metrics (both objective and subjective) are selected. The
objective measures capture the nuances of user interaction with the interface that may
not be registered or recollected by the operator in a post-test questionnaire assessment.
In contrast, the subjective measures capture the in situ effects of interface interaction and
manipulation for a specific individual at a particular time during or after the test. Given
that external and personal factors (e.g., the effects of weather, diet, and recent events
on the individual’s temperament and focus) are often influencing subjective results, it is
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generally advisable to consider them as anecdotal samples of a larger range of random
responses rather than an absolute constant. Therefore, the trends of these responses are
more indicative than the responses themselves.

The objectively quantifiable measures selected are intended to capture how the opera-
tors actually use the interface. In particular, the measures identify three important factors:
(1) how much time was required to complete the task, (2) where the operator’s focus is
predominantly drawn to throughout the task, and (3) how much time is spent focusing
on these elements. To achieve this, the following factors are captured and reported in
this report:

• the average time to complete the task working with the physical robot versus working
in the virtual environment;

• the average total duration of the experiments using the VR interface including both
the time to complete the task and the time to adjust to the virtual environment;

• the average duration using or focusing on the different virtual interface commands
(e.g., adjusting joint speeds/positions or changing operational modes);

• the average total time spent looking at the elements of the VR interface, the time spent
looking at the virtual robot, and the time spent doing something else (e.g., doing some
other task work not directly related to the robot).

Only the first of these metrics is captured for both the physical and virtual robot work
cells. No reliable and repeatable system currently exists for tracking operator attention
or gaze focus for real-world interfaces. In contrast, operator eye motions can be reliably
tracked in the virtual environment using VR headset-mounted eye trackers. As such, the
sampling of objectively quantitative measures can be built directly into the interface itself.

Two subjectively quantifiable measures were selected to capture the users’ experiences
of using the interfaces. It has been seen that exposure to and experience with robots has
an impact on the users’ responses to robots. For example, if the operator has plenty of
exposure to robots (e.g., as an influence of popular culture representations such as in
movies) but little practical experience working with them, these users may over-estimate
the robots’ intelligence and capabilities. Similarly, users who have both little exposure and
little experience with robots may express fear or excitement working with the robots. To
this end, the following metrics were captured:

• the demographics of the human operators, including age, gender, and nationality;
• the operators’ previous experience with working with both robots.

Finally, two popular, subjectively qualitative survey tools are selected to probe the
operators’ reactions and opinions of working with the robots in both the physical and
virtual work spaces. These surveys are intended to capture the operators’ perspectives on
the difficulty of using a given interface, and the operators’ perspectives on how they felt
around the robots:

• the NASA-TLX captures the operator’s mental and physical effort required to complete
a task;

• the Godspeed questionnaire [38] records the operators’ perspectives of the anthro-
pomorphism, animacy (i.e., how lifelike something appears), likeability, perceived
intelligence, and safety of the real and virtual robot systems.

It is worth noting that additional subjective software quality metrics and test methods
have been standardized in ISO 25010 (“Systems and software engineering-Systems and
software quality requirements and evaluation (SQuaRE)-System and software quality
models,” [39]). However, these test methods and metrics capture only the user’s perspective
on the quality of the software (i.e., the interface), and does not reflect the user’s experience
using the software for interacting with robots.
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2.2. Data Collection: Integrating Metrics

Each element that can be manipulated (i.e., buttons and sliders) on the VR interface
canvas is assigned a unique tracking identifier. Each UI function controlled by the operator
has an attached script that identifies with which feature the user is currently interacting,
as well as the type of ongoing interaction (e.g., button press/release). The operator’s
direction of gaze is estimated by casting a virtual line, originating from the normal surface
of the head-mounted display (HMD), extending outward to the virtual world. During the
experimental session, such setup allows to record any user’s interactions with the UI in a
timeline, which is then saved to a JavaScript Object Notation (JSON) file detailing all events
on a per-element basis.

A script simulating network instability and lag was also introduced for the virtual
robot. This script injects arbitrary disturbances into the visual representation of the DT,
with the goal of affecting the operators’ behavior. The generated experimental session file
can be later used to analyze the performance of each operator. For example, an activity
heatmap can be generated on top of the UI image to visualize the length of time spent in
each UI section, or the amount of interactions with each unique element.

Both the NASA-TLX and the Godspeed metrics are post-task surveys, so do not
provide real-time data collection. The inputs from these surveys are then assessed in an
effort to map the operators’ responses to their respective interactions with the interface.

2.3. Technical Implementation

To evaluate the differences between the experience of the operators when working with
the real robot system and its digital counterpart, an existing DT system was augmented
with tools to track behavior metrics of the users, as described in Section 2.2. Several
tracking metrics were used when collecting data during the experimental sessions. These
include timing, and the operators’ attention and stress levels. A detailed description of the
experimental configuration is described presently.

