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Abstract: Inertial Measurement Units are widely used in various applications and, hardware-wise,
they primarily consist of a tri-axial accelerometer and a tri-axial gyroscope. For low-end commercial
employments, the low cost of the device is crucial: this makes MEMS-based sensors a popular
choice in this context. However, MEMS-based transducers are prone to significant, non-uniform
and environmental-condition-dependent systematic errors, that require frequent re-calibration to be
eliminated. To this end, identification methods that can be performed in-field by non-expert users,
without the need for high-precision or costly equipment, are of particular interest. In this paper, we
propose an in-field identification procedure based on the Total Least Squares method for both tri-axial
accelerometers and gyroscopes. The proposed identification model is linear and requires no prior
knowledge of the parameters to be identified. It enables accelerometer calibration without the need
for specific reference surface orientation relative to Earth’s gravity and allows gyroscope calibration
to be performed independently of accelerometer data, without requiring the sensor’s sensitive axes
to be aligned with the rotation axes during calibration. Experiments conducted on NXP sensors
FXOS8700CQ and FXAS21002 demonstrated that using parameters identified by our method reduced
cross-validation standard deviations by about two orders of magnitude compared to those obtained
using manufacturer-provided parameters. This result indicates that our method enables the effective
calibration of IMU sensor parameters, relying only on simple 3D-printed equipment and significantly
improving IMU performance at minimal cost.

Keywords: MEMS; IMU; accelerometers; gyroscopes; in-field calibration; in-field identification; total
least squares

1. Introduction

Inertial Measurement Units (IMUs) are widely used in many applications where the
position and attitude of a body need to be evaluated: civilian navigation systems [1],
robotics [2], aerospace [3], medical applications [4], as well as commercial low-end portable
devices such as computers or smartphones [5]. Six-axis IMUs are essentially composed
of an accelerometer and a gyroscope: these are transducers that output analog or digital
signals based on physical acceleration or angular velocity input, respectively. In both
cases, a linear function can be used to describe the relationship between input and output,
allowing us to determine a mathematical model for the sensor [6].

To meet the widespread demand for consumer-grade devices, IMUs based on Micro
Electro-Mechanical Systems (MEMS-based) are of particular interest due to their advan-
tages in cost, size, weight, and power consumption compared to mechanical or optical
alternatives [7]. However, MEMS manufacturing technologies produce sensors having
non-uniform model parameters, which the manufacturer only estimates on batches [6]. For
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these two reasons, if manufacturer-provided parameters are used in the sensors’ mathe-
matical model, slight to large measurement errors can be expected. Additionally, if those
measurements need to be post-processed (as for position and attitude estimation) the errors
are likely to be further propagated and amplified [8].

Sensor errors are typically categorized into systematic and random errors. While random
errors can only be accounted for using stochastic models [9], systematic errors are determin-
istic, i.e., they can be minimized using a calibration procedure: essentially, sensor model
parameters are identified by comparing their mathematical model output with a known ref-
erence. Calibration techniques can be classified into two main types: Laboratory and in-field
ones. While the former requires using high-precision and costly equipment, such as mechan-
ical rotating tables, to provide a known reference, the latter can be conducted by the end
user without the need for high-end apparatus or external sensors [6]. The low-repeatability
of the manufacturing process, the low cost and the environmental-condition-dependent
behavior that characterize MEMS-based sensors make in-field techniques a sensible choice
for their calibration.

Accelerometer in-field calibration methods leverage the fact that, when the sensor is
kept static, the Euclidean norm of the acceleration measured by the sensor in its reference
frame (am) should be constant and equal to the one of the gravitational acceleration (g).
Most of these methods involve re-orienting the device N times to collect measurements am,i,
where i = 1, . . . , N: the array collecting the sensor model parameters (θa) is then obtained
by minimizing the cost function

Ca(θa) =
N

∑
i=1

(∥am,i(θa)∥2 − ∥g∥2)2, (1)

where ∥ · ∥ denotes the Euclidean norm of a vector. The problem is usually solved using
Non-Linear Least Squares (NLS) methods [10–12]. Regarding gyroscopes, the Earth’s rotation
rate cannot serve as a reliable reference due to its weak magnitude, which would result in an
excessively low Signal to Noise Ratio (SNR) [5,6]. For this reason, accelerometer-dependent
gyroscope calibration is often employed [11,12]. In this approach, the sensor is positioned
in N static orientations by performing N − 1 rotations: when the j-th non-static period
begins, the gravity vector measured by the accelerometer (g0,j) is fed to an algorithm that,
by integrating gyroscope measurements acquired during sensor rotation, gives the output
as an estimation of the gravity vector at the end of the rotation (gg,j) that depends on the
gyroscope’s acquired data. The array θg collecting the gyroscope model parameters is then
obtained by minimizing the cost function

Cg(θg) =
N−1

∑
j=1
∥ga,j − gg,j(θg)∥2, (2)

where ga,j is the accelerometer-measured gravity vector at the end of the j-th rotation. These
methods do not require placing the sensor in specific orientations, which enhances usability,
but they suffer from two main drawbacks: (i) they rely on NLS optimization algorithms and
consequently require a tentative initial parameter array, and (ii) the calibration outcome
could be poor depending on the random orientations selected by the user. Moreover, if
accelerometer-dependent gyroscope calibration is performed, any possible accelerometer
calibration error is likely to be further propagated and amplified.

Methods for linear and non-iterative in-field calibration, which do not require any
previous knowledge of the parameters to be calibrated, can be classified as identification
methods and are highly desirable. For accelerometers, such methods were proposed
in [13,14], but they rely on strict assumptions, including (i) the availability of a surface
orthogonal to Earth’s gravity, and (ii) the sensor’s parameters being within known bounds.
Other types of identification methods [15–17] for these devices are based on a suitable
non-linear change of variables in the sensor model, which reformulates the classical NLS
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methods of [10–12] into linear ones. On the other hand, once the coefficients are determined,
the inverse transformation of the non-linear change of variables needs to be performed,
numerically propagating the errors in the estimated parameters. For gyroscopes, non-
iterative methods have been proposed in [10,18]. However, these methods require rotating
the sensor around its sensitive axes and relying on a mean angular velocity approach to
compute rotations, rather than properly integrating gyroscope measurements. Assuming
that the rotation axis coincides with one of the sensor’s axes and using the mean angular
velocity for integration are weak assumptions, especially given that the calibration is
intended to be performed in-field by the end user. In fact, if the rotations are to be performed
manually, (i) precisely rotating around one of the sensor’s sensitive axes can be extremely
challenging and (ii) achieving a smooth angular velocity profile can be difficult. Therefore,
assuming an unknown rotation axis and performing a small time-step integration of
gyroscope measurements would be desirable approaches to improve the robustness of
the calibration. Moreover, these methods rely on accelerometer measurements to estimate
reference rotation angles, which can result in error propagation. Additionally, they do not
account for cross-sensitivities between the sensor axes.

