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Abstract: In this paper, we suggest an implementation of non-commutative logic and apply its
operators for decision-making in a group of autonomous agents. The suggested operators extend the
uninorm and absorbing norm aggregators and use an additional asymmetry parameter that defines
the “level of non-commutativity”. The value of this parameter is specified using the perception bias
of humans measured in the experiments. The suggested operators and decision-making method are
illustrated by the simulated behavior of mobile robots in the group, which verified the possibility of
processing systematic sensing errors, as well as of distinguishing and mimicking the biased decisions.

Keywords: mobile robots; swarm dynamics; multivalued logic; non-commutative algebra;
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1. Introduction

Based on “An Investigation of the Laws of Thought” by Bool [1], data analysis and
decision-making are considered using the methods of formal logic and probability theory
involving rational principles of judgement and reasoning. Logic formalizes the rules for
deriving truthiness from the statements, and the probability theory provides rigorous
methods for addressing uncertainty in the knowledge about the statements and events.

The combination of the concepts of uncertainty and truthiness gave a rise to the
development of multivalued logic; the first version of such logic—the three-valued logic—
was suggested by Łukasiewicz [2]. Later, Łukasiewicz and Tarski [3] extended this logic to
the ℵ0-valued logic.

A further development of the multivalued logic resulted in probabilistic logic [4]
and fuzzy logic [5]. After formulation of the uninorm [6] and absorbing norm [7], fuzzy
logic forms a basis for the development of non-Bayesian decision-making and of non-
probabilistic methods of addressing uncertainty [8].

In parallel to the development of multivalued logics, Lambek [9] initiated the stud-
ies of non-commutative logics. At the beginning, these logics were developed for the
representation of the syntactical and grammatical structures of natural languages [10,11],
and then were adopted for modeling preference relations in the decision-making pro-
cesses. Theoretical studies in these directions resulted in the invention of multivalued
non-commutative operators [12] and multivalued non-commutative logics algebras [13]
that allow for a direct consideration of the situations where truthiness depends on the order
of the statements. In the context of decision-making by humans and by artificial agents,
the multivalued non-commutative logic is considered as a possible tool for modeling the
“irrational decisions” [14,15] and of the decisions with preferences; for the problems and
the state-of-the-art in the field of decision-making with preferences, see, e.g., [16,17].

The attempts to use the multivalued non-commutative logics in decision-making gave
rise to two main problems: how to implement the non-commutative logical operators, and
how to define the correct “level of non-commutativity” of these operators.
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In this paper, we suggest the implementation of non-commutative logical operators
based on the extension of the uninorm and absorbing norm [18]. In addition to the neutral
and absorbing elements, these norms are equipped with the asymmetry parameter which
controls the “level of non-commutativity”.

To define the value of this parameter, we utilize the phenomenon of “the bias of the
crowd” [19–21] in its basic form of the perceptional bias originated by Galton [22]. We
consider the perception of weight, length and time and specify the asymmetry of the
uninorm and absorbing norm by the difference between the perceived and real weights,
lengths and times.

The activity of the obtained non-commutative logical operators is illustrated by their
application for decision-making in the group of mobile robots. The simulations of the robots’
activity verified the possibility of using the suggested method for processing systematic
sensing errors and modelling the decisions with “irrational” judgements.

The rest of this paper is organized as follows. In Section 2, starting from the previously
defined algebra of multivalued logic, we define the non-commutative version of such
algebra and indicate the meaning of the used parameters. In Section 3, we describe the
conducted experiments, in which we found the perception bias used for the specification
of the parameters of the non-commutative logic. In Section 4, we formally define the
parameters of the logic using perception bias. In Section 5, we implement the obtained
non-commutative logic for the control of mobile robots and simulate the group activity. In
Section 6, we introduce the obtained results into a wider context of decision-making and
discuss the further research. Section 7 briefly outlines the obtained results and concludes
the discourse.

2. Non-Commutative Algebra of Multi-Valued Logic

In this section, we define the non-commutative algebra of multi-valued logic. Since it
is based on the previously developed commutative algebra, we start with this algebra and
then consider its non-commutative extension.