2.3.1. The Digital Twin System

The DT system used as a basis for this experiment was developed at the TalTech
Industrial Virtual and Augmented Reality Laboratory (IVAR) during the previous research
on the relevant topic (see [36,40,41]). The system was developed using the Unity game
engine, and contains a digital model of an industrial robot that can be manipulated using
the accompanying UI located in virtual environment (see Figure 2).

Figure 2. The user interface of the industrial robot cell DT. The interface is a large panel located in
front of the robot, and is manipulated using a hand-held pointing device.
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The model of the robot is retrieved from the manufacturer’s website, and went through
an optimization procedure including rigging and the creation of rotation axes, mesh simpli-
fication, and scale correction. These last steps are necessary to ensure that the imported
mesh would be identical to the objects in the real scenario. Hierarchical structures between
rig pivots (robot axes) is maintained and based on the original robot technical drawings.
Precision of joint controls in the virtual environment is identical to the real robot precision
with accuracy of 0.001 degrees, and joint limits are set to be identical to the real counterpart.
The speed of the synchronized real robot is proportional to the one set by default in the DT
VR environment. Although the physical robot has built-in collision detection (which was
triggered several times throughout the experiments), no collision avoidance scripts were
used in the DT counterpart.

The DT can be operated in “coupled” and “virtual” modes. In the coupled mode, all
commands are duplicated and sent to the physical robot over the local network, effectively
keeping the virtual robot synchronized with its real-world counterpart. In the virtual mode,
the network link between the DT and the real robot is disconnected. All actions happen
inside the simulation only. Apart from these connection modes, the UI provides two control
mechanisms for commanding robot motions. The user can either directly tele-operate
the robot arm by adjusting individual joint positions, or create a multi-step, joint-space
program to be stored and executed later.

For this experiment, the virtual mode with direct control was chosen for two reasons.
First, the DT operated in virtual mode is not bound to the physical speed and safety
limits set in the real robot system, which allows an unbiased assessment of the possible
performance benefit of DT solutions. Second, controlling the virtual robot directly is
similar to controlling the real robot with its included teach pendant, and does not introduce
additional complexity in the form of creating and executing program. This was particularly
important, as the collection of human operators participating in the experiment represented
a wide spectrum of prior experiences and expertise with robot systems. Using direct control
eliminates unnecessary complexity when preparing for the experimental session.

2.3.2. Attention Tracking System

An attention tracking system was developed to record the behavior of the human
subjects during the experiment. This system allows “tagged” objects in the virtual envi-
ronment as attention targets, and produces reports on how long the user’s attention was
directed to the specific object and at what specific moments in time. The system’s principal
architecture diagram is shown in Figure 3.

Figure 3. Architecture of the attention tracking system.

The attention tracking system consists of several components, each of which corre-
sponds to a single script written in C#. The purposes of these components are as follows:

• AttentionTarget—a script which marks an object as a target for the attention tracking
system. It is a Unity Component script, which means it can be attached to any 3D
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object in the virtual environment. AttentionTarget must have a trigger volume attached
to it to be detected by AttentionSources.

• AttentionSource—a script which is responsible for detecting AttentionTargets. Attention-
Source uses raycasting to detect trigger volumes with associated AttentionTargets in
the virtual environment. If the “line of sight”–originating from the normal surface of
the HMD–check encounters an AttentionTarget, a new attention event is triggered for
that object. Once this object is no longer along the line of sight for some n number
of computational cycles, the attention tracking event is considered finished and its
duration and timestamps (in milliseconds) for the beginning and end of the event are
written into the session file for the AttentionTracker.The precision of events duration
is equal to the simulation’s clock cyclek length. Here, the environment used in the
experiment is executed at 120 Hz, which yields a maximum precision of 8.3 ms. At-
tentionSource is thus leverages head tracking as an approximation of eye tracking and
attention monitoring.

• AttentionTracker—a core script which provides methods to start and stop the recording
of the attention tracking session, register attention events, and export recorded data in
JSON format for later retrieval and analysis.

The DT interface is segmented into three primary zones (see Figure 4), two of which
are used for controlling the robot’s actions. The interface’s header draws the operator’s
attention to the robot being controlled using the DT interface. The general controls section
is used to adjust system settings, including robot speeds, activating/deactivating the robot,
and actuating the gripper. The joint controls section is used to adjust the orientations of the
individual robot joints, starting at the tool flange (Joint 6) and moving down the kinematic
chain to the base (Joint 1).

Figure 4. The three primary zones of the DT UI are the header (top), the general controls (left), and
the joint controls (right).

For this experiment, a Vive Pro Eye VR headset with the Vive SRanipal software
development kit was used to access eye tracking data in Unity engine. Eye tracking data
is usually provided as a direction of the user’s gaze, expressed in quaternions. A custom
C# script was used to apply gaze direction data to objects with AttentionSource scripts
attached. As a result, the operator’s gaze could be used directly to register attention events.
This approach is not limited to a specific HMD model, and can be replicated using other
eye tracking systems. Eye tracking is used as a measurable proxy of operator attention
within the virtual environment. When using the virtual interface, eye tracking can also
be leveraged as an objective measure for estimating ease-of-use of the interface (e.g., how
much time is spent scanning the interface for the appropriate functions for commanding
robot motions), optimizing cues for attracting operator attention (e.g., are there any visual
elements that distract the operator from their work?), and can benefit future iterations of
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the interface design (e.g., by clustering common functions as determined by frequency
analysis, or by pattern identification of common gaze shifts).