In this paper, we propose an in-field identification method that extends the approach
presented in [19] for accelerometers to include gyroscope calibration as well. This extended
method is based on (i) a predetermined sequence of rotations used to acquire sensor outputs,
and (ii) the solution of two Total Least Squares (TLS) problems. The sensor is placed in a
3D-printed multifaceted housing, which is rotated with respect to a sloped surface used
as a reference. Each rotation is manually performed around a fixed axis that, in general,
is assumed not to coincide with any of the sensor triad axes. Small time-step trapezoidal
integration of gyroscope measurements is employed to obtain a reliable estimation of
rotation angles. These estimations are then compared with the rotation angles expected
given the geometry of the IMU’s housing and the chosen rotation sequence, allowing for
accelerometer-independent gyroscope calibration. The TLS approach ensures that potential
errors in the rotations are accounted for during calibration. In this manner, sensor model
parameters, including sensitivities, cross-sensitivities and bias terms, are identified. In
summary, our method’s contributions are as follows:

• Our method does not require the calibration reference to have a known orientation
with respect to Earth’s gravity, addressing a key shortcoming of existing accelerometer
identification methods [13,14]. This enhances the in-field usability of our method.

• In the gyroscope calibration model, the axis of each rotation is assumed to be unknown,
i.e., non-coincident with any of the sensor’s sensitive axes. This contrasts with state-
of-the-art gyroscope identification methods [10,18] and improves the robustness of
the identification, especially since rotations are performed manually.

• Accelerometer and gyroscope calibration are independent of each other, meaning that
any errors in accelerometer calibration do not propagate to gyroscope calibration. This
solves one of the drawbacks of [10–12,18].

• Both accelerometer and gyroscope identification models are linear, eliminating the
need for any initial guess regarding sensor parameters. In NLS-based methods [11,12],
a poor choice of the initial guess can lead to optimization being trapped in a local
minimum of the cost function, resulting in sub-optimal calibration outcomes.

• The TLS approach is used to solve the linear identification systems of equations,
allowing for the consideration of potential errors in the data acquisition process. In
contrast, other linear methods like [10,18] use least squares solutions that assume the
measurements acquired during the data collection process to be error-free, which is
often not the case when rotations for in-field calibration are performed manually.

The rest of the paper is organized as follows: Section 2 presents the description of the
identification algorithms, while experiments performed using NXP sensors FXOS8700CQ
and FXAS21002 mounted on a single chip are presented and discussed in Section 3. Con-
clusions are drawn in Section 4.



Robotics 2024, 13, 156 4 of 21

2. Identification Algorithms Description

The proposed identification method requires placing a “single-board” IMU—namely,
a device where the accelerometer and the gyroscope are rigidly mounted on the same
electronic board and mechanical frame—inside a multifaceted 3D-printed housing, and
re-orient such housing into N different orientations with respect to (w.r.t.) a reference surface.
In practice, this is accomplished by positioning the housing on each of its facets according
to a predetermined sequence of N− 1 rotations. Let Oxyz be a fixed reference frame rigidly
attached to the sloped surface where the calibration takes place and O′x′y′z′ be a mobile
reference frame rigidly attached to the IMU.

We will refer to them as the fixed frame (F-frame) and the mobile frame (M-frame),
respectively, and we assume accelerometer and gyroscope orthogonal triads to be coincident
with the M-frame. When the calibration procedure starts, the M-frame is assumed to be
randomly tilted w.r.t. the F-frame (Figure 1), meaning that the IMU is placed in an unknown
orientation w.r.t. its housing. In the following subsections, accelerometer and gyroscope
sensor models are introduced and their calibration algorithms are described.

  z

   x

 y

    x'

 y'

 z'

ux

uz

uy

F-frame

M-frame

Figure 1. Fixed frame (F-frame) and Mobile frame (M-frame) at the beginning of the calibration procedure.

2.1. Accelerometer

The mathematical model for a tri-axial accelerometer, which correlates the acceleration
perceived by the sensor expressed w.r.t. the M-frame {a}M ∈ R3×1 with the sensor’s raw
output v = [v1, v2, v3]

T is given by [6]:

v = A′{a}M + b′ + ζ′a, (3)

where A′ ∈ R3×3 is a scale factor matrix, b′ ∈ R3×1 is an array collecting bias terms and
ζ′a ∈ R3×1 contains measurement noise. Although this model accurately represents the
physical behavior of the sensor, its inverse form is preferable for practical uses:

{a}M = A(v + ζa) + b, (4)

where A = A′−1, b = −A′−1b′ and ζa = −ζ′a. The identification procedure aims to
determine the elements of A and b, so that raw sensor output v can be transformed into an
acceleration measurement {a}M. A is assumed to be symmetric and noise terms to be white
Gaussian with zero mean [6]. We call diagonal elements App of matrix A sensitivities, while
its off-diagonal elements Apq are referred to as cross-sensitivities. Cross-sensitivities are non-
zero when non-orthogonality in the sensor’s triad arises due to manufacturing tolerances,
and they also account for cross-talk effect between different channels caused by the sensor’s
electronics. These non-idealities are particularly relevant for MEMS-based sensors [20] and
our identification model takes them into account. We assume the gravitational acceleration
to have a constant magnitude equal to g that we denote as {·}M,i; the expression of a vector
in M-frame coordinates when the IMU is placed in the i-th orientation of the procedure, for
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i = 1, . . . , N. Accordingly, the acceleration perceived by the sensor in the first orientation
of the procedure can be written as follows:

{a}M,1 = g{n}M,1, (5)

where {n}M,1 = [n1, n2, n3]
T is a unit vector (i.e., its Euclidean norm is one) expressing

Earth’s gravity direction in the mobile frame. {n}M,1 is generally unknown, given that the
reference is randomly oriented w.r.t. Earth’s gravity, and it will be determined as a sub-
product of the identification. If the IMU is re-oriented in N different orientations during
the calibration procedure, the acceleration perceived by the sensor in the i-th orientation
for i = 1, . . . , N can be expressed as follows:

{a}M,i = Ri{a}M,1, (6)

where Ri is a rotation matrix defined by the known sequence of rotations performed w.r.t.
the F-frame. If we substitute Equation (4) into Equation (6), we can correlate the raw output
of the sensor in the i-th configuration with the acceleration in the initial configuration
as follows:

{a}M,i = A(vi + ζa,i) + b = Ri{a}M,1. (7)

Since measurement noise can be well-modeled as white Gaussian with zero mean, the
average of k raw output samples acquired in the same orientation is considered in order to
mitigate noise effects, namely:

v̄i =
∑k

s=1(vi,s + ζa,i,s)

k
, k≫ 1. (8)

In this way, the noiseless mathematical model is obtained as follows:

{a}M,i = Av̄i + b = Ri{a}M,1. (9)

Re-arranging terms of Equation (9) so as to highlight known quantities and parameters to
be calibrated yields the following:

Miθ = 03×1, (10)

where

Mi =

v̄i,1 v̄i,2 v̄i,3 0 0 0
0 v̄i,1 0 v̄i,2 v̄i,3 0 I3×3 −Ri
0 0 v̄i,1 0 v̄i,2 v̄i,3

 (11)

and
θ = [A11, A12, A13, A22, A23, A33, b1, b2, b3, n1, n2, n3]

T . (12)

We denoted as I3×3 the third order identity matrix, as Auw the element in the u-th row
and w-th column of matrix A and as b1, b2, b3 the elements of vector b. According to our
identification method, the gravity direction in the start configuration {n}M,1, expressed in
the mobile frame, is also unknown and included in the parameters to be determined. By
stacking Equation (10) for i = 1, . . . , N measurements, we obtain a homogeneous system of
3N linear equations in 12 unknowns, which is over-determined if N > 4:M1

...
MN

θ = Mθ = 03N×1, M ∈ R3N×12. (13)

Equation (13) can be solved for θ with the linear TLS method (see [21] for the theoretical
foundations, or [22,23] for practical applications). Using the TLS method allows us to
account for possible errors in the elements of matrix M originated in the data acquisition
procedure. Please note that θ contains the actual parameters needed by the model, and
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not a combination of them, which is the second shortcoming of previous works [15–17].
In ideal conditions—namely, without any measurement noise or model error—M should
be full-column rank deficient—namely, rank(M) < 12—and a solution for Equation (13)
different from the trivial one (which is θ = 0) could be found. In real applications, it is
necessary to address a compatible system that is closest to Equation (13) in terms of the
Frobenious norm:

M̂θ̂ = 0, (14)

where θ̂, which is the solution to Equation (13), contains the unknown parameters estima-
tions and M̂ has rank 11 and minimizes ∥M̂−M∥F , where ∥ · ∥F is the Frobenius norm.
Matrix M̂ can be computed by means of the "economy size" singular value decomposition of
M, given by the following:

M = U
[

diag(λl)
0

]
VT , (15)

where U ∈ R3N×3N and V ∈ R12×12 are orthonormal matrices and diag(λl) ∈ R12×12
is a diagonal matrix containing the singular values λl , for l = 1, . . . , 12 of M sorted in
decreasing order. M̂ can be obtained as follows:

M̂ = M− λ12U12VT
12, (16)

being λ12 the smallest singular value of M and U12, VT
12 the 12-th column of U and V,

respectively. A solution to Equation (14) is given by θ̂ = V12. The solution to the proposed
identification problem is obtained by normalizing θ̂ so that its The last three elements have
unitary Euclidean norm. This generates an ambiguity regarding the sign of the solution.
However, the ambiguity can be removed by making an ex-post check on the sign of the last
element of θ, for example, if in the initial orientation of the procedure z′ is roughly pointing
in the opposite direction w.r.t. g, then the last element of θ will be imposed to have negative
sign), namely:

θ =
θ̂

∥θ̂10:12∥
, (17)

where θ̂10:12 is the array collecting the last three elements of θ̂.
Percentage relative standard deviation estimations for the identified parameters can

be used to infer the accuracy of the obtained results. The estimation is performed according
to the TLS techniques, and by assuming n3 as the element having the maximum accuracy.
Accordingly, the covariance matrix of the TLS solution may be approximated as [21]:

Cθ = σ̂2
M(1 + ∥θ1:11∥2)(M̂T

1:11M̂1:11)
−1, (18)

where
σM =

λ12√
3N − 12

(19)

and M̂1:11 is obtained by discarding the last column of M̂, whereas θ1:11 is the array
containing the first 11 elements of θ. We finally obtain the percentage relative standard
deviation estimation as [23]:

σ%,θl = 100

√
Cθ(l, l)
|θl |

, l = 1, . . . , 11; (20)

where Cθ(l, l) is the l-th diagonal term of Cθ and θl the l-th element of θ.
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2.2. Gyroscope

Analogous to Section 2.1, we consider the angular velocity perceived by the gyroscope
{ω}M, expressed in the M-frame, to be related to the sensor raw output r = [r1, r2, r3]

T by
the equation:

{ω}M = Gr + d + ζg, (21)

where diagonal elements Gpp of the symmetric matrix G ∈ R3×3 are referred to as sen-
sitivities, off-diagonal ones Gpq are cross-sensitivities (which are, in general, non-zero),
d = [d1, d2, d3]

T collects bias terms and ζg ∈ R3×1 contains measurement noise. Previous
identification methods [10,18] consider the cross-sensitivities to be negligible and this can
lead to inaccurate calibration for MEMS-based sensors [20].

Let ux, uy, uz be three unit vectors that represent F-frame axes directions (Figure 1).
When the sensor is placed in the first orientation of the calibration procedure, by using the
Euler–Rodrigues formula [24], we can express ux, uy, uz in M-frame coordinates as follows:

{ux}M,1 = cos ϕ

1
0
0

+ sin ϕ(e×

1
0
0

) + (1− cos ϕ)e(e ·

1
0
0

),
{uy}M,1 = cos ϕ

0
1
0

+ sin ϕ(e×

0
1
0

) + (1− cos ϕ)e(e ·

0
1
0

), (22)

{uz}M,1 = cos ϕ

0
0
1

+ sin ϕ(e×

0
0
1

) + (1− cos ϕ)e(e ·

0
0
1

),
where e = [e1, e2, e3]

T and ϕ are the axis and the angle that define the rotation needed to
transform the M-frame into the F-frame, while ·,× denote the Euclidean dot and cross
products, respectively. In this first IMU orientation, we assume misalignments between
the M-frame and the F-frame to be small (i.e., ϕ ≈ 0), so that Equation (22) can be approxi-
mated as:

{ux}M,1 ≈

 1
ϕe3
−ϕe2

,

{uy}M,1 ≈

−ϕe3
1

ϕe1

, (23)

{uz}M,1 ≈

 ϕe2
−ϕe1

1

.

