Genetic Algorithm-Based Data Optimization for Efficient Transfer Learning in Convolutional Neural Networks: A Brain–Machine Interface Implementation
Abstract
:1. Introduction
- Improving the recognition accuracy of BMI systems to decode brain signals with high accuracy. This will improve the implementation of BMI systems, especially in applications such as prostheses and gadgets.
- Real-time implementation of BMI systems requires a short processing time of captured brain signals in addition to high accuracy. The processing time is strongly related to the number of data and processing methods.
2. Method
2.1. Convolutional Neural Network (CNN)
2.2. Transfer Learning
3. Datasets
3.1. BCI Competition IV2a
3.2. CapiLab MCRP Dataset
4. Results and Discussion
4.1. Results ofr BCI Competition IV2a Dataset
4.2. Results of CapiLab Dataset
4.3. Comparison of CNNs Recognition Rates Trained with All and GA-Selected Subject Data
4.4. Real-Time Robot Control Using Brain Signals
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baniqued, P.D.E.; Stanyer, E.C.; Awais, M.; Alazmani, A.; Jackson, A.E.; Mon-Williams, M.A.; Mushtaq, F.; Holt, R.J. Brain–computer interface robotics for hand rehabilitation after stroke: A systematic review. J. Neuroeng. Rehabil. 2021, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.; Stephenson, M.; Lockwood, C. Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: A systematic review. JBI Evid. Synth. 2017, 15, 3049–3091. [Google Scholar]
- Ferrero, L.; Quiles, V.; Ortiz, M.; Iáñez, E.; Azorín, J.M. A BMI based on motor imagery and attention for commanding a lower-limb robotic exoskeleton: A case study. Appl. Sci. 2021, 11, 4106. [Google Scholar] [CrossRef]
- Chu, Y.; Zhao, X.; Zou, Y.; Xu, W.; Song, G.; Han, J.; Zhao, Y. Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression. J. Neural Eng. 2020, 17, 046029. [Google Scholar] [CrossRef] [PubMed]
- Penaloza, C.I.; Nishio, S. BMI control of a third arm for multitasking. Sci. Robot. 2018, 3, eaat1228. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, L.; Quiles, V.; Ortiz, M.; Iáñez, E.; Gil-Agudo, Á.; Azorín, J.M. Brain-computer interface enhanced by virtual reality training for controlling a lower limb exoskeleton. iScience 2023, 26, 106675. [Google Scholar] [CrossRef] [PubMed]
- Hekmatmanesh, A.; Nardelli, P.H.; Handroos, H. Review of the state-of-the-art of brain-controlled vehicles. IEEE Access 2021, 9, 110173–110193. [Google Scholar] [CrossRef]
- Garg, P.; Davenport, E.; Murugesan, G.; Wagner, B.; Whitlow, C.; Maldjian, J.; Montillo, A. Automatic 1D convolutional neural network-based detection of artifacts in MEG acquired without electrooculography or electrocardiography. In Proceedings of the 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Toronto, ON, Canada, 21–23 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Bhattacharyya, S.; Khasnobish, A.; Chatterjee, S.; Konar, A.; Tibarewala, D.N. Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data. In Proceedings of the 2010 International Conference on Systems in Medicine and Biology, Kharagpur, India, 16–18 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 126–131. [Google Scholar]
- Ines, H.; Slim, Y.; Noureddine, E. EEG classification using support vector machine. In Proceedings of the 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13), Hammamet, Tunisia, 18–21 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–4. [Google Scholar]
- Har-Peled, S.; Kushal, A. Smaller coresets for k-median and k-means clustering. Discret. Comput. Geom. 2007, 37, 3–19. [Google Scholar] [CrossRef]
- Ivor, W.T.; James, T.K.; Pak-Ming, C. Core vector machines: Fast SVM training on very large data sets. J. Mach. Learn. Res. 2005, 6, 363–392. [Google Scholar]
- Toneva, M.; Sordoni, A.; Combes, R.T.D.; Trischler, A.; Bengio, Y.; Gordon, G.J. An empirical study of example forgetting during deep neural network learning. arXiv 2018, arXiv:1812.05159. [Google Scholar]
- Coleman, C.; Yeh, C.; Mussmann, S.; Mirzasoleiman, B.; Bailis, P.; Liang, P.; Leskovec, J.; Zaharia, M. Selection via proxy: Efficient data selection for deep learning. arXiv 2019, arXiv:1906.11829. [Google Scholar]