2.3.3. Stress Level Approximation

To assess stress levels of human operators in both the real and virtual environments,
the operators’ heart rates were sampled during the experimental sessions using a heart
rate monitor. The data was recorded for each person and then analyzed according to the
flow of the experiment, identifying the operator’s reaction to different experiment stages
(introduction, explaining controls, and executing the task). All heart rate readings were
supplied with timestamps to help categorize the data. These values can thus be compared
with the resulting NASA-TLX results to provide quantitative estimates of physical and
mental loads.

3. Experimental Protocol

As described in Section 2, an industrial robot motion control routine was chosen as
a candidate use case for assessing the human operators’ interactions with both the robot
handheld joystick and the DT VR interface. All trials are based on a simple material
handling task in which the human operators remotely control a robot to pick and place a
sequence of blocks within the robot’s work volume. Both the physical and virtual interfaces
have similar capabilities in that they allow the operator to move the robot’s joints, and
actuate the gripper to pick up or release the blocks.

3.1. Robot Control Task

Identical tasks are used in both experimental conditions: users must control the robot
to move objects, in order, from their initial positions to a target region. An operator is
asked to sort the three objects by using an interface to control the robot to move to the
objects, pick up the objects, and re-position the objects to a target location on the table
in front of the robot (see Figure 5). Wooden cubes with different sizes were chosen as
representative objects for the task. The blocks are both color-coded and labeled such that
the order of the blocks is known. The operators were given minimal training on using the
physical and virtual interfaces such that they could become acquainted with the controls,
but not necessarily adept at using them. Following this initial training, the operators were
then instructed to perform the material handling task using the interfaces specified for the
operating environment. During the trials, the operators were not permitted to approach the
robot. Each operator was instructed to complete the task using the physical robot, and then
complete the task again using the virtual robot. After each task completion, the operator
would complete the NASA-TLX and the Godspeed questionnaires. The three cubes started
in the same initial poses for all trials.

Figure 5. Configuration of the the block manipulation task experiment.



Robotics 2022, 11, 113 12 of 24

For each block, the task consists of moving the robot’s gripper such that it could grasp
the block. This often necessitated some trial-and-error, which could increase the completion
time, but was also expected to result in net performance improvements as a function of time.
Precision was necessary for grasping and lifting the blocks, but placement of the blocks
did not require as much accuracy or repeatability. All robot motions after acquiring the
blocks were performed in free space without obstacles, allowing the researchers to capture
best-case timing such that only the operator’s ability to use the interfaces impacts the task
performance. During the trials, the operator’s actions and performance were recorded to
assess task performance and interface utility.

3.2. Participants

A total of forty-seven subjects volunteered for the trials, but seven volunteers did
not complete the trials and are therefore excluded from reporting (therefore serial number
of subjects throughout the paper is not continuous). The remaining volunteers (N = 40)
were then divided into two equal groups, which differed in terms of the order in which
the subjects used the different interfaces. One group evaluated the physical teach pendant
interface before the DT interface, while the other evaluated the DT interface first.

For the first volunteer group (Group A, physical interface first, NA = 20), sixteen (16)
participants identified as male, and four (4) identified as female. The sample included
backgrounds from engineering, business administration, and environmental engineering
bachelor and master students; engineering disciplines lecturers and researchers. The
number of selected subjects was limited due to the COVID-19 quarantine period and
consequent restrictions in human gatherings. The age of subjects ranged between 20 and 53
with an average age of 29.4 years. The subjects’ countries of origin were divided as follows:
seven (7) from Estonia, five (5) from Ukraine, two (2) from Iran, two (2) from Turkey, one (1)
from Bhutan, one (1) from Georgia, one (1) from Nigeria, and one (1) from Pakistan. Users
were asked to evaluate their skills in robot programming on a scale from 1 to 10 (1 being no
experience, and 10 being an expert in robotics). The average response for this group was
3.9, showing low self-assessment grade in the field of related research.

For the second volunteer group (Group B, DT interface first, NB = 20), seventeen
(17) identified as male, and three (3) identified as female, and had an average age of
29.9 years old (with a range from 22 to 53 years old). Volunteers had different backgrounds
being mainly students and researchers from different departments of Tallinn University of
Technology, and one professor. The sample included eight (8) people of Estonian nationality,
six (6) from Italy, one (1) from India, one (1) from Slovakia, one (1) from Turkey, one (1)
from Japan, one (1) from Ukraine, and one (1) from Ecuador. The average self assessment
value of expertise in robot programming scored, this time, a value of 4.2, which represents,
again, quite a low expertise estimation.