According to our calibration method, the IMU needs to be rotated w.r.t. F-frame fixed axes;
for each j-th rotation, with j = 1, . . . , N − 1, we can express in the M-frame the angular
velocity {ω(t)}M,j perceived by the gyroscope at time instant t as follows:

{ω(t)}M,j = δ̇(t){uh}M,j, (24)

where δ̇(t) is the angular velocity magnitude at time instant t and h = x, y, z depending
on whether the rotation is performed around x, y or z axis, respectively. Please notice that
ux, uy, uz are fixed, namely they remain the same throughout the calibration procedure,
but, in general, their expressions in the gyroscope triad (the M-frame) change between the
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different orientations of the procedure. We can relate the expression of uh in the M-frame
to uh assumed in the initial configuration as follows:

{uh}M,j = Rj{uh}M,1, (25)

where Rj is the rotation matrix that transforms a vector expressed in M,1-frame coordinates
into a vector expressed in M,j-frame ones. Such a rotation matrix is coincident with the
one introduced in Equation (6) and its results are determined by the known sequence of
rotations performed. By substituting Equations (25) and (21) in Equation (24), we obtain:

{ω(t)}M,j = Gr(t) + d + ζg(t) = δ̇(t)Rj{uh}M,1. (26)

Measurement noise can be removed by using proper filtering techniques: analogic or
digital filters can be embedded directly in the IMU electronic board or implemented in the
data acquisition system if the sampling time is sufficiently small. The noiseless calibration
model can then be written as follows:

{ω(t)}M,j = Gr(t) + d = δ̇(t)Rj{uh}M,1. (27)

By integrating the right-most term of Equation (27) in the time interval [t0,j, t1,j] where the
j-th rotation takes place, we obtain:∫ t1,j

t0,j

δ̇(t)Rj{uh}M,1 dt = ∆jRj{uh}M,1, (28)

where ∆j is the j-th expected rotation angle, whose numerical value depends on the geome-
try of IMU’s 3D-printed housing and the chosen rotation sequence. Since the estimation
of ∆j does not rely on accelerometer measurements (as was the case in [10,18]), the results
of gyroscope calibration are independent of those of the accelerometer. Integrating in the
same time interval the central term of Equation (27) one obtains:

∫ t1,j

t0,j

(Gr(t) + d) dt =

G11H1,j + G12H2,j + G13H3,j + Tjd1
G12H1,j + G22H2,j + G23H3,j + Tjd2
G13H1,j + G23H2,j + G33H3,j + Tjd3

, (29)

where

H1,j =
∫ t1,j

t0,j

r1(t) dt,

H2,j =
∫ t1,j

t0,j

r2(t) dt,

H3,j =
∫ t1,j

t0,j

r3(t) dt,

Tj = t1,j − t0,j,

Guw is the element in the u-th row and w-th column of matrix G and d1, d2, d3 the elements
of vector d. As introduced in Section 1, H1,j, H2,j, H3,j are obtained through the integration
of gyroscope raw measurements and not by using a mean value approach. Combining
Equations (27)–(29) we obtain:G11H1,j + G12H2,j + G13H3,j + Tjd1

G12H1,j + G22H2,j + G23H3,j + Tjd2
G13H1,j + G23H2,j + G33H3,j + Tjd3

− ∆jRj{uh}M,1 = 03×1. (30)
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Please notice that Equation (30) can assume a different form depending on weather the j-th
rotation is performed around x, y or z, namely:G11H1,j + G12H2,j + G13H3,j + Tjd1

G12H1,j + G22H2,j + G23H3,j + Tjd2
G13H1,j + G23H2,j + G33H3,j + Tjd3

− ∆jRj{ux}M,1 = 03×1, if h = x

G11H1,j + G12H2,j + G13H3,j + Tjd1
G12H1,j + G22H2,j + G23H3,j + Tjd2
G13H1,j + G23H2,j + G33H3,j + Tjd3

− ∆jRj{uy}M,1 = 03×1, if h = y (31)

G11H1,j + G12H2,j + G13H3,j + Tjd1
G12H1,j + G22H2,j + G23H3,j + Tjd2
G13H1,j + G23H2,j + G33H3,j + Tjd3

− ∆jRj{uz}M,1 = 03×1, if h = z

A relevant contribution to gyroscope identification methodology introduced in this
work can now be highlighted: the simplification introduced by Equation (23) allows the
inclusion of the expressions for the rotation axes in the M-frame at the beginning of the
procedure (namely {ux}M,1, {uy}M,1, {uz}M,1) into the identification model without pro-
ducing any non-linearity into the equations and without assuming that {ux}M,1 = [1, 0, 0]T ,
{uy}M,1 = [0, 1, 0]T or {uz}M,1 = [0, 0, 1]T (i.e., without assuming alignment of the rotation
axes with the gyroscope’s sensitive axes). In this way, one of the shortcomings of previous
gyroscope identification methods [10,18] is solved. One may argue that the simplification
introduced in Equation (23) is valid only if ϕ (which is unknown and included, together
with e, in the parameters to be determined) is sufficiently small: however, this assumption is
justified for industrially manufactured sensors, and is further confirmed by the experimen-
tal results shown in Section 3. By substituting the expressions of {ux}M,1, {uy}M,1, {uz}M,1
with those given by Equation (23) and re-organizing terms of Equation (31) so as to high-
light known quantities and unknown parameters to be identified, each j-th rotation can be
associated with a linear system of equations of the form:

Ljϑ = 03×1, (32)

where
ϑ = [G11, G12, G13, G22, G23, G33, d1, d2, d3, ϕe3, ϕe2,−ϕe1, 1]T (33)

is the gyroscope-related counterpart of θ, introduced in Equation (12) to collect accelerometer-
related parameters to be identified: analogously, ϑ contains gyroscope model parameters,
quantities related to e, ϕ and a known term, i.e., its last element ϑ13 = 1. Lj can be expressed
as composition of two different matrices Lj,1 and ∆jLj,2, namely:

Lj =
[
Lj,1 ∆jLj,2

]
, (34)

where Lj,1 is:

Lj,1 =

H1,j H2,j H3,j 0 0 0
0 H1,j 0 H2,j H3,j 0 TjI3×3
0 0 H1,j 0 H2,j H3,j

 (35)

and has the same form independent of the axis around which the j-th rotation is performed,
while Lj,2 is different depending on weather the j-th rotation is performed around x, y or z
axis and can be defined as follows:

Lj,2 =



[
∓Rj,2 ±Rj,3 03×1 ∓Rj,1

]
, if h = x[

±Rj,1 03×1 ±Rj,3 ,∓Rj,2

]
, if h = y[

03×1 ∓Rj

]
, if h = z

, (36)
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being Rj,p the p-th column of matrix Rj, whose sign depends on weather the j-th rotation is
performed counter-clockwise or clockwise, respectively. The mathematical derivation of
Equation (32) can be found in Appendix A. By stacking Equation (32) for j = 1, . . . , N − 1,
one obtains an homogeneous system of 3(N − 1) linear equations in 13 unknowns, which
is over-determined if N ≥ 6: L1

...
LN−1

ϑ = Lϑ = 03(N−1)×1, L ∈ R3(N−1)×13 (37)

Equation (37) can be solved for ϑ using the linear TLS method, following the same approach
taken in Section 2.1 [21–23]. Even in this case, employing the TLS solution for Equation (37)
ensures that potential errors in the elements of L, arising from data acquisition inaccuracies,
are accounted for. This represents another significant improvement over the methods
proposed in [10,18], especially since manual rotations are likely to introduce inaccuracies
in the measurement process. We address the compatible system closest to Equation (37) in
terms of the Frobenius norm:

L̂ϑ̂ = 0, (38)

where ϑ̂ is the solution to Equation (37), containing estimated parameters, and L̂ is such
that rank(L̂) = 12 and ∥L̂− L∥F is minimized. Exploiting the “economy size” singular value
decomposition, L can be written as follows:

L = U′
[

diag(βq)
0

]
V′T , (39)

being U′ ∈ R3(N−1)×3(N−1) and V′ ∈ R13×13 orthonormal matrices, while diag(βq) ∈ R13×13
is a diagonal matrix containing singular values βq of L, for q = 1, . . . , 13, sorted in decreas-
ing order. We can obtain L̂ as follows:

L̂ = L− β13U′13V′T13, (40)

where β13 is the smallest singular value of L and U′13, V′13 are the 13-th column of U′ and
V′, respectively. A solution to Equation (38) is ϑ̂ = V′13. The solution ϑ to the proposed
identification problem can be obtained by taking into account that its last element ϑ13 must
be equal to 1 according to Equation (33), namely:

ϑ =
ϑ̂

ϑ̂13
, (41)

where ϑ̂13 is the last element of ϑ̂. We can then obtain e and ϕ as follows:

e =
ϑ12:10

∥ϑ12:10∥
, ϕ = ∥ϑ12:10∥, (42)

being ϑ12:10 = [−ϑ12, ϑ11, ϑ10]
T , where ϑq is the q-th element of ϑ. Since ϑ13 = 1 is known, it

is the element of ϑ having the maximum accuracy. Thus, we can approximate the covariance
matrix of the TLS solution as follows:

Cϑ = σ̂2
L(1 + ∥ϑ1:12∥2)(L̂T

1:12L̂1:12)
−1, (43)

where
σ̂L =

β13√
3(N − 1)− 13

, (44)
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L̂1:12 contains the first 12 columns of L̂, while ϑ1:12 contains the first 12 elements of ϑ. The
percentage relative standard deviation is then obtained as follows:

σ%,ϑq = 100

√
Cϑ(q, q)
|ϑq|

, q = 1, . . . , 12; (45)

where Cϑ(q, q) is the q-th diagonal term of Cϑ .

3. Experimental Procedure and Results

Simple 3D-printed IMU housings and references were produced to test the pro-
posed method. This equipment includes a regular rectangular prism (prismatic) housing
(Figure 2a), an 18-faced housing (Figure 2b) obtained by chamfering the edges of the former
housing at 45°, a reference with three orthogonal surfaces and a base parallel to one of
those surfaces (Figure 2c), and a reference with three orthogonal surfaces and a sloped base
(Figure 2d). For each housing, a re-orientation scheme was defined to place the housing
in at least every possible orientation where three of its faces are in contact with reference
surfaces. Accordingly, N = 24 and N = 74 orientations were achieved in our tests for the
prismatic and 18-faced housings, respectively.

(a) (b)

(c) (d)
Figure 2. 3D-printed equipment used for the tests, including a rectangular prism housing (a), an
18-faced housing (b), a non-sloped reference (c) and a sloped reference (d).

Figure 3 illustrates a schematic of the first six orientations of the scheme used for
the prismatic housing. In each image, rotation arrows indicate the movement required to
transition from the current orientation to the following, while x, y, z represent the axes of the
F-frame, which in practice can be identified with the three edges formed by the intersection
of the three surfaces of the 3D-printed references (Figure 2c,d). The faces of the housing are
numbered to make the rotation sequence clearer. Since the IMU is rigidly attached to its
housing, as shown in Figure 4, if the housing is re-oriented into N different orientations,
rotation matrices Ri for i = 1, . . . , N can be computed as a combination of rotations around
the axes of the F-frame. To achieve this, we begin considering that the rotation matrix R′i,
which transforms a vector expressed in the mobile frame into a vector expressed in the
fixed frame when the IMU is in the i-th orientation, can be iteratively obtained from R′i−1.
This process depends on the axis around which the rotation is performed to transition from
the (i− 1)-th to the i-th IMU orientation:
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R′1 = I3×3, R′i =


Rx(∆j)R′i−1, if the rotation is performed around x
Ry(∆j)R′i−1, if the rotation is performed around y
Rz(∆j)R′i−1, if the rotation is performed around z

, (46)

where Rx(∆j), Ry(∆j), Rz(∆j) are elementary rotation matrices of angle ∆j around x′, y′

and z′ axis, respectively, while ∆j, j = i− 1 is the j-th rotation angle, required to transition
from the (i− 1)-th orientation to the i-th. Then, since Equations (7) and (26) require the
acceleration and the angular velocity to be expressed in the moving frame, we obtain the
needed rotation matrices as Ri = R′Ti . The computation of Ri matrices for the re-orientation
sequences used in this paper is detailed in Appendix B.

z
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(a) First orientation
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Figure 3. First six orientations of the re-orientation scheme for the prismatic housing.