2.1. Algebra A with Multi-Valued Logical Operators

Let ⊕θ : [0, 1]× [0, 1]→ [0, 1] be the uninorm [6] with the parameter θ ∈ [0, 1] called
neutral or identity element such that⊕1 is the t-norm (or multivalued and operator) and⊕0
is the t-conorm (or multivalued or operator). In addition, let ⊗ϑ : [0, 1]× [0, 1]→ [0, 1] be
the absorbing norm [7] with the parameter ϑ ∈ [0, 1] called absorbing element; this norm
is a multivalued version of the not xor operator.

Usually, it is assumed that the uninorm ⊕θ and absorbing norm ⊗ϑ are commutative
and associative and that the uninorm ⊕θ is transitive. The elements θ and ϑ play the role of
unit and zero for their operators such that θ ⊕θ x = x and ϑ⊗ϑ x = ϑ, x ∈ [0, 1].

The uninorm ⊕θ and the absorbing norm ⊗ϑ considered as operators on the interval
[0, 1] form an algebra [18,23]

Aη = 〈[0, 1],⊕θ ,⊗ϑ〉, (1)

in which the uninorm ⊕θ acts as a summation with the zero θ and the absorbing norm ⊗ϑ

acts as a multiplication with the unit ϑ.
If the norms ⊕θ and ⊗ϑ are commutative, then there exist the functions

uθ : (0, 1)→ (−∞, ∞) and vϑ : (0, 1)→ (−∞, ∞) called generator functions [24] such
that for any x, y ∈ (0, 1)

x⊕θ y = u−1
θ (uθ(x) + uθ(y)), (2)

x⊗ϑ y = v−1
ϑ (vϑ(x)× vϑ(y)), (3)

For the boundary values x, y ∈ {0, 1}, it is assumed that the norms ⊕θ and ⊗ϑ act as
appropriate Boolean operators with respect to the values of the elements θ and ϑ.
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For completeness, in the algebra Aη the inverse operations, subtraction 	θ and divi-
sion �ϑ are defined as

x	θ y = u−1
θ (uθ(x)− uθ(y)), (4)

x�ϑ y = v−1
ϑ (vϑ(x) / vϑ(y)), (5)

with the obvious condition vϑ(y) 6= 0.
If θ = ϑ and uθ(x) = vϑ(x) for any x ∈ [0, 1], then the algebra Aη is distributive with

(x⊕θ y)⊗ϑ z = (x⊗ϑ z)⊕θ (y⊗ϑ z), (6)

for any x, y, z ∈ [0, 1].
Let us assume that for any x ∈ [0, 1] the generator functions with the parameter

θ = ϑ = η ∈ [0, 1] are equivalent uη(x) = vη(x) = wη(x) and are defined as follows:

wη(x) = − ln
(

x−1/η − 1
)

, (7)

Respectively, the inverse functions are

w−1
η (ξ) = 1/(1 + exp(−ξ))η . (8)

The graphs of these functions are shown in Figure 1.
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Figure 1. Generator function wη (a) and its inverse w−1
η function (b) with η = 0.5.

The uninorm ⊕η and the absorbing norm ⊗η are commutative; the graphs of these
norms are shown in Figure 2.
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Algebra Aη extends Boolean algebra B = 〈{0, 1}, ∧,∨〉 with conjunction ∧ and
disjunction ∨ operators, and its multivalued version B = 〈[0, 1], f,g〉 with t-norm f
and t-conorm g, and defines the multivalued logic with logical operators ⊕θ and ⊗ϑ. The
uninorm ⊕θ is associated with the multivalued and and or operators, and the absorbing
norm ⊗ϑ is associated with the multivalued not xor operator. In addition, it acts as an
arithmetic system on the interval [0, 1], where the uninorm ⊕θ is associated with the
arithmetical weighted summation “+” and the absorbing norm ⊗ϑ is associated with the
arithmetical multiplication “×”, both for real numbers from the interval [0, 1].