Volunteers were instructed to complete the robotic object handling task over three
trials for both interfaces, resulting in six trials in total per person.

4. Results
4.1. Task Timing

Table 1 shows a comparison of average completion times for both the physical and
virtual interfaces for volunteers in Group A. By contrasting the average time spent by
volunteers in the real-world trials versus the DT interface, it is seen that the use of the phys-
ical teach pendant generally resulted in significantly longer times to complete the robotic
material handling task. This trend is observed for the manipulation of all three cubes.
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Table 1. Average task completion time, in seconds, for Group A (physical interface first).

Cube Re-Positioning Task Average Physical Machine Duration Average VR Process Duration

Cube #1 225 144

Cube #2 210 115

Cube #3 184 105

Table 2 shows a comparison of average completion times for volunteers in Group B. It
is seen that the resulting trends in average completion times are comparable with those
in group B, with times to perform the task using the virtual interface being less than the
times using the physical interface. It is also observed that Group B demonstrated better
task execution performance overall. This latter observation could imply that VR-based
experiment introduction and testing is more beneficial from the perspective of preparing
the users to work real machinery. However, it may also be a result of the slightly higher
average self-reporting robot expertise score than Group A.

Table 2. Average task completion time, in seconds, for Group B (Virtual interface first).

Cube Re-Positioning Task Average VR Process Duration Average Physical Machine Duration

Cube #1 114 178

Cube #2 92 130

Cube #3 61 159

To test this, two consecutive trials of volunteers performing the object handling task
using the VR interface are evaluated for a subset of the volunteers. The volunteers are
identified by their self-reported expertise in robotics. As seen in Table 3, which shows
the task completion time using the VR interface for two consecutive trials, there does not
appear to be a strong correlation between self-reported expertise in robotics and initial
task performance. For example, one volunteer who self-reported their expertise level as “2”
performed consistently better than a volunteer with a self-reported expertise of “9.” Some
other factor (possibly experience with other machinery, video games, or similar systems)
must be contributing to this discrepancy. Furthermore, the field of robotics-aerial, ground,
industrial etc, were not asked as well as expertise with Virtual Reality applications, which
could lead to faster learning curve towards the immersive experience of the experiment.
Such information, however, was not captured in the initial surveys, and will be a subject of
future study.

Table 3. Sub-task completion times (in seconds) of subjects with different self-reported experience in
robotics using the VR interface.

Trial 1

Expertise in robotics (1–10) 2 9 1 2

1 cube end 360 120 180 120

2 cube end 240 120 120 90

3 cube end 60 180 120 90

Trial 2

1 cube end 300 120 60 60

2 cube end 240 60 60 45

3 cube end 60 45 60 45
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Regardless, it is evident that, as the volunteers use the interface more, the times to
complete the task are, generally speaking, monotonically decreasing. Similar trend lines
are also seen while using the physical interface, as shown in Figure 6, it is also decreasing
with the same average tempo. As is seen on the figure, on average the virtual trials took
less time to complete than the physical trials. This may be attributed to some experience
gained during the physical trials being applied to the virtual interface and person mental
readiness for the future step. Moreover, virtual environment might seems more simple
for the users due to it is similarity to the computer game rather to standing next to the
physical machinery.

Figure 6. Average positioning time comparison per cube for both physical and virtual interfaces.

4.2. Subjective Survey Responses

Following the trials, volunteers were asked to complete the Godspeed Survey, which
captures individual perceptions and reactions to robots after interacting with them, and the
NASA-TLX, which is used to measure the physical and mental effort required to complete
the task.

The averaged results from Group A’s Godspeed surveys are given in Table 4. These
results reveal no significant differences between the physical and virtual systems in terms
of operator responses. Controlling the physical robot resulted in higher average results in
terms of evaluating anthropomorphism, while the virtual environment was considered
more interactive than the real setup. Likewise, the scores for perceived intelligencewere
higher for the VR environment. Although the virtual environment was perceived as
creating more anxiety than the real robot cell, the volunteers’ perception of safety of the
two systems shows no significant differences between the two scenarios. To test for any
potential impact on the order of exposure (real versus virtual), the Godspeed survey for
Group A was compared with that of Group B. Results for Group B, shown in Table 5, show
that while the values are slightly different between the two groups, the overall trends do
not differ significantly. This implies that the order of interface experiments (physical or
virtual) does not affect overall perception of the robot systems.
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Table 4. Godspeed survey results comparison, real versus virtual robots, for Group A.