(a) (b)
Figure 4. IMU mounted inside the prismatic housing (a) and inside the 18-faced housing (b).

The prismatic housing enables a simpler re-orientation procedure. However, if a
reference non-sloped w.r.t. g is used (e.g., the one in Figure 2c), this re-orientation scheme
is hardly optimal for accelerometer calibration. In fact, if the reference rests on a surface
reasonably orthogonal to g, one of the sensor axes would be almost parallel to g, and
the others almost orthogonal: the measures obtained on each channel would be whether
near the maximum possible or near zero, meaning that they would be characterized by
very small SNR. To overcome this problem, one can: (i) use a sloped reference, so that
all axes measurements have greater SNR, or (ii) use a housing characterized by more
possible orientations, improving also gyroscope calibration by performing more rotations.
Thus, experiments on all four possible combinations of reference surface and housing were
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conducted. Figure 5 illustrates the experimental equipment in the initial orientation of
the procedure for the Sloped 18-faced setup. A flowchart summarizing the steps needed to
perform IMU calibration using our method can be found in Appendix C.

Figure 5. Experimental equipment in the initial orientation of the procedure for the Sloped 18-faced setup.

The Adafruit Precision NXP 9-DOF Breakout Board, which is a single-board IMU featuring
NXP sensors FXOS8700CQ and FXAS21002, was employed for the tests. The main tech-
nical specifications of the IMU are listed in Table 1, while additional details are available
in [25–27]. The FXOS8700CQ integrates a three-axis magnetometer (which is not of interest
for this work) and a three-axis digital output accelerometer, while the FXAS21002 is a
three-axis digital output gyroscope. IMU’s outputs were sampled at 300 Hz to acquire raw
data from the accelerometer and the gyroscope. For the gyroscope, the signal was digitally
low-pass filtered with a cutoff frequency of 128 Hz before the acquisition, using the filter
integrated in the sensor [26]. During the re-orientation procedure, the IMU alternates
between static and non-static states: for accelerometer calibration, only raw data collected
during static states were retained, while for gyroscope calibration only raw data from
non-static states were kept. Non-static states were identified using a non-static detector
based on the low-pass filtered gyroscope signal: to obtain this signal, the acquired one was
low-pass filtered again with a cutoff frequency that, in this case, was set to 0.5 Hz. Then,
a certain time instant t was determined to be non-static if the magnitude of the filtered
gyroscope signal at that instant exceeded a certain threshold, which was empirically set to
1000 Least Significant Bits (LSB). In the context of digital output sensors, an LSB represents
the smallest measurable change in the physical quantity: accordingly, the physical value
associated with an LSB depends on the sensor’s Full-Scale range and on the resolution
ρ = 2ν of its Analog-to-Digital Converter (ADC), being ν the number of bits available for the
ADC. For the sensor used in our tests, 1LSB corresponds to an angular velocity magnitude
measurement of 0.01526°/s.

Table 1. Main IMU technical characteristics.

Characteristic Value

Board’s dimensions [mm] 20 × 28 × 2

Supply voltage [V] from 1.95 to 3.6

Supported digital interface I2C or SPI

Current consumption [mA] 2.94

Output data rate [Hz] up to 800

For the accelerometer, the mean values of the identified parameters, obtained from
twelve different acquired datasets (three for each experimental setup) are reported in
Table 2, along with their respective mean relative standard deviations. Elements of matrix
A are expressed in [g/LSB]. This measurement unit is physically meaningful for sensitivity,
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as it indicates how much the measured physical quantity changes in relation to the smallest
possible variation in the sensor’s raw output (which, for digital sensors, is measured in
LSB), while those of b and {n}M,1 are in [g], i.e., they are normalized with respect to the
modulus of the gravitational acceleration. The relative standard deviations are expressed
as percentages of the parameter value and are obtained as described in Section 2.1. For the
gyroscope, the mean values of the identified parameters, obtained from another twelve
datasets acquired simultaneously with the accelerometer ones, are reported in Table 3,
along with their respective mean relative standard deviations. Elements of matrix G are
expressed in [ °/s

LSB ], those of d are in [°/s], ϕ is in [rad] and elements of e are dimensionless.
The relative standard deviations are expressed as percentages of the parameter value and
are calculated as described in Section 2.2.

Table 2. Accelerometer identification results. For each experimental setup, the left column contains
mean values of identified parameters (θl), while the right column contains their mean percentage
standard deviations (σ%,θl

).

Non-Sloped Prismatic Sloped Prismatic Non-Sloped 18-Faced Sloped 18-Faced
θl σ%,θl θl σ%,θl θl σ%,θl θl σ%,θl

A11[
g

LSB ] −2.417 × 10−4 0.135 −2.428 × 10−4 0.178 −2.420 × 10−4 0.096 −2.422 × 10−4 0.257

A12[
g

LSB ] 1.592 × 10−6 45.823 1.329 × 10−6 38.889 −4.397 × 10−6 3.872 −5.301 × 10−6 7.387

A13[
g

LSB ] 7.193 × 10−7 32.321 6.985 × 10−7 39.377 −4.073 × 10−7 17.592 −1.299 × 10−6 30.965

A22[
g

LSB ] 2.464 × 10−4 0.135 2.472 × 10−4 0.178 2.460 × 10−4 0.098 2.468 × 10−4 0.260

A23[
g

LSB ] −4.255 × 10−7 63.772 −4.585 × 10−7 60.916 −4.667 × 10−7 36.024 −6.040 × 10−7 63.096

A33[
g

LSB ] 2.428 × 10−4 0.135 2.434 × 10−4 0.178 2.433 × 10−4 0.096 2.437 × 10−4 0.257

b1[g] 2.222 × 10−3 35.047 2.786 × 10−3 36.149 1.792 × 10−3 40.823 1.297 × 10−3 101.695

b2[g] 4.416 × 10−3 17.751 1.872 × 10−3 88.593 3.969 × 10−3 14.086 2.473 × 10−3 53.338

b3[g] −1.839 × 10−2 4.237 −1.614 × 10−2 5.793 −1.782 × 10−2 3.497 −1.474 × 10−2 10.020