2.2. Non-Commutative Extension of the Algebra A
The suggested definition of non-commutative version of the algebra Aη is based on

the definition of uninorm and absorbing norm using generator functions and given by
Equations (2) and (3). Formally, we define the non-commutative uninorm
⊕θl |θ|θr : [0, 1]× [0, 1]→ [0, 1] and absorbing norm ⊗ϑl |ϑ|ϑr : [0, 1]× [0, 1]→ [0, 1] as fol-
lows:

x⊕θl |θ|θr y = u−1
θ

(
uθl (x) + uθr (y)

)
, (9)

x⊗ϑl |ϑ|ϑr y = v−1
ϑ

(
vϑl (x)× vϑr (y)

)
, (10)

with the same as above assumption about the boundary values. Similarly,

x	θl |θ|θr y = u−1
θ

(
uθl (x)− uθr (y)

)
, (11)

x�ϑl |ϑ|ϑr y = v−1
ϑ

(
vϑl (x)/vϑr (y)

)
, (12)

with vϑr (y) 6= 0.
In general, the operators⊕θl |θ|θr and⊗ϑl |ϑ|ϑr are non-commutative. The commutativity

holds if, respectively, θl = θr and ϑl = ϑr. If θ = θl = θr and ϑ = ϑl = ϑr, then these
operators are equivalent to the norms ⊕θ and ⊗ϑ.

The algebra
Al|η|r =

〈
[0, 1],⊕θl |θ|θr ,⊗ϑl |ϑ|ϑr

〉
, (13)

with the operators ⊕θl |θ|θr and ⊗ϑl |ϑ|ϑr is the non-commutative version of the algebra Aη .
For arbitrary parameters, this algebra is also non-distributive.

To illustrate the non-commutativity of the operators ⊕θl |θ|θr and ⊗ϑl |ϑ|ϑr , let us assume
that generator functions and their inverses are defined by Equations (7) and (8) and that

θ = ϑ = η, (14)

In addition, let us assume that the ηl and ηr are defined as follows:

ηl = η/2, (15)

ηr = (η + 1)/2, (16)

This means that, if η = 0.5, then ηl = 0.25 and ηr = 0.75 (cf. definitions of subjective
false and subjective truth [25]). The graphs of the non-commutative uninorm ⊕θl |θ|θr and
absorbing norm ⊗ϑl |ϑ|ϑr with these parameters are shown in Figure 3.
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(b) with η = 0.5,
ηl = 0.25 and ηr = 0.75.

The norms ⊕ηl |η|ηr and ⊗ηl |η|ηr preserve their general form (cf. the graphs of the
commutative norms in Figure 2) but demonstrate clear dependence of the results on the
order of the arguments. For example,

0.3⊕0.5 0.7 = 0.7⊕0.5 0.3 = 0.5,

while
0.3⊕0.25|0.5|0.75 0.7 = 0.3827 and 0.7⊕0.25|0.5|0.75 0.3 = 0.5971.

Similarly,
0.3⊗0.5 0.7 = 0.7⊗0.5 0.3 = 0.3279,

while
0.3⊗0.25|0.5|0.75 0.7 = 0.0141 and 0.7⊗0.25|0.5|0.75 0.3 = 0.4957.

In this example, parameters η, ηl and ηr are defined by Equations (15) and (16) such
that ηl < η < ηr; then, the preference in the operations is given to the first operand in such
a sense that the result is as great as the first operand is greater than the second operand. If
the relation between the parameters is ηl > η > ηr, then the preference is opposite, and the
result is as great as the second operand is greater than the first operand. This observation is
summarized in Table 1.

Table 1. Dependence of the operations’ results on the relation between the parameters.

ηl < η < ηr ηl > η > ηr

x<y x⊕ηl |η|ηr
y < y⊕ηl |η|ηr

x x⊕ηl |η|ηr
y > y⊕ηl |η|ηr

x
x>y x⊕ηl |η|ηr

y > y⊕ηl |η|ηr
x x⊕ηl |η|ηr

y < y⊕ηl |η|ηr
x

In addition, for reasons of symmetry, the substitution of the parameters ηl and ηr
results in the equivalences

x⊕ηl |η|ηr y = y⊕ηr |η|ηl
x, (17)

x⊗ηl |η|ηr y = y⊗ηr |η|ηl
x. (18)
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In summary, in the algebra Al|η|r the uninorm ⊕θl |θ|θr and absorbing norm ⊗ϑl |ϑ|ϑr are
non-commutative and their results depend on the order of the operands

x⊕θl |θ|θr y 6= y⊕θl |θ|θr x, (19)

x⊗ϑl |ϑ|ϑr y 6= y⊗ϑl |ϑ|ϑr x (20)

These norms provide the logical operations that can be used in the algorithms of
decision-making with preferences [1,9] and for implementation of non-commutative log-
ics [13]. Below, we illustrate such implementation by the decision-making in the group of
mobile robots.