Anthropomorphism-Scale 1–5 Physical Virtual

Fake-Natural 4 2.65

Machine-like-Human-like 2.6 2.5

Unconscious-Conscious 2.45 2.3

Artificial-Lifelike 2.55 2.15

Moving Rigidly-Moving Elegantly 3.25 2.75

Animacy-Scale 1–5 Physical Virtual

Dead-Alive 2.5 2.4

Stagnant-Lively 2.85 2.85

Mechanical-Organic 2.3 2.25

Artificial-Lifelike 2.3 1.9

Inert-Interactive 2.75 3.35

Apathetic-Responsive 3.4 3.45

Likeability-Scale 1–5 Physical Virtual

Dislike-Like 4 3,.5

Unfriendly-Friendly 3.55 3.3

Unkind-Kind 3.4 3.35

Unpleasant-Pleasant 3.6 3.55

Awful-Nice 3.9 3.55

Perceived Intelligence-Scale 1–5 Physical Virtual

Incompetent-Competent 3.2 3.3

Ignorant-Knowledgeable 2.95 3.45

Irresponsible-Responsible 3.45 3.5

Unintelligent-Intelligent 2.9 3.2

Foolish-Sensible 3.1 3.25

Perceived Safety-Scale 1–5 Physical Virtual

Anxious-Relaxed 4.1 3.55

Agitated-Calm 3.85 3.9

Quiescent-Surprised 2.95 3.05

To contrast the results of the Godspeed questionnaire, Group A’s NASA-TLX survey
results, averaged and shown in Table 6, demonstrate that the use of the VR programming
environment was considered more mentally demanding, and created a higher level of
frustration and required more effort than the real environment. Performance evaluation of
the physical trials was also slightly higher than the virtual trials. Group B’s NASA-TLX
results, Table 7, demonstrates a reversal in the perception of effort, with the physical system
largely demanding more effort and resulting in higher frustration than the virtual system.
This demonstrates a correlation between the order of trial evaluations and the perception of
effort. Namely, that the interface the participants experienced first tended to be perceived
as demanding less effort, but ultimately performed worse, than the second interface. This
could infer a potential resistance to change, particularly when introducing new technologies
in established processes. Additional experiments will be necessary to confirm this.
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Table 5. Godspeed survey results comparison, real versus virtual robots, for Group B.

Anthropomorphism-Scale 1–5 Virtual Physical

Fake-Natural 3.55 3.45

Machine-like-Human-like 1.95 1.9

Unconscious-Conscious 2.35 2.3

Artificial-Lifelike 2.45 2.2

Moving Rigidly-Moving Elegantly 3.05 3.45

Animacy-Scale 1–5 Virtual Physical

Dead-Alive 2.9 2.45

Stagnant-Lively 3.2 3

Mechanical-Organic 2.25 1.85

Artificial-Lifelike 2.4 2.05

Inert-Interactive 4.1 3.35

Apathetic-Responsive 4.25 3.7

Likeability-Scale 1–5 Virtual Physical

Dislike-Like 4.45 3.8

Unfriendly-Friendly 3.95 3.1

Unkind-Kind 3.7 3.1

Unpleasant-Pleasant 3.95 3.35

Awful-Nice 4.3 3.65

Perceived Intelligence-Scale 1–5 Virtual Physical

Incompetent-Competent 3.65 3.2

Ignorant-Knowledgeable 3.45 3.05

Irresponsible-Responsible 3.3 3.15

Unintelligent-Intelligent 3.2 2.8

Foolish-Sensible 3.35 3.15

Perceived Safety-Scale 1–5 Virtual Physical

Anxious-Relaxed 3.7 2.6

Agitated-Calm 3.8 2.95

Quiescent-Surprised 3.7 3

Table 6. Comparison of the average results from the post-task NASA-TLX surveys for Group A.
Participant responses are given on a Likert scale of 0 to 10, representing the ranges shown in the
left column.

Criteria Scale Physical Virtual

Mental Demand Low-High 4.55 5.5

Physical Demand Low-High 2.925 2.575

Temporal Demand Low-High 4.35 3.75

Performance Good-Poor 3.125 3.5

Effort Low-High 3.425 4.325

Frustration Low-High 3.175 4.125
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Table 7. Comparison of the average results from the post-task NASA-TLX surveys for Group B.
Operator responses are given on a Likert scale of 0 to 10, representing the ranges shown in the
left column.

Criteria Scale Virtual Physical

Mental Demand Low-High 4.35 6

Physical Demand Low-High 2.25 4.65

Temporal Demand Low-High 4.07 5.55

Performance Good-Poor 3.85 4.55

Effort Low-High 4.07 6.25

Frustration Low-High 2.1 4.75

4.3. Eye Tracking

By comparing eye-tracking data collected during VR robot programming tests (Figure 7
and Table 8 for Group A, and in Figure 8 and Table 9 for Group B), it is clear that time spent
looking at the UI controls is considerably higher (more than double) than time spent in
looking at the virtual robot. For Group A, the regions containing the general controls, joint
controls, and header are among the virtual UI targets with highest focus times. For Group
B, the attention tracking system gave slightly different results. Figure 8 shows how the joint
control section is still the area that was visualized for the longest time. In this case, though,
timing relative to the general control section and header are much lower. In contrast, time
spent looking at the physical industrial robot joint 6 is much higher than in the previous
experiment.