n1[g] 2.420 × 10−2 3.297 4.205 × 10−1 0.252 2.731 × 10−2 2.332 4.297 × 10−1 0.357

n2[g] −7.073 × 10−3 12.206 4.887 × 10−1 0.224 9.044 × 10−3 3.662 4.811 × 10−1 0.330

n3[g] −9.997 × 10−1 −7.644 × 10−1 −9.994 × 10−1 −7.641 × 10−1

Tables 2 and 3 indicate that cross-sensitivities are negligible compared to sensitivities
for both sensors, meaning that the sensors’ axes are well-aligned. Consequently, really high
relative standard deviations are obtained for these parameters (a parameter is considered
well-identified if its percentage standard deviation is below 5%); namely, they are non-
essential parameters for the specific sensors tested. Bias terms also exhibit high percentage
standard deviations, even if at first sight they appear to be non-negligible w.r.t. sensitivities.
However, their impact on the mathematical model output is minimal due to their small
values. In fact, according to Equation (21), elements of matrix G are to be multiplied by the
raw gyroscope output r, which is in the range [−2ν−1,+2ν−1]: ν has a value that is between
ν = 12 and ν = 16, meaning that d becomes negligible w.r.t. Gr if its components are the
one in Table 3. Similar considerations apply to accelerometer bias terms. Accordingly, bias
terms can be deemed non-essential parameters for both sensors. Furthermore, in gyroscope
calibration, also bias drift is to be taken into account: however, this paper primarily focuses
on identifying G, since only non-static measurements are employed. Variations of the
procedure that are able to account also for the bias drift effect and properly identify static
gyroscope bias could be the focus of future works. Finally, ϕe3, ϕe2,−ϕe1 also exhibit a high
percentage of standard deviations, but this is acceptable since their nominal values are very
small. In fact, as we assumed in Section 2.2, ϕ ≈ 0 and this can be confirmed by calculating
ϕ as in Equation (42), using parameters in Table 3: in the worst case (i.e., when ϕ assumes
the highest value) we obtain ϕ = 0.0073rad = 0.4205°.



Robotics 2024, 13, 156 15 of 21

Table 3. Gyroscope identification results. For each experimental setup, the left column contains mean
values of identified parameters (ϑq), while the right column contains their mean percentage standard
deviations (σ%,ϑq ).

Non-Sloped Prismatic Sloped Prismatic Non-Sloped 18-Faced Sloped 18-Faced
ϑq σ%,ϑq ϑq σ%,ϑq ϑq σ%,ϑq ϑq σ%,ϑq

G11[
°/s
LSB ] 1.537 × 10−2 0.295 1.534 × 10−2 0.377 1.531 × 10−2 0.225 1.533 × 10−2 0.273

G12[
°/s
LSB ] −3.972 × 10−4 8.242 −3.560 × 10−4 11.720 3.950 × 10−5 68.006 4.276 × 10−5 72.336

G13[
°/s
LSB ] −5.796 × 10−7 2721.260 1.850 × 10−5 156.690 1.067 × 10−4 57.991 1.792 × 10−4 36.388

G22[
°/s
LSB ] −1.571 × 10−2 0.294 −1.570 × 10−2 0.377 −1.563 × 10−2 0.223 −1.568 × 10−2 0.271

G23[
°/s
LSB ] 2.222 × 10−5 150.875 1.477 × 10−5 635.457 9.063 × 10−6 520.768 1.589 × 10−5 133.8609

G33[
°/s
LSB ] −1.554 × 10−2 0.265 −1.557 × 10−2 0.339 −1.557 × 10−2 0.218 −1.558 × 10−2 0.264

d1[°/s] −9.415 × 10−1 9.536 −9.416 × 10−1 12.310 −1.192 9.177 −8.761 × 10−1 14.037

d2[°/s] 8.196 × 10−1 10.851 8.990 × 10−1 12.673 9.468 × 10−1 7.452 1.177 7.757

d3[°/s] 7.847 × 10−1 12.267 8.037 × 10−1 14.296 4.282 × 10−1 94.752 7.564 × 10−1 69.528

ϕe3[rad] −5.641 × 10−3 66.938 −3.837 × 10−3 185.509 1.811 × 10−3 199.231 4.254 × 10−3 153.948

ϕe2[rad] 4.393 × 10−3 40.604 3.234 × 10−3 67.655 −1.322 × 10−3 132.661 −6.115 × 10−4 213.256

−ϕe1[rad] −1.655 × 10−3 117.084 −1.414 × 10−3 191.682 1.144 × 10−3 128.592 1.866 × 10−5 603.486

Parameters identification best practice suggests excluding non-essential parameters
from the model and performing a second identification with the simplified model, which
does not include them [23]. The results for the identification of essential parameters are
presented in Table 4 for the accelerometer and in Table 5 for the gyroscope. In general, all the
essential parameters result in being well-identified for both sensors, since their percentage
standard deviations fall below the 5% threshold. As expected, datasets involving the 18-
faced housing provide slightly better results for gyroscope calibration, with the identified
parameters showing lower percentage standard deviations, while for the accelerometer, if
the same housing is employed, experiments involving the sloped reference yield slightly
better results in terms of percentage standard deviations of the estimated parameters.

Table 4. Accelerometer identification results for essential parameters. For each experimental setup,
the left column contains mean values of identified parameters (θl), while the right column contains
their mean percentage standard deviations (σ%,θl

).

Non-Sloped Prismatic Sloped Prismatic Non-Sloped 18-Faced Sloped 18-Faced
θl σ%,θl θl σ%,θl θl σ%,θl θl σ%,θl