3. Perception Bias in Group

The definition of the exact values of the parameters θ, θl , θr and ϑ, ϑl , ϑr requires
additional analysis of the considered situation and of the meaning of the parameters and
arguments. Here, we assume that the decision-making is conducted by artificial agents
that can perceive certain measured data and mimic the perceptional bias observed in the
groups of humans.

The studies of perception bias in groups and of the bias of the crowd in general were
originated by Galton in 1907. In his paper “Vox populi” [22], Galton presented the results
of the survey about the estimated weight of the fat ox. It was found that the distribution
of individual estimations is not normal and that the mean value of the estimated weights
differs from the real weight of the ox. Nowadays, this paper is considered to belong to the
origin of studies in the field of “the wisdom of the crowd” [26].

Following the Galton approach, we conducted three surveys that considered the
estimations of weights, lengths and times, which are the basic physical values used in
classical mechanics. However, in contrast to Galton, we used the values in the usual for
ordinary people ranges—grams and kilograms for weights, centimeters and decimeters for
lengths and seconds for times. The obtained estimations were used for definition of the
values of the parameters θ, θl , θr and ϑ, ϑl , ϑr.

The surveys were organized as follows (with the approvement of the Ariel University
Ethics Commission AU-ENG-EK-20230205, 5 February 2023). For the measurements, we
used the following objects:

• The estimations of the weights were verified using the equivalently looking boxes
with the weights 7.1 kg, 2.6 kg and 0.73 kg;

• The estimations of the lengths were verified using the ropes (made from the same
material) with the lengths 81 cm, 42.3 cm and 1.73 cm;

• The estimations of times were verified using sounds of 400 Hz of the durations 11.6 s,
4.3 s and 1.7 s.

In all the cases, the non-round values were chosen in order to avoid the natural
tendency of the humans to round the estimations.

The participants of the surveys were students at Ariel University and adults with
academic degrees. The number of participants in the surveys ranged from 26 to 42 persons,
the average age being 27 (the youngest participant was 22 years old and the oldest was
73 years old). The results of the surveys are summarized in Table 2.
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Table 2. Results of the surveys: real and estimated values of the weights, lengths and times.

Weight (kg) Length (cm) Time (s)

Real values ν 7.10 2.60 0.73 81.00 42.30 1.73 11.60 4.30 1.70

Mean µ of estimated
values 5.67 1.40 0.30 69.12 32.27 1.79 12.22 4.91 2.04

Median m of estimated
values 5.00 1.00 0.30 70.00 30.00 1.50 10.00 4.00 2.00

Standard deviation σ 3.32 1.05 0.23 25.60 10.43 0.92 7.65 2.41 1.23

Difference ν− µ 1.43 1.20 0.43 11.89 10.03 −0.06 −0.62 −0.61 −0.34

For all the considered weights, the means 5.67 kg, 1.40 kg and 0.30 kg of the estimated
values are smaller than the real weights 7.1 kg, 2.6 kg and 0.73 kg of the objects. As
found by the t-test, the distributions of the weights’ estimations are not normal and the
differences between the real weights ν and the means µ of the estimations are significant
with a significance level α = 0.95.

The same tendency holds for the greater lengths: the means 69.12 cm and 32.27 cm
of the estimated values are smaller than the real lengths 81 cm and 42.3 cm of the ropes.
However, for the short rope, the mean estimated length 1.79 cm is greater than its real
length 1.73 cm. For the short rope, the t-test with α = 0.95 shows that the distribution of
the length estimations is normal and that the difference between the real length ν and the
mean µ of the estimations is not significant, while for the longer ropes the distributions of
the length’s estimations are not normal.

