Design and Performance Analysis of a Torsional Soft Actuator Based on Hyperelastic Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Design and Manufacturing Process for Torsional Soft Body Actuators
- Mix Ecoflex 00-30A and B liquids with PDMS (Polydimethylsiloxane) and PDMS curing agent at 1:1:0.1:0.01. Mix thoroughly using a stirring bar, and then place into a defoamer for 20 min until no air bubbles are produced;
- Spray rubber release agent evenly over the top and bottom mold surfaces to facilitate release;
- The defoamed solution is slowly poured into the lower mold along the stirring bar, covered with the upper mold and left to stand for a while, after which the whole mold is placed in a vacuum defoamer for a second time until no air bubbles are produced;
- Place the mold in the drying oven for 40 min and set the temperature to 40 °C;
- Remove the molds from the drying oven and demold them after 40 min of drying;
- The top half of the twist actuator is removed from the mold and placed in the bottom half of the twist actuator mold. Pour in the silicone rubber solution. The upper part of the actuator is shown in Figure 5a;
- 7.
- Place the lower half of the mold into the defoamer for 15 min. The pouring process of the lower part of the mold is shown in Figure 5b;
- 8.
- Place the second half of the mold after the defoaming is completed into the drying oven for 40 min, with the drying oven temperature set at 40 °C;
- 9.
- Complete demolding;
- 10.
- The prepared torsion actuator is connected to the modular interface.
2.2.2. Design of the Gripper Actuator Structure
2.2.3. Torsional Actuator Structure and Parameter Optimization
2.2.4. Optimization of Gripper Actuator Structure and Parameters
2.2.5. Design and Implementation of Precise Control Based on RGB-D Vision Algorithms
3. Results and Discussion
3.1. Control Performance Analysis Experiment of Soft Actuator
3.1.1. Torque Measurement Experiment
3.1.2. Torsional Angle Measurement Experiment
3.1.3. Experimental Measurement of Axial Length Variations in Flexible Torsional Actuators
3.2. Software Torsion Gripper System Overall Experiment
- (1)
- Grab actuator grab experiment
- (2)
- Torsional grab experiment
- (3)
- Industrial switch torsion experiment
- (4)
- The experiment of torsional objects stuck in space
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Hao, Y.; Yang, X.; Wen, L. Soft robotics: Structure, actuation, sensing and control. J. Mech. Eng. 2017, 53, 1–13. [Google Scholar]
- Achilli, G.M.; Valigi, M.C.; Salvietti, G.; Malvezzi, M. Design of Soft Grippers with Modular Actuated Embedded Constraints. Robotics 2020, 9, 105. [Google Scholar] [CrossRef]
- Giannaccini, M.E.; Xiang, C.; Atyabi, A.; Theodoridis, T.; Nefti-Meziani, S.; Davis, S. Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning. Soft Robot. 2017, 5, 54–70. [Google Scholar] [CrossRef]
- Tawk, C.; Alici, G. Finite Element Modeling in the Design Process of 3D Printed Pneumatic Soft Actuators and Sensors. Robotics 2020, 9, 52. [Google Scholar] [CrossRef]
- Trimmer, M.B.; Ewoldt, P.R.H.; Kovac, M.; Lipson, H.; Lu, N.; Shahinpoor, M.; Majidi, C. At the cross-roads: Interdisciplinary paths to soft robots. Soft Robot. 2014, 1, 63–69. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, Q.; Su, C.; Jiang, J.; Chen, N.; Shao, H. Light-Responsive Soft Actuators: Mechanism, Materials, Fabrication, and Applications. Actuators 2021, 10, 298. [Google Scholar] [CrossRef]
- Morin, S.A.; Shepherd, R.F.; Kwok, S.W.; Stokes, A.A.; Nemiroski, A.; Whitesides, G.M. Camouflage and Display for Soft Machines. Science 2012, 337, 828–832. [Google Scholar] [CrossRef] [Green Version]
