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Abstract: Bioinspired walking hexapod robots are a relatively young branch of robotics. Despite
the high degree of flexibility and adaptability derived from their redundant design, open-source
implementations do not fully utilize this potential. This paper proposes an exhaustive description of
a hexapod robot-specific control architecture based on open-source code that allows for complete
control over a robot’s speed, body orientation, and walk gait type. Furthermore, terrain interaction is
deeply investigated, leading to the development of a terrain-adapting control algorithm that allows
the robot to react swiftly to the terrain shape and asperities, such as non-linearities and non-continuity
within the workspace. For this purpose, a dynamic model derived from interpreting the hexapod
movement is presented and validated through a Matlab SimMechanicsTM simulation. Furthermore,
a feedback control system is developed, which is able to recognize leg–terrain touch and react
accordingly to ensure movement stability. Finally, the results from an experimental campaign based
on the PhantomX AX Metal Hexapod Mark II robotic platform by Trossen RoboticsTM are reported.

Keywords: hexapod robot; terrain interaction; locomotion control; dynamic model

1. Introduction

Mobile ground robots emerged as an alternative to several tasks originally performed
by humans, such as surveillance, reconnaissance, entertainment, personal services, pa-
trolling, and industrial automation, to cite a few [1]. Particularly, nowadays, interest is
focused on tasks involving complex and potentially hazardous situations such as planetary
exploration, emergency rescue operations, and, more in general, intervention in extreme
environments [2].

Mobile ground robots in the literature differ regarding locomotion, surrounding
perception, and control methodologies. Focusing on locomotion, they can be grouped into
the following:

• Wheeled robots;
• Tracked robots;
• Legged robots;
• Hybrid robots [1].

Wheeled robots are characterized by high speed, high energy efficiency, and a cost-
effective design, so they are widespread in industrial, service, and delivery applications on
mostly flat surfaces [1]. Conversely, tracked robots are more appropriate for movements on
soft and irregular terrains because they have a larger surface in contact with the ground,
and they are also able to climb over obstacles [3]. Legged robots show superior mobility
compared to wheeled and tracked robots since they can navigate through any terrain,
climbing rocks and rough surfaces like humans and animals [1,4,5]. These extraordinary
capabilities and their versatility that allow them to operate in different environments
make them the preferred choice for search and rescue [6], exploration [7], agriculture [8],
or operations in dangerous environments [9–11] despite their high complexity and cost.
Finally, some hybrid robots combine these locomotion types, being equipped with legs and
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wheels or tracks as paws. These robots have the same adaptability and agility as legged
robots because they can easily overcome obstacles and perform different types of gaits on
uneven terrains and, at the same time, can achieve high speed with great efficiency on
flat surfaces [12]. Nevertheless, the complexity of the design limits the optimality in both
aspects [13].

The choice of using bioinspired paws or hybrid locomotion depends on the particular
type of terrain in which the robot is supposed to operate. Still, the main parameter that
influences the performance of a legged robot is the number of legs [1], and they can be one
of the following:

• Bipedal robots;
• Quadrupedal robots;
• Hexapod robots;
• Multilegged robots with more than six legs.

Bipedal robots are mainly humanoid robots designed to replicate many human abil-
ities, such as grasping, handling objects, or human-like sensing, and locomotion is just
one of the several tasks these robots are capable of performing. Nevertheless, many hu-
manoid robots can run, jump, climb, and move in any environment with extreme agility [1].
The disadvantage of bipedal locomotion is the intrinsic instability of this gait, which is why
humanoid robots require very complex control algorithms to maintain balance even when
they do not move.

Quadrupedal robots are the best-performing walking robots in terms of speed and
payloads [1]. Moreover, they have the advantages of allowing different gait types and being
statically stable when they are not moving. Nevertheless, they still require very complex
control algorithms since they possess many degrees of freedom that must be coordinated,
and most performing gaits need dynamic walking control since only two limbs are in
contact with the ground.

Hexapod robots, instead, always have three limbs in contact with the ground, so their
gaits are stable, making walking control much simpler despite the increased number of
degrees of freedom to coordinate [14,15]. This stability makes them particularly suitable on
uneven or slippery terrains where bipedal or quadrupedal robots struggle to find a stable
gait. Furthermore, their redundancy allows them to operate by still using quadrupedal
locomotion if one or two legs are not functioning [1], which is a significant advantage for
operations in places difficult or unsafe to reach for humans. Robots with more than six legs
do not have particular advantages over hexapod robots apart from the increased variety of
gaits and the improved redundancy, but these come at the cost of more complex control
due to the additional degrees of freedom.

2. State of the Art

In the field of ground robots, one of the crucial benefits of hexapod robots is their
outstanding ability to operate on virtually any terrain. An essential aspect is represented
by the detection and mapping of terrain shape and unevenness. Common approaches for
ground classification can be classified as Visual-Perception-based, Depth-Perception-based,
or Tactile-Perception-based, as reported in [16], where all three families of sensors are
combined in order to achieve improved accuracy. Visual-Perception-based systems take
advantage of image processing for ground classification, starting with cameras. In [17],
an online terrain-classification system for hexapod robots capable of adapting energy-
efficient gaits is presented, which is based on feature extraction and SVM classification of
a monocular camera output, achieving up to 90% accuracy on terrain images. Another
example is reported in [18], where an algorithm based on neural networks is used to
identify the terrain from an RGB image to define surmountable obstacles and zones. Vision-
based terrain mapping is also used in [19], where visual sensors are used to detect the
terrain shape using point clouds and unsupervised learning techniques and to control
the interaction between two collaborative robots. Depth-Perception-based classification
relies on the use of depth data, usually in addition to images from cameras as presented
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in [20] with the purpose of characteristics extraction and objects or plane identification.
Finally, Tactile Perception relies on using sensors such as IMU, pressure, or torque sensors
to perceive the presence of the ground, usually thanks to the measurements (forces and
torques) at the tip of the leg as reported in [21]. In this paper, a terrain map is considered as
known since it is not the aim of this research.