For the sounds’ durations, the tendency is opposite. For all considered durations, the
means 12.22 s, 4.91 s and 2.04 s of the estimated values are greater than the real durations
11.6 s, 4.3 s and 1.7 s. However, the t-test with α = 0.95 shows that the distributions of the
times’ estimations are normal and that the difference between the real length ν and the
mean µ of the estimations is not significant. The histograms of the estimated values are
shown in Figure 4.
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Thus, for all weights and for the longer ropes, the observed results coincide with
Galton’s observation according to which the estimations are not normal, but for the short
rope and for all the durations, the distributions of the observed results are normal. In
addition, it is worth noting that, in contrast to Galton’s statement, the medians in the
observed data also strongly differ from the real values and cannot be considered as better
estimators than the means.

4. Definition of the Aggregators’ Parameters in Algebra Al|η|r
Parameters θ, θl , θr and ϑ, ϑl , ϑr of the uninorm ⊕θl |θ|θr and absorbing norm ⊗ϑl |ϑ|ϑr

define the asymmetry of the logical operations: and and or (and the preference between
them) in the uninorm and not xor in the absorbing norm. The values of these parameters
can be defined in several ways. Here, we suggest one possible definition of the parameters
based on the considered above perception bias. Such definition coincides with the further
application of the algebra Al|η|r for decision-making in mobile robots, where we assume
that the decision-making depends on the perceived and stored objective data with no
involvement of informal valuations and judgements. Additionally, the values θ and ϑ
can be considered as systematic errors in perceiving information, and the values θl , θr
and ϑl , ϑr—as the bounds of these errors. Then, the next use of these parameters is an
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attempt to make correct or at least rational decisions in the presence of such errors. In the
considered scenarios, we use the perception bias observed in humans and implement it in
the simulations of mobile robots’ activity.

As above, for both norms of equal parameters defined by Equations (14)–(16), i.e., we
assume that θ = ϑ = η, θl = ϑl = ηl = η/2 and θr = ϑr = ηr = (η + 1)/2. The value of
the parameter η based on the differences between real values ν of the weights, lengths and
times and the means µ of the estimated values is defined as follows.

From Table 2, it follows that the differences ν− µ between the real values ν and means
µ of the estimations are in different ranges. Therefore, to unify these ranges we normalize
the differences ν − µ such that their values are in the range [−1, 1]. The normalized
difference η̃ between real values and the means of the estimations is

η̃ = (ν− µ)/(ν + µ). (21)

It is clear that η̃ ∈ [−1, 1] and if ν = µ, then η̃ = 0. Here, we also assume that the
considered values are not negative, so ν + µ > 0.

The values of the normalized difference η̃ are linearly transformed to the values of the
parameter η ∈ [0, 1] as follows:

η = (η̃ + 1)/2, η̃ ∈ [−1, 1]. (22)

In the decision-making processes, we apply the norms ⊕ηl |η|ηr and ⊗ηl |η|ηr with the
parameter η defined for the appropriate measurement—of the weights, the lengths and
the times. It is worth noting again that the uninorm ⊕ηl |η|ηr combines the multivalued and
and or operators and the parameters θ, θl , θr define the preference between these operators
and their asymmetry. The absorbing norm ⊗ηl |η|ηr is a multivalued not xor operator and
the parameters ϑ, ϑl , ϑr define its asymmetry. Then, the use of these norms allows for
making decisions and conducting judgements which are not necessarily commutative and
therefore not necessarily distributive. In the considered simulations, we used these norms
for making decisions about the distances between the robots, which then transformed into
the attraction/repulsion forces.

The examples of the uninorm and absorbing norm for the estimations of the weight
0.73 kg and of the time 1.70 s are shown in Figure 5.
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Figure 5. Non-commutative uninorm ⊕ηl |η|ηr
and absorbing norm ⊗ηl |η|ηr

for the estimations (a) of
the weight 0.73 kg and (b) of the time 1.70 s.

The values of the parameter η change the curvature of the surface produced by the
aggregations’ results that represents the biased influence of the perceived data to the
decisions.