- Copaci, D.; Blanco, D.; Moreno, L.E. Flexible Shape-Memory Alloy-Based Actuator: Mechanical Design Optimization According to Application. Actuators 2019, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Zhang, Y.; Wang, N. A Conceptual Design of Snake-like Soft Robot with Multiple Motion Modes. CFHI Technol. 2022, 1, 12–15. [Google Scholar]
- James, W.; Thomas, Z.; Cory, H.; Yoon, S.; Strickland, F.S.; Kumar, S.; Shin, M. Soft Robotics: A Review of Recent Developments of Pneumatic Soft Actuators. Actuators 2020, 9, 3. [Google Scholar]
- Wang, H. Research Progress of Soft Robot. J. South China Univ. Technol. (Nat. Sci. Ed.) 2020, 2, 94–106. [Google Scholar]
- Ma, N.; Yao, Y.; Wang, Q.; Niu, C.; Dong, X. Properties and mechanical model of a stiffness tunable viscoelastic damper based on electrorheological elastomers. Smart Mater. Struct. 2020, 29, 045041. [Google Scholar] [CrossRef]
- Nikafrooz, N.; Leonessa, A. A Single-Actuated, Cable-Driven, and Self-Contained Robotic Hand Designed for Adaptive Grasps. Robotics 2021, 10, 109. [Google Scholar] [CrossRef]
- Li, Y.; Li, J. Research progress in durable super-hydrophobic surface based on PDMS. China Plast. 2022, 36, 167–176. [Google Scholar]
- Yang, M.; Zhou, S.; Liu, F. Research progress of intelligent hydrogel. Chem. Eng. 2015, 23, 66–71. [Google Scholar]
- Cursi, F.; Mylonas, G.P.; Kormushev, P. Adaptive Kinematic Modelling for Multiobjective Control of a Redundant Surgical Robotic Tool. Robotics 2020, 9, 68. [Google Scholar] [CrossRef]
- Trivedi, D.; Rahn, C.D.; Kier, W.M.; Walker, I.D. Soft robotics: Biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 2008, 5, 99–117. [Google Scholar] [CrossRef]
- Wehner, M.; Truby, R.L.; Fitzgerald, D.J.; Mosadegh, B.; Whitesides, G.M.; Lewis, J.A.; Wood, R.J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wang, S.; Lyu, S.; Fu, F. Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying. Ind. Crops Prod. 2018, 122, 438–447. [Google Scholar] [CrossRef]
- Shan, H.; Liu, J. Fabrication of the PDMS Multi-Layer Mushroom-Shaped Microstructures. Micronanoelectron. Technol. 2020, 5, 395–398. [Google Scholar]
- Xue, C.; Li, M.; Guo, X.; Li, X.; An, Q.; Jia, S. Fabrication of superhydrophobic textiles with high water pressure resistance. Surf. Coat. Technol. 2017, 310, 134–142. [Google Scholar] [CrossRef]
- Jiao, Z.; Ji, C.; Zou, J.; Yang, H.; Pan, M. Vacuum-Powered Soft Pneumatic Twisting Actuators to Empower New Capabilities for Soft Robots. Adv. Mater. Technol. 2019, 4, 1800429. [Google Scholar] [CrossRef] [Green Version]
- Calisti, M.; Giorelli, M.; Levy, G.; Mazzolai, B.; Hochner, B.; Laschi, C.; Dario, P. An Octopus-bioinspired Solution to Movement and Manipulation for Soft Robots. Bioinspir. Biomim. 2011, 6, 036002. [Google Scholar] [CrossRef] [Green Version]
- Ilievski, F.; Mazzeo, A.D.; Shepherd, R.F.; Chen, X.; Whitesides, G.M. Soft Robotics for Chemists. Angew. Chem. 2011, 50, 1890–1895. [Google Scholar] [CrossRef]
- Manti, M.; Hassan, T.; Passetti, G.; D’Elia, N.; Laschi, C.; Cianchetti, M. A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping. Soft Robot. 2015, 2, 107–116. [Google Scholar] [CrossRef]
- Chen, S.; Pang, Y.; Yuan, H.; Tan, X.; Cao, C. Smart Soft Actuators and Grippers Enabled by Self-Powered Tribo-Skins. Adv. Mater. Technol. 2020, 5, 1901075. [Google Scholar] [CrossRef]
- Ma, L.K.; Zhang, Y.Z.; Liu, Y.; Zhou, K.; Tong, X. Computational Design and Fabrication of Soft Pneumatic Objects with Desired Deformations. ACM Trans. Graph. 2017, 36, 1–12. [Google Scholar] [CrossRef]
- Scharff, R.B.N.; Wu, J.; Geraedts, J.M.P.; Wang, C.C.L. Reducing Out-of-Plane Deformation of Soft Robotic Actuators for Stable Grasping. In Proceedings of the IEEE International Conference on Soft Robotics, Seoul, Republic of Korea, 14–18 April 2019; p. 8722823. [Google Scholar]