In order to exploit the potential of hexapod robots in uneven terrain conditions fully,
the interaction of their paws with the ground must be taken into account both in the robot’s
mechanical design and the implementation of the control algorithm [15,22] to properly
provide counteraction to terrain-reconstruction errors. For this reason, the most advanced
control techniques of hexapod robots not only include a kinematic and dynamic model of
the robot itself but also consider the forces that the paws exert on the ground. They use this
information to detect contact, consider terrain deformation, and avoid slipping. Among
all the possible improvements that are introduced by adding a model of interaction with
the ground to the control algorithm, contact detection is the most useful since it allows
the robot to maintain balance on uneven terrains and in the presence of obstacles because,
by knowing which paws are in contact with the ground, the robot can adjust its posture
and adapt its gait to accommodate terrain unevenness, distributing the weight better and
improving stability [22].

In addition, real-time feedback on contact detection reduces the time needed for each
leg to search for contact with the ground, making the transition between consecutive steps
faster and smoother.

As already introduced, contact detection can be achieved by directly measuring the
force between each paw and the ground with pressure or force sensors or by estimat-
ing this force by measuring the torque or the current of the motors of each joint of the
legs [15]. The first approach gives a more accurate measurement of the contact force, but it
requires placing sensors under the robot’s paws, adding complexity to the geometry of
the paw [23–28]. In addition, this strategy relies on components that continuously receive
impact forces, and they might easily break. Conversely, estimating the contact force by
measuring the motors’ torque is a less accurate but more reliable approach. Furthermore,
in some scenarios, position feedback can be sufficient to accurately identify terrain presence
and maintain horizontal positioning at all times [29–31].

In the field of legged robotics, companies offer proprietary solutions, such as Boston
Dynamics [32], or others are more focused on academic research, like Robotis [33] and
Trossen Robotics [34]. From a software perspective, academic research tends to favor the
use of open-source solutions to provide greater access and control over the robot’s imple-
mentation. In this context, various frameworks enable the programming of hexapod robots.
In particular, NUKE [35] is open-source software designed specifically for the control of
hexapod robots. It is optimized to manage the locomotion and kinematics of these robots
through an intuitive interface and predefined configurations that facilitate programming
and customization. Compared to more general-purpose solutions like ROS2 [36] or ArduPi-
lot [37], NUKE provides predefined and customizable solutions that reduce complexity
and accelerate the development of hexapod projects. This makes it a convenient choice,
although its support is less extensive and its updates are less frequent compared to other
solutions, particularly ROS2.

Based on the previous discussion, the main contribution of this work consists of a
deep analysis and extension of the inverse kinematics formulation of NUKE to include
the orientation and height of the robot’s body from the ground as additional input to the
position of the robot’s leg’s end effectors. Moreover, this paper proposes a comprehensive
architecture for handling terrain irregularities that leverages the extended functionalities of
NUKE and estimates joint torques in the event of individual leg contact with the ground
using a dynamic hexapod model. The standard implementation of NUKE suffers from the
main limitation that most multilegged robot-control software has. While perfectly able
to move the robot smoothly and adjust stride correctly through a gait engine, they can
generally not interact with anything other than flat, continuous, obstacle-free terrain [38].
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This paper aims to extend the advantages of the NUKE code in the presence of non-flat,
non-continuous, irregular terrain. In particular, the underlying objective is to develop a
kinematic model that can account for the terrain shape and location and to improve this
analysis further to understand how the robot’s physics interacts with the presence of the
ground. By utilizing this estimate alongside the one provided by the robot’s servomotors,
a feedback control system was developed without the need for sensors at the ends of
the legs. In order to implement and test the proposed architecture, PhantomX AX Metal
Hexapod Mark II from Trossen RoboticsTM [39], shown in Figure 1, is considered. It
is a versatile, inexpensive, and lightweight robot. Moreover, it is fully programmable,
compatible with NUKE, and based on open-source hardware. It has neither force feedback
sensors on its legs nor an IMU in its standard configuration, but it mounts 18 DynamixelTM

AX-12A Smart Servomotors [40] that can provide feedback on position and load estimates.

Figure 1. PhantomX AX Metal Hexapod Mark II [39].

The novelty of this work is represented by the development of a control algorithm
for hexapod robots that can maintain the robot’s body horizontally regardless of the slope
and the unevenness of the terrain. This goal can be achieved without the addition of
any sensors on the robot’s feet because the estimation of the motors’ torque allows it to
detect contact with the ground, and by knowing the angles of each joint, the robot’s pose
is reconstructed through inverse kinematics. In addition, this control algorithm extends
the functionality of NUKE, an open-source software compatible with different kinds of
hexapod robots and widespread in this field, making this work helpful for other studies
involving hexapod locomotion.

In Section 3, the kinematic model and the procedure to account for ground shape are
described. In Section 4, the dynamic model used to estimate the torque at each motor is
proposed and numerically validated. In Section 5, the novel architecture system compre-
hensive of a compensation algorithm is presented, and finally, in Section 6, experimental
results in different scenarios are reported.

3. Locomotion Control

Locomotion control of the hexapod robot is mainly accomplished through the direct
command of its legs’ endpoints. Leg endpoints are defined as the 3D coordinate points
located at the extremities of each leg, as shown in Figure 2.

Since legs are 3-DOF systems that lead to the endpoints, it is possible to attain full
control of a leg by imposing its endpoint position and employing an inverse kinematics
engine to calculate the associated servomotor angles.
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Figure 2. Robot endpoints in neutral position. The blue segment represents the coxa, the green one
the femur, and the red one the tibia.

Such control architecture offers the advantage of collapsing the description of each
leg configuration to a single point position in space, leading to much simpler and clearer
handling of the robot’s movement.

The position that the robot assumes at the deployment state is called the neutral
position, and the associated endpoint coordinates are hardcoded into the robot controller
software. This position represents a neutral state that the kinematic engine will use as a
reference to build its walking gait.