- Ferreira, J.O.; Mendonça, M.O.; Diniz, P.S. Data selection in neural networks. IEEE Open J. Signal Process. 2021, 2, 522–534. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, F.; Porcaro, C.; Baldassarre, G. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. J. Neural Eng. 2022, 18, 066053. [Google Scholar] [CrossRef] [PubMed]
- Raghu, S.; Sriraam, N.; Temel, Y.; Rao, S.V.; Kubben, P.L. EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Netw. 2020, 124, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Pongthanisorn, G.; Aya, S.; Capi, G. EEG Channel Optimization for Wireless BMI-based Robot Interaction for Internet of Robotic Things. In Proceedings of the 2023 6th Conference on Cloud and Internet of Things (CIoT), Lisbon, Portugal, 20–22 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 131–135. [Google Scholar]
- Ju, C.; Gao, D.; Mane, R.; Tan, B.; Liu, Y.; Guan, C. Federated transfer learning for EEG signal classification. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3040–3045. [Google Scholar]
- Pogthanisorn, G.; Takahashi, R.; Capi, G. Learning Time and Recognition Rate Improvement of CNNs through Transfer Learning for BMI Systems. In Proceedings of the Conference on Biomimetic and Biohybrid Systems, Genoa, Italy, 10–13 July 2023; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 63–76. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 8–11 December 2014; pp. 3320–3328. [Google Scholar]
- Brunner, C.; Leeb, R.; Müller-Putz, G.; Schlögl, A.; Pfurtscheller, G. BCI Competition 2008–Graz Data Set A; Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology: Styria, Austria, 2008; Volume 16, pp. 1–6. [Google Scholar]
Parameter Name | BCI Competition IV2a | CapiLab MRCP |
---|---|---|
Crossover rate | 0.3 | 0.3 |
Crossover method | 2-points crossover | 2-points crossover |
Mutation rate | 0.1 | 0.1 |
Selection algorithm | Tournament | Tournament |
Generations | 30 | 20 |
Individual | 50 | 20 |
Parameter Name | BCI Competition IV2a | CapiLab MRCP |
---|---|---|
Training size | 90% of data | 90% of data |
Testing size | 10% of data | 10% of data |
Optimizer | Adam | Adam |
Learning rate | 1 × 10−3 | 1 × 10−3 |
Batch size | 64 | 64 |
Epochs | 30 | 30 |
Subject | Similarity to Subject 8 | |
---|---|---|
Correlation Coefficient | Euclidian Distance | |
Subject 1 | 0.50023 | 4.94123 |
Subject 2 | 0.49920 | 4.83422 |
Subject 3 | 0.50332 | 4.76755 |
Subject 4 | 0.50444 | 5.84189 |
Subject 5 | 0.50214 | 6.80476 |
Subject 6 | 0.50301 | 4.76024 |
Subject 7 | 0.50149 | 4.91620 |
Subject | Similarity to Subject 4 | |
---|---|---|
Correlation Coefficient | Euclidian Distance | |
Subject 1 | 0.5000511 | 409.5032 |
Subject 2 | 0.5020856 | 500.9085 |
Subject 3 | 0.5033397 | 502.7810 |
Datasets | Accuracy (%) | |||
---|---|---|---|---|
All Data | Correlation Coefficient | Euclidian Distance | GA | |
BCI Competition IV2a | 71.43 5.11 | 66.01 | 77.92 5.95 | 78.81 5.92 |
CapiLab MCRP | 81.1 7.92 | 74.54 6.71 | 77.54 6.71 | 84.4 5.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pongthanisorn, G.; Capi, G. Genetic Algorithm-Based Data Optimization for Efficient Transfer Learning in Convolutional Neural Networks: A Brain–Machine Interface Implementation. Robotics 2024, 13, 14. https://doi.org/10.3390/robotics13010014
Pongthanisorn G, Capi G. Genetic Algorithm-Based Data Optimization for Efficient Transfer Learning in Convolutional Neural Networks: A Brain–Machine Interface Implementation. Robotics. 2024; 13(1):14. https://doi.org/10.3390/robotics13010014
Chicago/Turabian StylePongthanisorn, Goragod, and Genci Capi. 2024. "Genetic Algorithm-Based Data Optimization for Efficient Transfer Learning in Convolutional Neural Networks: A Brain–Machine Interface Implementation" Robotics 13, no. 1: 14. https://doi.org/10.3390/robotics13010014
APA StylePongthanisorn, G., & Capi, G. (2024). Genetic Algorithm-Based Data Optimization for Efficient Transfer Learning in Convolutional Neural Networks: A Brain–Machine Interface Implementation. Robotics, 13(1), 14. https://doi.org/10.3390/robotics13010014