Higher times for looking at robot joint 6 are quite understandable, as this joint is
relative to the robot gripper and consequently the object to be picked and replaced. In
contrast, there is no clear correlation between expertise with robots and time spent in
looking at the controls or the robot in the DT. Given the comparatively short duration of
the trials, drawing conclusions from the operator’s extended use of different interfaces and
the focus of their gaze is inconclusive. Future works could include the evaluation of user
expertise with immersive VR technologies over longer periods of time.

While the raw numbers are interesting and telling in and of themselves from an
individual participant’s perspective, they do not succinctly capture the general performance
of the operators during the experiment. By re-evaluating each time factor as a percentage
of the total time spent using the interface, the data becomes normalized. When plotted as is
shown in Figures 9 and 10 it becomes clear where the operators’ attention was generally
focused. Per Figure 9, a disproportionate amount of the operators’ time was spent looking
at the UI header, followed closely by the joint control panel. However, it is unlikely the
operators’ attention was focused this much on the header. As such, it can be surmised
that the implementation of the eye tracker was somewhat flawed, with the most likely
source of error being the assumption the operator’s focus is determined exclusively by the
positioning of their head. The more plausible hypothesis is that the operators’ faces were
pointed at the header (which is situated between the robot and the interface), and their
eyes would move up or down to adjust focus on the joint controls and the robot.

A more precise implementation of eye/focus tracking would be to correlate the head
position with the motions and interface usage of the pointing devices. For example, an
extended period of time spent looking at the header while the pointing device is interacting
with a button on the joint control panel can indicate focus on either the joint control panel,
or on the robot’s joint(s) being manipulated. If there is an extended period of activity
(e.g., moving the pointing device or rapidly pressing the action button), one might assume
the focus was on the joint control panel. Otherwise the virtual joint is the more likely
target of attention.
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Table 8. Eye tracking analysis of subjects use times (in seconds) for Group A, as reported as the digital
twin UI, the virtual robot, and the operator’s digitized body parts (Self; here, it is the operator’s
hand). The UI is segmented into the general controls, header (H), and joint controls (JC). The general
controls are further segmented into emergency stop (ES), mode selection (MS), and speed selection
(SS). The Robot is segmented per major component, specifically the base, joints 1–6 (J1–J6).

Target

User Interface Robot Self

General Controls

Sub. # ES MS SS H JC Base J1 J2 J3 J4 J5 J6 Hand

nr.3 38.49 15.28 13.49 5.77 21.57 117.46 15.77 13.72 25.98 5.48 50.79 60.5 99.12 0.13

nr.5 244.86 7.7 201.4 44.38 12.52 534.92 0.66 0.14 0.1 0 0 0 0 0

nr.6 22.72 2.15 13.62 7.56 112.42 28.82 39.08 53.49 50.04 2.38 6.46 2.39 4.24 0

nr.7 0.96 0 0.7 0 9.06 0.26 15.2 13.2 6.39 1.27 1.87 0.32 2.57 0

nr.8 16.19 0 6.61 0 51.49 1.8 5.34 2.08 2.04 0 0 0 6.25 0

nr.9 38.9 0 19.8 1.72 114 62.9 0.79 0.21 1.37 0.73 0.47 0.13 2.58 0

nr.10 29.5 0 22.97 5.11 208.51 41.03 112 160.19 194.15 39.03 71.7 26.82 29.46 3.84

nr.11 60.7 13.6 14 6.9 21.1 281 13.4 24.2 77.9 26 161 110 86.3 1.51

nr.15 34.94 0.48 27.36 7.89 71.44 90.32 2.37 2.23 4.1 0 0 0 0 1.84

nr.16 131 16.1 71.6 31.7 120 173 13.9 4.01 2.69 0.04 0.1 0.37 8.5 0.12

nr.17 22.02 0 13.88 0 177.68 22.6 2.36 0.69 3.83 1.26 1.79 1.29 2.6 0

nr.19 16.9 3.14 8.76 6.17 52.8 31.5 57.5 52.4 51.7 0 0.48 0.71 2.58 0.17

nr.20 15.72 0 13.35 2.07 51.94 26.27 4.72 7.17 14.05 3.56 16.57 7.74 8.08 0

nr.21 55.1 9.35 34.5 16.3 17.9 115 0.18 0.15 0.12 0 0 0 0 1.86

nr.22 1.92 0 0.11 0 9.16 0 0.92 9.57 34.42 31.08 11.64 2.6 2.57 0

nr.23 44.78 6.86 29.87 8.76 2.14 141.4 0.35 0.02 0 0 0 0 0 0

nr.24 35.12 0 12.34 1.27 199.63 26.83 21.24 4.36 4.24 0.06 0.64 0.36 1.1 0

nr.25 58.4 3.91 40.74 3.1 79.99 43.5 23.65 55.07 127.48 46.86 99.97 40.28 66.29 6.25

nr.26 26.73 9.09 12.81 9.97 49.97 60.19 4.11 0.96 0.73 0 0 0 1.48 0

nr.27 130.74 8.55 119.3 54.72 6.71 79 1.02 1.1 1.1 0 0 0 0 0

Figure 7. Total seconds spent viewing targets in VR for Group A
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Table 9. Eye tracking analysis of subjects use times (in seconds) for Group B, as reported as the digital
twin UI, the virtual robot, and the operator’s digitized body parts (Self; here, it is the operator’s
hand). The UI is segmented into the general controls, header (H), and joint controls (JC). The general
controls are further segmented into emergency stop (ES), mode selection (MS), and speed selection
(SS). The Robot is segmented per major component, specifically the base, joints 1–6 (J1–J6).