3.1. Endpoints Handling

The coordinate systems employed in the kinematic analysis of the robot are presented
in Figure 3. The global coordinate system is fixed at terrain level at 0,0,0 coordinates and will
be used to account for the robot’s position with regard to the terrain and the environment.
Therefore, for the first iteration, the transformation matrix for the global-to-body coordinate
system Tglobalbody,0 (alias: Tgb,0) is as shown in (1):

Tgb,0 =


1 0 0 SPx
0 1 0 SPy
0 0 1 SPz
0 0 0 1

 (1)

where ‘SP’ is the starting position. Note that SPz should be the initial robot height and must
be consistent with the neutral position endpoint coordinates.

The body coordinate system and the legs coordinate systems instead move alongside the
robot’s body and are used to both describe the robot’s orientation and solve the inverse
kinematics for endpoint position and servomotor angles.

The transformation matrix that binds the leg c.s. and the body c.s. Tbodyleg (as: Tbl) is
defined as (2):

Tbl =


1 0 0 xj
0 −1 0 yj
0 0 −1 0
0 0 0 1

 (2)
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where in (2), xj and yj are the joint positions in the body c.s., from which it is inferred that
Tbl is unique for each leg as each leg has a different joint position.

x [mm]

Figure 3. The body, leg, and global coordinate systems.

Once the desired endpoint position has been defined, servomotor angles can be
assessed. The convention used in the kinematic analysis is shown in Figure 4, where ϵ
represents the servomotor orientation and θ, ϕ, and ψ represent the coxa, femur, and tibia
servomotor angles, respectively.

By expressing the desired endpoint position in the leg coordinate system, eventually,
through (2), the servomotor angles can be calculated through (3)–(7):

trueX =
√

x2 + y2 − lc (3)

im =
√

trueX2 + z2 (4)

θ = − arctan
( y

x

)
− ϵ (5)

ϕ =
π

2
− arctan

(
trueX

z

)
− arccos

(
l2

f + im2 − l2
t

2 im l f

)
(6)

ψ = π − arccos

(
l2

f + l2
t − im2

2 l f lt

)
(7)

where in (3)–(7), (x, y, z) is the position of the desired leg endpoint in the leg coordinate
system, and lc, l f , and lt are the lengths of the coxa, femur, and tibia, respectively. The
endpoint positions are defined in the body coordinate system; therefore, their significance
is fully derivative of the position and orientation of the robot’s body. This means that every
movement that the robot’s body is instructed to make can be immediately transposed to a
relative displacement of the endpoints; the complete kinematic model can be built based
on that assumption.

A gait engine is a subroutine of the locomotion algorithm that handles leg synchroniza-
tion: in general, any pedal locomotion divides each leg in either a pushing or swinging state
in a fixed order in such a way to allow for repetitive, continuous movement. The gait engine
is responsible for assigning the swing and push roles as well as the direction and amount
of space to cover for each iteration tick. The gait engine employed is not fundamental
to describe the desired formulation and will not be discussed as descriptions are already
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available in the literature (the gait engine employed in this treatment is the one provided
by NUKE). Therefore, from the user input comprising the x-speed, y-speed, and z-axis
rotation speed, the gait engine provides the movement data that the robot is supposed to
follow, and the kinematic problem is to find the related endpoint displacement.

Figure 4. Definition of θ, ϕ, and ψ.

In order to solve the kinematic problem, it is imperative to be able to describe the
robot’s position and orientation at each iteration step by taking into consideration all the
movement data provided by the gait engine and by direct command of the user (the user
is supposed to be able to bypass the gait engine instructions to apply direct control of the
robot’s pose at each iteration step).

That is performed by building the Tglobalbody transformation matrix at each ith iteration
step (as Tgb,i) as shown in (8):

Tgb,i = Ttr,i Qter,i Movi RotZb,i RotYi RotXi (8)

where in (8),

• Ttr,i is the translational transformation matrix holding data about the movement
instructions coming from the gait engine. It is built as shown in (9) and reconstructs
the robot’s position as if it were just under the influence of the gait engine alone:

Ttr,i = Ttr,i−1 Qtr,i = Tgb,0 · Qtr,1 · . . . · Qtr,i (9)

In which Qtr,i is the transformation matrix representing the ith step movement due to
the gait engine instructions. It is made of two contributions, as shown in (10):

Qtr,i = δTmov,i δRotZg,i (10)

In which δTmov,i is the component related to the translational movement and δRotZg,i
is the one related to the z-axis rotation. Those are defined in (11) and (12), respectively:

δTmov,i =


1 0 0 δxgait,i
0 1 0 δygait,i
0 0 1 0
0 0 0 1

 (11)
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δRotZg,i =


cos

(
δrotzgait,i

)
− sin

(
δrotzgait,i

)
0 0

sin
(

δrotzgait,i

)
cos

(
δrotzgait,i

)
0 0

0 0 1 0
0 0 0 1

 (12)

where in (11) and (12), δxgait,i, δygait,i, and δrotzgait,i are the gait engine movement
instructions for the ith step x-axis displacement, y-axis displacement, and z-axis rota-
tion, respectively.

• Movi is the transformation matrix holding the user-imposed translational movement
data of the robot’s body, defined as in (13):

Movi =


1 0 0 bodyPosxi

0 1 0 bodyPosyi

0 0 1 bodyPoszi

0 0 0 1

 (13)

• RotZb,i, RotYi, and RotXi are the transformation matrices holding the user-imposed
orientation of the robot’s body, being the z-axis rotational matrix, y-axis rotational
matrix, and x-axis rotational matrix, respectively.

• Qter,i is the terrain-compensated reorientation matrix addressing additional body
displacement due to terrain shape. It depends on the position of the robot’s body in
the terrain environment. It can either be given by user input or computed in real-time
based on the terrain shape in the robot’s surroundings. Our objective is to assemble
this matrix automatically by employing a terrain-tuning algorithm that takes as its
only input the terrain elevation function h(x, y), which can again either be given as
user input (assuming perfect knowledge of the terrain shape) or constructed by an
estimation architecture. Qter,i is an identity matrix for completely flat terrains.