It is worth noting again that the suggested method based on the simple Formulas (21)
and (22) is not a unique or preferred one and can be substituted by the other. For example,
in the control of mobile robots [27], we used the extended algebra Aη with commutative
norms ⊕θ and ⊗ϑ action on the interval [−1, 1]. In this case, the processing of the negative
parameters and arguments was conducted on the level of generator function and its inverse
without use of the Formula (22) or similar.

5. Control of Mobile Robots in Al|η|r and Group Activity

Let us consider the application of the suggested operators of the non-commutative
algebra Al|η|r for the control of mobile robots acting in group. In the simulations, we use
the previously defined construction of the robots [27], but for the robots’ control we apply
the presented above non-commutative operators. As above, we consider the norms ⊕ηl |η|ηr
and ⊗ηl |η|ηr with the parameters defined by Equations (15) and (16).

Let us assume that each robot includes two active elements—the head S1 and the
tail S2—and denote by s1(t) and s2(t) the states of these elements at time t, respectively,
s1(t), s2(t) ∈ [0, 1] for all t = 0, 1, 2, . . . The attraction/repulsion force between the robots
is formed by four attraction/repulsion forces between the robots’ heads and tails

F
(
Si,Sj, t

)
= λ× cntr

(
Si,Sj, t

)
/dist

(
Si,Sj, t

)
, i, j = 1, 2, i 6= j, (23)

where λ > 0 is an attraction/repulsion coefficient,

dist
(
Si,Sj, t

)
=
((

xi(t)− xj(t)
)2

+
(
yi(t)− yj(t)

)2
)1/2

(24)

is a distance between the robots’ heads and tails located in the points with the coordinates
(xi(t), yi(t)) and

(
xj(t), yj(t)

)
at time t, and

cntr
(
Si,Sj, t

)
= 2× arp

(
Si,Sj, t

)
− 1, (25)

is a control with the attraction/repulsion value

arp
(
Si,Sj, t

)
= u−1

η

(
	ηl |η|ηr

(
si(t)⊗ηl |η|ηr sj(t)

))
. (26)
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The scheme of the robots and attraction and repulsion is shown in Figure 6.
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It is worth noting that the function that defined the control value in Equation (25) is an
inverse of the transformation used in Equation (22). It transforms the attraction/repulsion
values arp

(
Si,Sj, t

)
∈ [0, 1] to the control values cntr

(
Si,Sj, t

)
∈ [−1, 1].

The states si1(t) and si2(t), i = 1, 2, . . . , n, of the active elements are updated according
to the rule of the subjective Markov process [25] as follows [27] (j = 1, 2, . . . , n):

si1(t + 1) =
(

si1(t)⊗ηl |η|ηr
F(Si1,Si2, t)

)
⊕ηl |η|ηr

(
si1(t)⊗ηl |η|ηr

F
(
Si1,Sj1, t

))
⊕ηl |η|ηr

(
si1(t)⊗ηl |η|ηr

F
(
Si1,Sj2, t

))
, (27)

si2(t + 1) =
(

si2(t)⊗ηl |η|ηr
F(Si2,Si1, t)

)
⊕ηl |η|ηr

(
si2(t)⊗ηl |η|ηr

F
(
Si2,Sj1, t

))
⊕ηl |η|ηr

(
si2(t)⊗ηl |η|ηr

F
(
Si2,Sj2, t

))
. (28)

To illustrate the activity of the group of the robots, we simulated the motion of the
group of n = 25 robots in the gridded square domain of the size Nx × Ny = 100× 100. The
simulations were conducted using MATLAB®; the scripts were written using conventional
tools without the use of specific toolboxes. In the uninorm and absorbing norm, we used a
generator function and its inverse defined by Equations (7) and (8).

The distances between the robots are Euclidean, and the attraction/repulsion forces
act between the neighboring robots up to the distance dmax = 30. The value of the
attraction/repulsion coefficient is the tenth part of the domain diagonal that is λ =

0.1
√(

N2
x + N2

y

)
= 14.14.