Target

User Interface Robot Self

General Controls

Sub. # ES MS SS H JC Base J1 J2 J3 J4 J5 J6 Hand

nr.1 21.86 0 7.48 3.17 5.44 69.44 4.23 4.11 8.86 4.21 15.81 17.28 64.82 0

nr.2 10.07 0 3.07 3.38 2.76 23.18 2.47 1.41 3.64 1.38 2.10 1.65 10.89 0

nr.3 70.08 0 26.25 18.41 60.93 433.33 33.55 38.96 47.88 3.01 18.74 25.02 174.91 23.68

nr.4 24.11 0 10.89 4.17 19.75 107.11 16.42 14.14 21.51 6.09 16.59 23.07 88.35 1.31

nr.5 17.85 0 6.03 3.07 22.16 57.04 13.07 3.70 6.32 0.46 2.30 2.18 15.20 0

nr.6 18.52 0 7.37 4.04 10.88 41.03 5.67 4.60 5.78 1.16 2.37 4.27 45.73 0

nr.7 16.29 0 12.78 0 9.14 49.26 4.40 4.47 7.05 1.35 9.03 13.36 49.17 1.11

nr.8 27.41 0 10.54 7.31 47.44 80.44 11.94 3.17 4.86 1.36 10.01 10.22 68.31 1.76

nr.9 29.25 0 12.16 8.16 12.75 153.43 8.76 16.61 28.51 7.67 39.47 47.69 112.09 0.02

nr.10 14.11 0 4.03 2.96 6.87 67.36 9.08 3.21 4.93 2.07 6.31 10.57 44.03 0.78

nr.11 10.36 0 2.79 1.71 7.27 40.57 5.15 3.5 4.19 0.70 2.82 5.28 28.54 0.01

nr.12 39.16 0 6.71 7.47 35.49 248.73 33.66 25.26 30.94 6.76 30.49 35.78 137.63 5.26

nr.13 14.26 0 2.86 2.87 6.39 64.82 3.52 4.53 12.10 6.13 9.44 11.95 59.93 1.53

nr.14 25.47 0 10.30 11.72 34.35 119.12 9.71 7.50 15.20 5.22 10.2 9.74 89.67 0.05

nr.15 30.68 0 10.94 7.79 14.22 93.00 16.63 12.01 14.72 1.98 8.64 10.25 77.72 2.15

nr.16 23.94 0 6.15 4.36 19.10 125.42 12.28 5.45 10.47 5.67 11.47 15.47 91.14 0.41

nr.17 9.99 0 3.34 0.82 5.56 30.95 1.17 0.49 3.79 1.56 5.71 7.17 24.62 0

nr.18 34.53 0 14.36 8.56 25.70 228.72 19.79 14.24 24.97 3.05 14.85 16.61 140.37 1.43

nr.19 18.33 0 5.73 3.30 10.94 82.12 5.98 5.17 10.75 3.85 7.69 8.1 72.66 2.21

nr.20 27.81 0 12.15 12.09 16.92 130.90 7.51 10.88 34.94 14.98 41.29 22.25 34.12 0.21

Figure 8. Total seconds spent viewing targets in VR for Group B.
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Figure 9. Average operator use of the interface, plotting the mean, median, maximum, and minimum
amounts of time spent focusing on different parts of the UI for Group A. The error bars represent a
single standard deviation from the mean. The labels on the horizontal axis are those introduced in
Table 8.

Figure 10. Average operator use of the interface, plotting the mean, median, maximum, and minimum
amounts of time spent focusing on different parts of the UI for Group B. The error bars represent a
single standard deviation from the mean. The labels on the horizontal axis are those introduced in
Table 8.

4.4. Physiological Stress Monitoring

Heart rate data was collected during both physical and virtual trials to assess physi-
ological stress during the test. However, while the results for Group A (Table 10) shows
a slight elevation of heart rate during physical trials, this difference is within a single
standard deviation as is therefore not significant. For Group B (Table 11) results appear
to be even less divergent with nearly identical average heart rate for the physical and
virtual robot programming sessions. Due to the relatively low sample size, even with the
slightly higher reported range for Group A, the discrepancy is likely the result of a single
outlier participant, as the average is within a single standard deviation for both groups.
Moreover, the source of the slower heart rate during the virtual trials could not be isolated,
as it was not clear if it stemmed from operator comfort during the test, or merely the order
of experimentation. This highlights yet another factor that needs addressing in future
experiments. Likewise, contrasting these results with the subjective reporting in Section 4.2,
there is no clear correlation between heart rate and the perception of effort.
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Table 10. Heart rate values during physical and virtual robot programming for Group A.