Therefore, the entire movement comprising all contributions that the robot’s body
goes through at the ith iteration step is represented by the transformation matrix calculated
as in (14):

Qbody,i = T−1
gb,i−1 Tgb,i (14)

Due to friction, the pushing legs endpoints are fixed to the terrain; therefore, their
global position should not change between iterations. This means that if the body moves
as described by (14), then the relative position of the endpoints should change as (15):

xi
yi
zi
1

 = Q−1
body,i


xi−1
yi−1
zi−1

1

 (15)

This way, it is possible to solve the kinematic problem for the pushing legs endpoints.
Note that since (15) is built recursively, it needs starting values. These are the neutral
position endpoints, which is why their coordinates are hardcoded into the control software.
The swinging legs endpoint positions are defined as (16):

xi
yi
zi
1


gCS

= Ttr,i Qter,i RotZg,i Tmov,i


xneu
yneu
zneu

1


bCS

(16)

where xneu, yneu, and zneu are the endpoint coordinates of the neutral position. The reason
why (16) refers to the neutral position endpoint coordinates and addresses RotZg,i and
Tmov,i instead of δRotZg,i and δTmov,i is because of the core difference between (8) and
(14): instead of building the endpoint transformation from the previous endpoint position,
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the gait engine now needs to displace the leg in such a way that the swinging stride motion
is obtained. This means that the movement data coming from RotZg,i and Tmov,i are no
longer about increments of movement but effective displacements from the neutral position.
The gait engine should return these values when assessing the swinging legs endpoints.

To account for terrain presence and ensure that the leg will always be over the terrain
height while swinging, the correction shown in (17) should be applied:

zi,gCS = zgait,i + h
(
xi,gCS, yi,gCS

)
(17)

where h(x, y) is the elevation function of the terrain.
Once the global coordinates of the swinging legs endpoints are found, the body-

centered coordinates are found as in (18):
xi
yi
zi
1


bCS

= T−1
gb,i


xi
yi
zi
1


gCS

(18)

Completing the kinematic problem assessment.

3.2. Terrain Compensation Algorithm

The objective of this section is to develop a way to orientate the body pose of the robot
in such a way that while moving the robot freely on the ground, its body becomes ‘isolated’
with respect to the ground itself.

Assuming perfect knowledge of terrain geometry in terms of angular and discontinuity
interface position would not be realistic nor aligned with our objective of developing an
adaptive algorithm. Our purpose is the design of an algorithm able to deal with any terrain
just relying on the elevation function, which could be measured by sensors mounted on the
robot itself, but this is not the purpose of this work [16,41].

First of all, it is important to unequivocally define the ‘body isolation’ condition:
this can be achieved by defining a set of points in the robot’s body and then considering
the height of these points with respect to the ground as a way to evaluate the body’s
relative position to the terrain. A possible approach is to ask for those points to maintain
a distance from the ground as close as possible to the one defined by SPz in (1). If these
points of interest are correctly chosen in order to represent the vertices of the robot’s body,
the entire base should follow the terrain profile and prevent unwanted situations like the
ones discussed beforehand.

With the proposed algorithm, the robot’s body will be able to position itself in such a
way that it complies with the terrain geometry no matter the harshness.

In the algorithm presented, six points are selected in the locations of the robot’s
shoulders, as shown in Figure 5.

The main assumption of the compensation model is that the robot will be able to
position itself in the optimal pose by moving from its horizontal pose defined by Ttr
with three degrees of freedom only: a first displacement in the z-direction followed by a
rotation around its body c.s. y-axis and a final relative rotation around its body c.s. x-axis.
In transformation matrices, this is described by (19):

Qter,i = Dter,i RotYter,i RotXter,i (19)

where
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• Dter,i is the z-axis rigid translation matrix defined as in (20):

Dispter,i =


1 0 0 0
0 1 0 0
0 0 1 δzter,i
0 0 0 1

 (20)

• RotYter,i and RotXter,i are the rotation matrices defined as in (21) and (22):

RotYter,i = Rot(αter,i, Y) (21)

RotXter,i = Rot(βter,i, X) (22)

where in (21) and (22), αter,i is the angular rotation around the body c.s. y-axis and
βter,i is the angular rotation around the body c.s. x-axis.

From the global coordinate system, the joint positions after the terrain reorientation
are (23): 

xjter,i

yjter,i

zjter,i

1


gCS

= Ttr,i Dispteri RotYteri RotXteri


xj
yj
zj
1


bCS

(23)

Since we want our points to have relative heights as close to SPz as possible, we can
build an algorithm that minimizes the total relative height quadratic error. It is accom-
plished by accounting for each point, shown in (24) with reference to (25):

f = ∑
(
zjter − Zterrain − SPz

)2
=

= ∑ ϵ2
j (a, b, c, d, e) =

= ∑(a − xj b + zj c d + yj d e+

− h
(
xjter , yjter )− SPz

)2 (24)
a = δzter,i

b = sin αter,i
c = cos βter,i
d = cos αter,i
e = sin βter,i

(25)

The problem is a multivariable optimization problem with equality constraints coming
from trigonometric function consistency, solvable by writing the Newton–Euler equations
with Lagrangian multipliers [42]. The formulation obtained and reported in Equation (26)
comes from adjoining the equality constraints in Equation (25) to the cost function in
Equation (24):

L = f +
[
λ1 λ2

][c2 + e2 − 1
b2 + d2 − 1

]
(26)

The necessary conditions hold for the minimum [42] as ∇L = 0.
The Lagrangian function is differentiable, and its gradient is calculated by taking the

partial derivatives of Equation (26).
In order to find the solution to ∇L = 0, M-V-O-P numerical methods need to be

employed. In this situation, given that the cost function is quadratic, it is possible to
effectively employ the steepest descent algorithm to iterate and find the solution very
quickly and with a relatively low computational cost.