For example, let us assume that at time t the robots are in the same states s11(t) = 0.25,
s12(t) = 0.81 and s21(t) = 0.25 and s22(t) = 0.81, and the distances between the active
elements S1i and S2j are dist

(
S1i,S2j, t

)
= 10, i, j = 1, 2. In addition, let the parameters of

the uninorm and absorbing norm be equal, and the central elements be defined by the bias
of the weight that is η = 0.71. Then, by Equations (15) and (16), ηl = 0.355 and ηr = 0.855.

Using these parameters and the inverse generator function defined by Equation (8), we
can calculate the attraction/repulsion forces between the active elements S1i and S2j, i, j =
1, 2, of the robots. By Equation (26), we obtain the repulsion force F(S11,S21, t) = −0.1
between the heads S11 and S21 of the robots and the repulsion force F(S22,S12, t) = −0.706
between the tails S22 and S12 of the robots. In addition, the head S11 of the first robot
attracts the tail S22 of the second robot with the force F(S11,S22, t) = 0.09, and the tail S22 of
the second robot repulses the head of the first robot with the force F(S22,S11, t) = −0.656.

As a result, the robots which at time t were located in parallel such that the distances
between their heads and between their tails are dist(S11,S21, t) = dist(S12,S22, t) = 10,
(see Figure 7), change their direction. The distance between the heads of the robots increases
with respect to the force value−0.1 and the distance between the tails of the robots increases
with respect to the force value −0.706. An additional change in direction is influenced by
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the attraction between the head and the tail as well as the repulsion between the tail and
the head.
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corresponding to the human perception errors in estimating weight 0.73 kg (see Figure 
5a). 

  
(a) (b) 

Figure 7. Starting positions of the robots at time t = 0. While circles denote the “heads” S1 of the
robots and black circles denote the “tails” S1 of the robots. The bodies of the robots are denoted by
solid lines connecting heads and tails. The dotted lines denote connections between the robots.

In the simulations, the robots started from the ordered configuration shown in Figure 7.
The states sk1(0) and sk2(0), k = 1, 2, . . . , n, of the head and tail of each robot are specified
by random with respect to the uniform distribution on the interval [0, 1].

Figure 8 shows the activity of the group of the robots with the operators’ parameters
corresponding to the human perception errors in estimating weight 0.73 kg (see Figure 5a).
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In contrast, if the robots use the operators with the parameters corresponding to the 
human perception errors in estimating time 1.70 s (see Figure 5b), they attract each other. 
The activity of the group of such robots is shown in Figure 9. 
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Figure 8. Evolution of the initial configuration of the robots’ group with the operators’ parameters
corresponding to the weight 0.73 kg: (a) locations after two movements of each robot, t = 2;
(b) locations after five movements of each robot, t = 5; (c) locations after ten movements of each
robot, t = 10; and (d) locations after the hundredth movement of each robot, t = 100.

The robots start from their positions in the nodes of the grid and with time repulse
from one another. As a result, they leave the central part of the domain toward the borders.
The simulated dynamics is shown in the movie in the Supplementary S1.

In contrast, if the robots use the operators with the parameters corresponding to the
human perception errors in estimating time 1.70 s (see Figure 5b), they attract each other.
The activity of the group of such robots is shown in Figure 9.
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tions after five movements of each robot, 𝑡 = 5; (c) locations after ten movements of each robot, 𝑡 =10; and (d) locations after the hundredth movement of each robot, 𝑡 = 100. 

As above, the robots start from their positions in the nodes of the grid, but in contrast 
to the previous case, they attract one another, and the group concentrates and moves as a 
swarm. The simulated dynamics is shown in the movie in the Supplementary S2. 

For comparison, Figure 10 shows the activity of the robots with commutative opera-
tors with the parameters 𝜂 = 𝜂 = 𝜂 = 0.5 representing the absence of perception bias. 

  
(a) (b) 

Figure 9. Evolution of the initial configuration of the robots’ group with the operators’ parameters
corresponding to the time 1.70 s: (a) locations after two movements of each robot, t = 2; (b) locations
after five movements of each robot, t = 5; (c) locations after ten movements of each robot, t = 10; and
(d) locations after the hundredth movement of each robot, t = 100.