Process Maximum (BPM) Minimum (BPM) Average (BPM) SD

Physical robot programming 117 75 90.05 11.99

Virtual robot programming 105 76 85.05 7.53

Table 11. Heart rate values during physical and virtual robot programming for Group B.

Process Maximum (BPM) Minimum (BPM) Average (BPM) SD

Physical robot programming 99 83 90.55 4.27

Virtual robot programming 100 79 90.1 6.66

5. Discussion
5.1. Advantages and Limitations of the DT System

Results highlighted in Section 4 imply that interacting and controlling a real robot
with a traditional tech pendant is largely comparable to VR DT interface control. The VR
interface shows better performance overall in terms of time spent in placing the objects
with a relevant lower average time after user acquaintance with the virtual environment.
Nevertheless, the VR scenario creates more anxiety, and is more demanding on the operator
both mentally and physically while not considerably effecting the physiological stress level.
The DT system shows promising results in terms of acceptability by the user and overall
task execution performance supporting the belief that VR can be a valuable alternative to
traditional robot programming interfaces.

Eye-tracking results show that user attention is more frequently directed to the main
robot VR UI while not so often to the robot twin. This could probably be due to the
perceived safety of the environment. With no real robot moving and being a possible
source of danger, the operator might have been able to focus on the interface more without
checking the robot position. This hypothesis needs to be confirmed as the precision of
the attention system could be also a cause for the collected data set. Attention tracking
results could also be influenced by the type of interface interaction in VR. The virtual UI
needs to be constantly looked at to be able to use VR pointer selection and interaction as
shown in Figure 2. A comparison between eye-tracking attention values in physical and DT
trials could clarify the causes of this type of behavior in the VR DT scenario. Furthermore,
the current DT control panel does not provide an option to use Inverse Kinematics (IK)
when setting the robot positions. Using IK in real-time could speed up the process of
working with the digitized robot and bring it on the same feature level as the real machine.
Another limitation of the study is the evaluation of familiarity with HMDs, navigation,
and interaction in virtual reality. Considering the positive results of task performance in
users that took the test in VR twice, it would be informative to understand if improvements
were produced by familiarity with the UI, or with the VR interaction and navigation
system in general.

5.2. Potential Future Developments (Based on the Findings)

Throughout the analysis of the results, many new questions arose as anomalies and
inconsistencies manifested. Moreover, the stated hypothesis in Section 1 could not be fully
accepted and rejected and more additional studies should be performed for confirmation of
it. Potential future developments of this work can possibly include running the experiment
with DT in coupled mode. This could help to determine if the virtual UI allows for better
performance than the teach pendant. This could support the design, implementation, and
evaluation of different virtual user interfaces for the same robot but customized to different
use cases and manufacturing tasks. Furthermore, an advanced programming VR UI for
expert users could facilitate the comparison between the two interfaces among proficient
users. As mentioned previously, the user’s level of acquaintance with VR interfaces could
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be considered in advance. Results show that performance time values were considerably
lower after a first try of the system. Including eye-tracking in the real robot control scenario
and compare results with the collected data from the VR interface would allow for further
attention analysis between the teach pendant and virtual UI. Integrating and improving the
proposed assessment methodology with virtual reality tools and hardware would allow for
the implementation of a fast assessment tool for DT VR interfaces.

Given the results of the eye tracker implementation, it is clear the tracking solution does
provide useful information in terms of accuracy, but has insufficient precision. Future efforts
will attempt to eliminate the limitations of the current eye tracking approach. The proposed
approach as described in Section 4.3 is planned for future implementations. Similarly, as
discussed in Section 4.4, heart-rate as a surrogate for stress is currently inconclusive when
contrasted with the NASA-TLX survey results. Future efforts can attempt to factor out
possible sources of bias including variations in order of operations, proximity to the robot,
and tasks.

6. Conclusions

Results gathered during the experiments are pretty promising in blurring the line
between the virtual and physical experience of human operators when interacting with
industrial robots. The collected data shows no relevant difference in operator journey
between the two experimental setups. Moreover, there was no significant difference
between group A and group B, which can state that the counterbalance reached its purpose
in making the experimental flow more general, and the order of experimental flow did
not affect the main flow-only the time of performance with group B on the physical robot
was slightly different. The proposed system should be developed further, made more
interactive, adapted and integrated to more use-case scenarios. Future work will try to
improve the eye-tracking system setup and evaluation for a more efficient assessment of
the focus of attention. Nonetheless, it can be stated that the aim of this paper was fulfilled,
and research is ready to be continued in preparation for the verification and validation of
standardized test methods for DT in HRI.
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