Having already defined the gradient of the Lagrangian, the steepest descent algorithm
is implemented as in (27):

Xit+1 = Xit −∇L(Xit) · Weight (27)
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With the stopping condition being ||Xit − Xit−1|| ≤ tol. In (27), the Weight parameter
represents the adjustment index of the increment to the next-iteration solution. Generally,
a Weight of 1 × 10−5 is good enough to obtain convergent solutions in a few iterations in
most general applications.

This method ensures good performances in most terrain situations, only experiencing
non-convergence problems in extreme scenarios. As shown in Figure 6, with reasonable
weight (Weight) and tolerance (tol), the solution is generally found very quickly.

Figure 5. Interest points positioned with robot’s shoulder joints.

The robot’s stability in the current formulation is ensured through NUKE’s original
gait engine, which arithmetically enforces the robot COG to always stay within bounds.
Indeed, the only gait types accepted by the algorithm are those that allow the hexapod
robot to maintain static stability in all intermediate positions during movement, with the
“less-redundant” one being the tripod gait, where three legs are moved at each time, but
the algorithm always ensures that the support triangle bounds the COG projection.

Figure 6. Gaussian distribution of iterations required for convergence with Weight = 1 × 10−5 and
tol = 0.01 for a typical walk task in the terrain h(x, y) = 50 mm ×

(
sin
( x

100 mm
)
+ cos

( y
100 mm

))
.

Since the problem was defined in general terms, the algorithm can run even in situa-
tions where rough interfaces are present, moving the robot in such a way as to allow for a
smooth transition between angular interfaces and navigation over non-continuous terrains.
An important assumption considered in this analysis is the simplification of the terrain
behavior: an ideal undamped and rigid terrain is assumed, and the potential slipping of the
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leg upon exceeding the static friction limit is neglected since a purely geometrical approach
is proposed.

In the scenario of a steep ramp given a full horizontal speed input, the robot can
smoothly go from being completely horizontal to adapting to the terrain inclination,
as shown in Figures 7 and 8.

Since the algorithm runs on the elevation function only, realistic terrains defined
through conventional discrete models [43] can be used without particular adjustments.

Figure 7. Robot continuous adaptation to interface and ramp.

Figure 8. Angle variation in robot’s inclination during ramp interface. Note how it is a continuous
distribution until it matches the ramp’s angulation.

4. Torque Estimation
4.1. Dynamic Model

Smart servos generally employed in physical hexapods can provide feedback in both
position and speed; however, these signals are almost completely insensitive to terrain
interaction effects. In particular, they are blind to sliding and instability issues. Moreover,
they might not be affected by trips or grip losses. Even in overstepping cases, the robot will
rigidly fall while reporting to be working perfectly.

For this reason, to intercept terrain contact, another signal must be taken into account.
Torque is a value that is highly dependent on which legs support the body or not, as well as
reacting swiftly to terrain interaction. Servomotor torque can, therefore, become our way
to make the robot inspect its surroundings, and by compensating unstable-pose scenarios
by repositioning the legs correctly, we can ensure robust movement through the entire
control operation.
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However, to correctly interpret the torque values coming from servos, developing a full
dynamic model of the robot’s movement is necessary, as presented in the following section.

The degrees of freedom of the robot’s body are defined as in (28):

Xb =



xb
yb
zb

rotx
roty
rotz

 (28)

where the DOFs follow the order set in (8).
The degrees of freedom of a single leg are defined as the state vector shown in (29)

with consistency with the previous definitions of θ, ϕ, and ψ:

Xa,l =

θi
ϕi
ψi

 (29)

The state vector comprising all legs’ degrees of freedom is defined as Xa, shown in (30):

Xa =

Xa,1
...

Xa,6

 (30)

The main problem with the modeling of the hexapod robot and legged locomotion,
in general, is that to use lightweight dynamic algorithms like Newton–Euler equations,
it is an absolute necessity to have one and only one grounded joint at all times [44–46].
Legged locomotion usually does not fall under these requirements, and multiple ground
constraints must be addressed, adding great complexity to the model.

In order to avoid this kind of problem, it is possible to take an alternate route for
modeling: instead of considering the robot as positionally constrained at the ground at
the pushing legs endpoints, we consider the robot as not having any constraints at all and
adjoining the kinematic constraints to the Lagrangian dynamic equations.

Since the ground contact points act as hinges for the robot, the kinematic constraints
will be the nullity of these points’ linear velocities.

The coxa, femur, and tibia coordinate systems with reference to Figure 9 are identified
with the matrices (31)–(33). Those are used to find the relative positions of either the coxa,
femur, and tibia joints or the feet endpoint, e.g., r f−c being the position of the femur joint in
the coxa coordinate system:

Tbodycoxa =


cos (ϵ + θ) − sin (ϵ + θ) 0 xj
sin (ϵ + θ) cos (ϵ + θ) 0 yj

0 0 1 0
0 0 0 1

 (31)

Tcoxa f emur =


cos ϕ 0 sin ϕ lc

0 1 0 0
− sin ϕ 0 cos ϕ 0

0 0 0 1

 (32)

Tf emurtibia =


cos ψ 0 sin ψ l f

0 1 0 0
− sin ψ 0 cos ψ 0

0 0 0 1

 (33)
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Figure 9. Zoom on one leg of the robot highlighting coxa, femur, and tibia coordinate systems.

By defining Ttrbody as in (34), the transformation matrix that describes the effects of
the body DOF on its pose, the axes of rotation of the coxa, femur, and tibia joints can be
found under a fixed coordinate system as shown in (35)–(37), and are those represented in
Figure 10:

Ttrbody = Mov RotZ RotY RotX (34)

Ac = Ttrbody Tbodycoxa Az (35)

A f = Ttrbody Tbody f emur Ay (36)

At = Ttrbody Tbodytibia Ay (37)

where Az is the [0, 0, 1, 0] axis and Ay is the [0, 1, 0, 0] axis.