- Ha, Q.; Watanabe, K.; Karasawa, T.; Ushiku, Y.; Harada, T. Mfnet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 5108–5115. [Google Scholar]
Ecoflex Series | 00-10 | 00-20 | 00-30 | 00-40 |
---|---|---|---|---|
Operable time | 40 min | 30 min | 45 min | 18 min |
Curing time | 4 h | 4 h | 4 h | 4 h |
Exercise elongation | 800% | 845% | 900% | 980% |
Mixed viscosity | 14,000 cps | 3000 cps | 3000 cps | 8000 cps |
Shore’ s hardness | 00-10 | 00-20 | 00-30 | 00-40 |
Tensile strength | 120 psi | 160 psi | 200 psi | 315 psi |
Shrinkage ratio | <0.001% | <0.001% | <0.001% | <0.001% |
Pressure | Twist Angle of 2.5 mm Side Thickness | Twist Angle of 2 mm Side Thickness | Twist Angle of 1.5 mm Side Thickness |
---|---|---|---|
0 kPa | 0° | 0° | 0° |
−10 kPa | 29° | 31° | 32° |
−20 kPa | 54° | 56° | 57° |
−30 kPa | 62° | 66° | 70° |
−40 kPa | 65° | 70° | 74° |
−50 kPa | 67° | 73° | 76° |
−60 kPa | 69° | 75° | 78° |
−70 kPa | 70° | 75° | 78° |
Pressure | Twist Angle of 3.5 mm Thickness of Side Ribs | Twist Angle of 3 mm Thickness of Side Ribs | Twist Angle of 2.5 mm Thickness of Side Ribs | Twist Angle of 2 mm Thickness of Side Ribs |
---|---|---|---|---|
0 kPa | 0° | 0° | 0° | 0° |
−10 kPa | 27° | 29° | 32° | 34° |
−20 kPa | 52° | 54° | 57° | 59° |
−30 kPa | 60° | 64° | 70° | 72° |
−40 kPa | 65° | 70° | 74° | 75° |
−50 kPa | 67° | 73° | 76° | 77° |
−60 kPa | 69° | 74° | 78° | 78° |
−70 kPa | 70° | 74° | 78° | 78° |
Air Pressure | Positive Quadrilateral Actuator Torque | Positive Pentagonal Actuator Torque | Circular Actuator Torque |
---|---|---|---|
0 kPa | 0 N·m | 0 N·m | 0 N·m |
−10 kPa | 0.016 N·m | 0.018 N·m | 0.017 N·m |
−20 kPa | 0.029 N·m | 0.031 N·m | 0.031 N·m |
−30 kPa | 0.040 N·m | 0.044 N·m | 0.043 N·m |
−40 kPa | 0.044 N·m | 0.051 N·m | 0.047 N·m |
−50 kPa | 0.0477 N·m | 0.055 N·m | 0.0481 N·m |
−60 kPa | 0.0479 N·m | 0.057 N·m | 0.0482 N·m |
−70 kPa | 0.048 N·m | 0.058 N·m | 0.0485 N·m |
Air Pressure | Circular Actuator Torque | Positive Quadrilateral Actuator Torque | Positive Pentagonal Actuator Torque |
---|---|---|---|
0 kPa | 0° | 0° | 0° |
−20 kPa | 57° | 60° | 77° |
−40 kPa | 70° | 73° | 85° |
−60 kPa | 73° | 78° | 90° |
−70 kPa | 73° | 78° | 90° |
Air Pressure | Circular Actuator | Regular Quadrilateral Actuator | Regular Pentagon Actuator |
---|---|---|---|
0 kPa | 60 mm | 60 mm | 60 mm |
−20 kPa | 45 mm | 45 mm | 47 mm |
−40 kPa | 38 mm | 38.5 mm | 40 mm |
−60 kPa | 35 mm | 35 mm | 36 mm |
−70 kPa | 35 mm | 35 mm | 36 mm |
Angle of Torsion | Flow Chart of Inflating and Venting Actuator |
---|---|
Clockwise twist 78° | |
Counterclockwise twist 78° | |
Clockwise twist 156° | |
Counterclockwise twist 156° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Liu, H.; Feng, W.; Yang, H.; Nie, X.; Zhou, R. Design and Performance Analysis of a Torsional Soft Actuator Based on Hyperelastic Materials. Robotics 2023, 12, 94. https://doi.org/10.3390/robotics12040094
Xu Z, Liu H, Feng W, Yang H, Nie X, Zhou R. Design and Performance Analysis of a Torsional Soft Actuator Based on Hyperelastic Materials. Robotics. 2023; 12(4):94. https://doi.org/10.3390/robotics12040094
Chicago/Turabian StyleXu, Zhengyun, Haiqiang Liu, Weihua Feng, Huaming Yang, Xin Nie, and Rougang Zhou. 2023. "Design and Performance Analysis of a Torsional Soft Actuator Based on Hyperelastic Materials" Robotics 12, no. 4: 94. https://doi.org/10.3390/robotics12040094
APA StyleXu, Z., Liu, H., Feng, W., Yang, H., Nie, X., & Zhou, R. (2023). Design and Performance Analysis of a Torsional Soft Actuator Based on Hyperelastic Materials. Robotics, 12(4), 94. https://doi.org/10.3390/robotics12040094