As above, the robots start from their positions in the nodes of the grid, but in contrast
to the previous case, they attract one another, and the group concentrates and moves as a
swarm. The simulated dynamics is shown in the movie in the Supplementary S2.

For comparison, Figure 10 shows the activity of the robots with commutative operators
with the parameters ηl = ηr = η = 0.5 representing the absence of perception bias.
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Figure 10. Evolution of the initial configuration of the robots’ group with commutative operators
with the parameters ηl = ηr = η = 0.5: (a) locations after two movements of each robot, t = 2;
(b) locations after five movements of each robot, t = 5; (c) locations after ten movements of each
robot, t = 10; and (d) locations after the hundredth movement of each robot, t = 100.

In the case of commutative operators, the group does not demonstrate a certain motion
tendency. However, for certain initial states sk1(0) and sk2(0), k = 1, 2, . . . , n, the robots can
form cliques with the average distance between them as dmax. The simulated dynamics is
shown in the movie in the Supplementary S3.

The simulations demonstrate that the behavior of the group of the robots depends
on the parameters of the non-commutative uninorm ⊕ηl |η|ηr and absorbing norm ⊗ηl |η|ηr .
For negative perception bias, while the average estimation is lower than the real value, the
robots repulse each other, and the group disperses (see Figure 8). In contrast, for positive
perception bias, while the average estimation is higher than the real value, the robots attract
each other, and the group concentrates and moves as a unit (see Figure 9).

6. Discussion

This paper continued our previous works [18,27,28] on multivalued logic algebra
based on parameterized uninorm and absorbing norm and suggested the non-commutative
version of such algebra.

This work contains two main goals. The first is to construct a simple and computable
implementation of non-commutative multivalued logic algebra, which can be used for
decision-making under uncertainty. Additionally, the second is to form a basis for further
analysis of irrational decisions and modelling the paradoxes of rationality [29].

We demonstrated the use of the suggested algebra to control mobile robots acting in a
group, where the level of non-commutativity was defined by human perceptional bias. The
conducted simulations verified the possibility of formal processing of systematic errors in
sensing, and of distinguishing and mimicking the biased decisions.

Further work will concentrate on the modelling and analysis of irrational decisions.
It appears to be true that, in many cases, the irrationality in the decisions is apparent
and can be explained either by certain statistical errors [30] or by the non-commutativity
and asymmetry of logical operations. In addition, it will be meaningful to consider the
relation between the suggested logics’ algebra and the recently presented non-commutative
fuzzy logic system [31]; knowledge about such relation will provide a wide framework for
theoretical and practical studies on the control of autonomous agents.

The results of this work will allow for the use of non-commutative logic both for
processing the sensed data and for forming rational decisions in irrational conditions.
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7. Conclusions

We suggested the implementation of non-commutative multivalued logic algebra.
The “level of non-commutativity” in this algebra is controlled by the external asymmetry
parameter.

We defined the value of the asymmetry parameter on the base of the perception
bias of humans, which was found in observations of expected values of basic physical
measures—weight, length and time.

In the experiments, we considered the usual values of weights, lengths and times. It
was observed that, for all weights from 0.73 kg to 7.10 kg and for the lengths 42.30 cm and
81.00 cm, the estimations’ distributions are not normal, and that the estimations’ means are
lower than the real values of the considered measures. In contrast, for the length of 1.73 cm
and for all times from 1.70 s to 11.60 s, the estimations’ distributions are normal, and the
estimations’ means are higher than the real values of the measures.

The operators of the suggested non-commutative multivalued logic algebra were used
for the control of mobile robots acting in a group.

In the simulations, it was observed that, for negative perception bias (the estimations’
mean is lower than the real value), the group disperses, and for positive perception bias
(estimations’ mean is higher that the real value), the group concentrates and moves as a
unit.

As a result, we obtained the implementation of non-commutative multivalued logic
algebra, the tendency and the values of the perception bias for basic physical measures
as well as the method of control of mobile robots in the group based on the implemented
algebra and taking into account the differences in the perception of different types of
measures.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/robotics12030076/s1, Videos S1, S2 and S3.
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