Figure 10. Axes of rotations of actuated joints.
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From this definition, we can define the kinematic constraint for pushing the legs’
grounded endpoints as (38), where the derivation of (39) is trivial, which shows the relation
between the velocities of the actuators and the robot’s body DOF:

Ac,l Ẋb + Bc,l Ẋa,l = 0 (38)

Ẋa,l = −B−1
c,l Ac,l Ẋb (39)

The Bc,l and Bc,l Jacobian constraint matrices’ definition is reported in (40) and (41):

Bc,l =
[
−r̂ f t−c Ac −r̂ f t− f A f −r̂ f t−t At

]
(40)

Ac,l =
[
(RotZ RotY RotX) −r̂ f−b(RotZ RotY RotX)

]
Ψ (41)

In which Ψ is the matrix that transforms the time derivatives of the robot’s body
DOF into the robot’s body twist (‘twist’ being the name given by [46] of the kinematic
screw, and r̂ is the skew matrix representation of the r position vector. The kinematic screw
is the velocity vector field of dimension 6 × 1 composed of the linear velocities and the
angular velocities).

A single constraint equation for all degrees of freedom of the robot requires applying
the definitions provided by (42) and (43), which results in the expression (44):

Ac =

ip1 Ac,1
...

ip6 Ac,6

 (42)

Bc =

ip1 Bc,1
. . .

ip6 Bc,6

 (43)

Ac Ẋb + Bc Ẋa = 0 (44)

where ipi is a boolean value that accounts for whether the ith leg is in a pushing, constrained
state (and therefore its endpoint is grounded) or in a swinging state.

Since the kinematic constraint Equation (44) was written with reference to both Xa
and Xb, the Lagrange equations will consider the full state vector as in (45):

X =

[
Xa
Xb

]
(45)

By defining the kinematic constraint equation, the dynamic model is expressed as (46):

τ = τa +
(
−A+

c Bc
)T

τb (46)

where τa is the contributions coming from the real actuated joints Xa and τb is the ones
coming from the body DOF Xb. A+

c is the left pseudoinverse of the Ac matrix.
By defining the inertia matrix as in (47) and the potential energies as (48) [46], the two

contributions can be calculated as (49) and (50):
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M(X ) =
6

∑
l=1

(
JT
c,l Mc Jc,l + JT

f ,l M f J f ,l + JT
t,l Mt Jt,l

)
+

+ JT
b Mb Jb =

[
Ma(X )
Mb(X )

] (47)

U = −
[
gT 0

] 6

∑
l=1

(mc Ttrbody Tbodycoxa,l rg−c+

+ m f Ttrbody Tbody f emur,l rg− f+

+ mt Ttrbody Tbodytibia,l rg−t)+

−
[
gT 0

]
mb Ttrbody rg−b

(48)

τa = MaẌ +

((
X T ⊗ I18

)∂Ma

∂X +

−1
2

(
I18 ⊗ Ẋ T

) ∂M
∂Xa

)
Ẋ +

(
∂U
∂Xa

)T (49)

τb = MbẌ +

((
X T ⊗ I6

)∂Mb
∂X +

−1
2

(
I6 ⊗ Ẋ T

) ∂M
∂Xb

)
Ẋ +

(
∂U
∂Xb

)T (50)

In which ⊗ is the Kronecker product following notation by [47]. Note that since Xa is
measurable and Xb can be estimated through Qbody,i calculated through (14), the full-state-
vector knowledge is assumed at all times.

4.2. Dynamic Model Validation

The dynamic model was developed through various simplifying assumptions. Hence,
its validity is subordinate to the fact that those assumptions and simplifications are small
enough to be neglected from a real application perspective. Following other works that
deal with crawler robot physics [48], the dynamic model validation is carried out through a
direct comparison of results with a Matlab SimMechanicsTM simulation.

The Matlab SimMechanicsTM simulation employs a physics engine and uses a full 3D
model of the hexapod robot, as well as fully simulating friction and terrain physics through
the Simscape Multibody Contact Forces Library [49] (the foot–terrain interaction system is
shown in Figure 11).

The comparisons shown in Figure 12 show that the dynamic model closely matches the
result from the SimMechanicsTM physics engine. While there are differences in the torque
spikes coming from the simulated friction model physics, the overall torque behavior
perceived by the SimMechanicsTM physics engine closely matches the one generated by our
dynamic algorithm. This not only means that our algorithm is indeed accurate enough to
provide good results, but the assumptions we made while developing the dynamic model,
such as the way we modeled the grounded endpoints through kinematic constraints, mean
that the PKM interpretation of the hexapod movement and the simplification of the hexapod
feet providing single-point contact between the leg and terrain is small enough not to cause
mismodeling errors in the final calculations.
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Figure 11. Graphical rendition of the plane–spheres interaction through the Simscape Multibody
Contact Forces Library.

Figure 12. Comparisonsof dynamic results of a simple walk task from SimMechanicsTM simulation and
the dynamic model. Graphs refer to the right front leg’s coxa, femur, and tibia actuators, respectively.
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5. Closed-Loop Control

A closed-loop-control approach is essential to obtain stable, robust movement through-
out the entire range of movement tasks that the robot will be subjected to. After a few
steps, a completely feed-forward approach may lead to positioning errors related mainly to
robot–interface mismatching between reality and expected values, which would translate
to grip losses and other unwanted behaviors to avoid in the presence of uneven terrain.

The two major situations to avoid are the cases where the feed-forward locomotion-
control system expects the terrain to be higher and, therefore, leaves the leg hanging.
The case where it expects it to be lower and, therefore, pushes the body back in an overstep-
ping action destabilizes the entire robot pose. These situations are bound to happen due to
either terrain mismodeling or desynchronization between the expected behavior from the
simulation environment and the actual robot motion, which is mainly due to the increasing
drift between the real and expected position of the robot as it accumulates positioning
errors due to all non-ideal behaviors and performances coming from its hardware and
components. Note how both situations happen in the leg-lowering part of the swing phase
only, meaning a feedback control algorithm acting on real ground touching just needs to be
called during that movement section.

The feedback control system works by comparing the expected value of the actuators’
torques coming from the dynamic model with the actual sensed torques coming from the
sensors system.

By reading the actuator position and speed and estimating the body movement from
Qbody,i, it is possible at each iteration to build the estimated Xa and Xb state vectors, to which
the algorithm immediately calculates the τa and taub components as defined in (49) and
(50), with these being the only actual dependencies.

Once these two values are stored in memory, the lowering legs’ sudden terrain touch
can be simulated in the dynamic model by simply interacting with the ipi values defined
earlier in (42) and (43). The ipi boolean represents the grounded state of the ith leg’s
endpoint; therefore, by temporarily setting it to one and building the Ac and Bc constraint
matrices, it is possible to obtain the hypothetical terrain-reached torques for all actuators
through (46). This is an easy, relatively CPU-light way to obtain full references for the
leg–terrain touch situations.

If there is a sensible correspondence between the expected torques and the sensed
ones, then the terrain is considered reached for that particular leg, and its movements
are stopped. This accounts for the overstepping part of the problem, while it may still be
possible for the legs to reach their desired end positions when no terrain has been sensed.

In order to solve the ‘leg-hanging’ problem, it is only necessary to lower the expected
altitude of the desired leg endpoint position (in the employed algorithm, the gait altitude
instruction is lowered by 1 cm each time), zgait,i, and recompute the needed servomotor
angles. This can be obtained by lowering the legs until the terrain is touched and the
previous condition is met, effectively assuring that the legs reach the ground and stop right
before moving to the push phase.

Finally, since the servomotor stopping condition is changed to sensed terrain touch,
the lowering leg endpoints will probably differ from the ones expected by the locomotion
system instructions. Therefore, the new positions need to be updated by employing
forward kinematics tools such as the Tbodycoxa, Tbody f emur, and Tbodytibia transformation
matrices derived through (31)–(33).

A scheme summarizing the leg-handling system is shown in Figure 13. An implemen-
tation example of the closed-loop-control solution is presented in Algorithm 1.
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Figure 13. Scheme of the feedback control algorithm interaction with push and swing phases.

Algorithm 1: Lowering-leg-control algorithm pseudocode.

1 tau_a, tau_b = dynamic_model(X_a, X_b, DynValues, TrMatrices);
2 torques = read_motor_torques();
3 while lowering_legs is not empty do
4 for leg in lowering_legs do
5 ip[leg] = 1;
6 A_c, B_c = constr_matr(TrMatrices, ip);
7 tau = tau_a + (-pinv(A_c)*B_c).T * tau_b;
8 if 0.9*corrispondence(tau, torques) == 1 then
9 stop_motors(leg);

10 theta, phi, psi = read_motor_angles(leg);
11 endp_pos[leg] = FK(theta, phi, psi, leg);
12 del leg in lowering_legs
13 else if is_motors_stop(leg) then
14 endp_pos[leg].z = endp_pos[leg].z - 10;
15 else
16 pass;
17 end
18 end

6. Experimental Results

The developed motion-control architecture was experimentally verified by accom-
plishing a series of testing scenarios. The experimental tests aim to stress two essential
aspects of the architecture presented and highlight the improvements with respect to a
stock controller. They also aim to analyze the effect of feed-forward locomotion control
and the feedback-stabilization contribution. In particular, the two scenarios reported are
as follows:

• Obstacle recognition: Where the robot is fed with flat terrain data and it needs to adapt to
the presence of software ‘invisible’ terrain. The task will be considered completed if the
robot can remain stable due to overstepping into obstacles and tripping, completing
the traversal correctly.
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• Ramp climbing: Where the robot is fed with data of the ramp terrain while the body is
asked to remain horizontal throughout the full movement. The task will be considered
completed if the robot can handle the angular interface, climb the ramp effectively,
and maintain the body horizontally at all times. The difficulty comes from the fact
that even a tiny deviation in the trajectory direction, which is highly possible since
no positional feedback is enforced in the robotic platform, can cause significant errors
between the actual and expected position of the terrain.

Moreover, in order to analyze the behavior of the overall architecture further, two
additional scenarios were introduced to highlight the system’s behavior. These can be
considered as variations of the two previous scenarios and are presented to further demon-
strate the system’s ability to adjust the orientation of its base according to the terrain’s slope
in the first case and its capability to handle the complete lack of reliable terrain mapping in
the second case (simulated by the presence of multiple obstacles).

6.1. Obstacle Recognition

The feedback control algorithm adds to the robot’s walking-motion robustness by
allowing it to sense and react to unexpected obstacles in the workspace. This means that
when facing a mismodeled obstacle, like a section of the terrain wrongly modeled as flat
and instead being at a higher altitude, the feedback logic is expected to compensate for the
feed-forward error and update the gait to maintain movement stability.

In order to reproduce this condition, a solid object was placed within the robot’s
walking path. The obstacle considered has a parallelepiped shape (a rigid book). In our
tests, the obstacle is approached vertically, and so the static coefficient between rubber
and cardboard (that could be estimated at approximately [0.5–0.8] [50]) is not considered.
Moreover, its surface is approximated to be undamped and rigid. The obstacle and robot
setup schematics are shown in Figure 14.
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Figure 14. The obstacle course setup dimensions and position.
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As shown in Figure 15a, while the stock controller puts the robot in an unstable
stride, the novel closed-loop solution is indeed able to maintain the body horizontally and,
by not overstepping onto the solid object, all legs hold to the ground, assuring equilibrium
(Figure 15b). These aspects are further highlighted when a payload is mounted on top of
it, showing how the stability of movement transfers to the stability of the robot’s body.
The robustness of the walking stride made it possible to completely disregard the presence
of the obstacle in the robot’s path.

A comparison of the front right and middle right femur servo angle variation through
the entire operation between NUKE and the feedback control logic is shown in Figure 16. It
is evident how, thanks to the feedback control algorithm, in the middle of the stride cycle,
the legs found the obstacle, which resulted in the respective femur actuator stopping in
its tracks.

In Figure 15a, it is also possible to check the ‘blindness’ of the robot while being moved
by the stock controller: despite being in an unstable position, the angular feedback of the
servomotors still reports no extraordinary values, and therefore the robot still attempts to
walk as if no obstacle was in its path in the first place.

(a)

(b)
Figure 15. Physical applications of obstacle-recognition capability. On top are shown performances
of the NUKE controller; at the bottom, the closed-loop control logic is used instead. (a) Stock NUKE
controller instabilities; (b) feedback-control-logic-aided walking.

Figure 16. Right middlefemur actuator angle comparison between operations. In blue, the operation
employs the NUKE controller; in red, the feedback control algorithm is used instead.

6.2. Ramp Climbing

In the ramp-climbing task, the robot is positioned right in front of the angular interface,
with the instruction of a forward constant movement. The setup scheme is presented in
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Figure 17. In order to request the robot’s body to remain horizontal, the Qter matrix is built
via (51) rather than (19):

Qter,i = Dter,i (51)

As shown in Figure 17, the ramp inclination angle considered is small so that the static
friction coefficient between rubber and plexiglass (that could be estimated approximately
around [0.8] [50]) is neglected and so that the slipping effect between the leg and terrain is
not affecting the results. Moreover, the surface of the ramp is approximated to be undamped
and rigid. The most challenging part of the task is the traversal of the interface between the
flat plane and the ramp, as desynchronization effects are present the most in that location.

[mm]

[mm]

[mm]

[mm]

Figure 17. The ramp-climbing task setup dimensions, angulation, and position.

This is visible in Figure 18a, where when the control feedback is absent, the legs are
left hanging often, leading to movement unsteadiness and ultimately increased traversal
difficulty. By inducing the novel control architecture, as shown in Figure 18b, the robot is
instead able to climb the ramp correctly because feedback control allows for correct contact
between the legs and terrain and because the control of the body pose introduced in the
proposed algorithm allows the robot to maintain a horizontal body pose regardless of the
incline angle of the terrain.
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(a)

(b)
Figure 18. Physical applications of the closed-loop-control architecture. On top, the feedback
algorithm is absent; at the bottom, the full control logic is used instead. (a) Feed-forward-only
controller-stability problems; (b) feedback control logic performance.

6.3. Additional Tests

In order to investigate the performance of the system better, two specific additional
tests are reported. The first test is an evolution of the ramp-climbing test previously
described and schematized in Figure 17. In this case, an object with predominant vertical
development (a paper box) is placed on the robot. Due to its geometry, it represents an
unstable equilibrium configuration that can easily fall in case of a robot misstep or an
excessive tilting of its base.

The second test is developed to extend further the terrain-mapping error previously
presented in the obstacle-recognition scenario. The test was carried out by instructing the
robot to move forward, expecting a fully flat terrain but then littering the entire path with
unknown and unforeseen obstacles of different sizes, resulting in a completely unknown
terrain map. Figure 19 collects some photos representing the robot while correctly complet-
ing the mission. In detail, for the first additional scenario, the frames show the horizontal
position of the robot’s body and the obstacle in balance before approaching and on the
ramp. The frames of the second additional scenario show the robot during its motion on
an unknown terrain. It is possible to notice that all legs are properly touching the terrain
as expected.

(a)
Figure 19. Cont.
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(b)
Figure 19. Tests designed to show the control algorithm’s capabilities and performance. On top,
an oblong object is put on an unstable base on top of the robot, ready to fall should the robot misstep
or fail to achieve base flatness; at the bottom, the robot is sent moving in an unknown environment
(algorithm expects full flatness) and it needs to avoid missteps by reacting swiftly to unexpected
torque changes. (a) Inclination control stress test to check for base flatness during ramp climbing;
(b) unknown, obstacle-filled environment stress test to check for responsiveness in adapting to
unknown terrain with varying features.

7. Assumptions and Limitations

In the presented study, the terrain was assumed to be rigid and non-deformable. Ad-
ditionally, we neglected friction effects during walking, thus neglecting potential slippages
that may occur. Furthermore, the current architecture lacks a localization and feedback
control that considers the robot’s position on the terrain map, resulting in an open-loop
trajectory execution. Additionally, the map definition is simplified at this stage, being
represented merely as a set of elevations (z) in the 2D (x, y) plane, treated as known data.

8. Conclusions

This paper presents a simple but effective kinematic model derived from a standard
open-source formulation (NUKE), a widely recognized and utilized model in the field
of robotics. The original formulation is further improved through the manipulation of
hexapod leg endpoints: through the use of transformation and pose matrices, the legs’
position in space and the robot’s pose can be accessed at any time. Furthermore, a com-
prehensive architecture is developed to handle terrain irregularities. This architecture is
designed to adjust the robot’s body pose, ensuring its isolation from rough terrain imper-
fections without the addition of any sensors to the original hardware configuration. For
this purpose, a dynamic but computationally lightweight model is presented with the aim
of accurately estimating servomotor torques. Moreover, a terrain-sensing feedback control
algorithm is introduced to correct instability situations resulting from measurement and
actuation errors. The algorithm guarantees leg–ground reach based on a feedback architec-
ture based on estimated torque (from the model) and the torque provided by servomotors
as inputs. The proposed architecture, composed of a terrain-adapting, torque estimation,
and terrain-sensing algorithm, was evaluated in terms of applicability and performance
through experimental tests conducted on the PhantomX Mark II robotic platform. The
experimental results presented confirm the expected behavior of the system in different
scenarios of interest, such as ramp climbing and the presence of unknown obstacles on
the ground. The proposed control architecture is based on several assumptions (such as
the knowledge of the terrain shape by other systems or the assumption that the terrain is
undeformable). Relaxing these assumptions could be an interesting research direction for
future developments.
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