A11[
g

LSB ] −2.416 × 10−4 0.721 −2.428 × 10−4 0.504 −2.418 × 10−4 0.495 −2.422 × 10−4 0.472

A22[
g

LSB ] 2.463 × 10−4 0.721 2.470 × 10−4 0.504 2.458 × 10−4 0.505 2.468 × 10−4 0.473

A33[
g

LSB ] 2.425 × 10−4 0.721 2.433 × 10−4 0.504 2.431 × 10−4 0.495 2.437 × 10−4 0.473

n1[g] 4.265 × 10−1 0.702 4.296 × 10−1 0.657

n2[g] 4.824 × 10−1 0.641 4.813 × 10−1 0.605

n3[g] −1.000 −7.651 × 10−1 −1.000 −7.641 × 10−1

In Table 6, we present accelerometer and gyroscope essential parameters (App and
Gpp, respectively) derived in three different manners: (i) from sensors datasheets [26,27]
(MAN), (ii) using our method (TLS) and (iii) using the NLS-based method outlined in [12]
(NLS). Although our method allows for a straightforward determination of the sign of
sensors’ parameters, all the parameters identified by our method are reported as positive
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in Table 6 to facilitate comparison with manufacturer-provided values and those derived
using the NLS-based method. The NLS-based method, relying on Equations (1) and (2),
minimizes a cost function that depends only on the norm of the sensors’ model outputs,
making it insensitive to the sign of the parameters. The results show that our method yields
parameters comparable to those obtained using the NLS-based approach. Additionally,
since a known physical reference is available for the accelerometer (i.e., ∥g∥ = 1), we used
one of the calibration datasets to compute the RMS error between the norm of the gravity
vector, estimated via the sensor’s model, and the known reference as follows:

ξRMS =

√√√√ 1
N

N

∑
i=1

(∥g̃i∥ − 1)2, (47)

where g̃i is the gravity vector estimation obtained by employing in Equation (9) the sensor’s
raw outputs acquired in the i-th orientation of the procedure for the Non-Sloped 18-faced
setup. ξRMS values computed using the above-mentioned three different parameter sets
are reported in Table 6, which demonstrates a relevant improvement in terms of ξRMS
when transitioning from the manufacturer-parameters-computed one to the one obtained
using our method’s parameters. The NLS-based method appears to yield better results in
terms of ξRMS; however, it is important to note that its performance heavily depends on
the quality of the initial guess provided to the algorithm, which in this case was set equal
to the parameters specified in the sensor’s datasheet.

Table 5. Gyroscope identification results for essential parameters. For each experimental setup, the
left column contains mean values of identified parameters (ϑq), while the right column contains their
mean percentage standard deviations (σ%,ϑq ).

Non-Sloped Prismatic Sloped Prismatic Non-Sloped 18-Faced Sloped 18-Faced
ϑq σ%,ϑq ϑq σ%,ϑq ϑq σ%,ϑq ϑq σ%,ϑq

G11[
°/s
LSB ] 1.532 × 10−2 0.799 1.532 × 10−2 0.713 1.533 × 10−2 0.396 1.535 × 10−2 0.384

G22[
°/s
LSB ] −1.572 × 10−2 0.800 −1.573 × 10−2 0.714 −1.566 × 10−2 0.394 −1.571 × 10−2 0.382

G33[
°/s
LSB ] −1.545 × 10−2 0.705 −1.550 × 10−2 0.629 −1.554 × 10−2 0.383 −1.553 × 10−2 0.370

Table 6. Comparison between sensors’ model parameters obtained with different methods and the
related RMS error associated with the norm of the accelerometer’s model output. (The sign of the
parameters has been omitted to facilitate comparison between the parameters obtained through
different methods).

MAN TLS NLS

A11[
g

LSB ] 2.44 × 10−4 2.418 × 10−4 2.420 × 10−4

A22[
g

LSB ] 2.44 × 10−4 2.458 × 10−4 2.468 × 10−4

A33[
g

LSB ] 2.44 × 10−4 2.431 × 10−4 2.429 × 10−4

G11[
°/s
LSB ] 1.5625 × 10−2 1.533 × 10−2 1.544 × 10−2

G22[
°/s
LSB ] 1.5625 × 10−2 1.566 × 10−2 1.569 × 10−2

G33[
°/s
LSB ] 1.5625 × 10−2 1.554 × 10−2 1.559 × 10−2

ξRMS[g] 0.0132 0.0120 0.0119

Finally, cross-validations of the identification results were performed. We cross-
validated the parameters obtained with the Non-sloped 18-faced setup (Tables 4 and 5) using
datasets acquired during experiments involving the other three setups. For each dataset, we
computed M according to Equations (11) and (13), and L as in Equations (32) and (35)–(37).
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The corresponding model error was then calculated as ϵa = Mθ for the accelerometer and
as ϵg = Lϑ for the gyroscope. For datasets involving the non-sloped reference, the last
element of θ was set to −1, while for those involving the sloped reference, the last three
elements of θ were set to [n1, n2, n3]

T , since only in the latter case all these three parameters
result to be essential. Finally, we computed the cross-validation standard deviations as [22]:

σ′a =

√
ϵT

a ϵa

3N
(48)

and

σ′g =

√
ϵT

g ϵg

3(N − 1)
(49)

for accelerometer and gyroscope datasets, respectively. Additionally, we also evaluated
cross-validation standard deviations using manufacturer-provided sensor parameters. As
manufacturer parameters, we used the ones in Table 6. Cross-validation results obtained
using parameters identified by our method (σ′a,TLS and σ′g,TLS) are compared with the
ones obtained using manufacturer-provided parameters (σ′a,MAN and σ′g,MAN) in Table 7.
These results clearly demonstrate that our method is an effective choice for improving
accelerometer and gyroscope accuracy with no significant additional cost: in fact, using the
parameters identified by our method, we were able to reduce cross-validation standard
deviations by nearly two orders of magnitude compared to the case where manufacturer
parameters were employed.

Table 7. Accelerometer and gyroscope cross-validation standard deviations for the three datasets setups.

σ′
a,MAN [g] σ′

a,TLS[g] σ′
g,MAN [°] σ′

g,TLS[°]

Non-sloped cubic 0.6699 0.0194 86.9227 2.2519

Sloped cubic 0.6684 0.0105 86.7385 1.5303

Non-sloped 18-faced 0.6740 0.0217 78.6770 1.5243

4. Conclusions

In this paper, we proposed an identification method for accelerometers and gyroscopes,
namely a general identification method for six-axis IMUs. Our method can be performed
in-field by non-expert users, requiring only simple 3D-printed equipment. It is based on
a pre-determined sequence of rotations and the solution of two TLS problems. No prior
knowledge regarding references orientation w.r.t. g or regarding rotation axes orientation
w.r.t. gyroscope sensitive triad is required. Our identification method does not require prior
knowledge of the parameters to be determined: this makes it a valuable option to generate
a reliable initial parameter set to be used for NLS-based methods when manufacturer-
provided parameters are unavailable (e.g., for prototypes or newly designed sensors).
Experimental results showed that the proposed method is able to correctly identify sensor
model parameters and that the accuracy of sensor models is severely increased w.r.t. using
manufacturer-provided parameters. The proposed method is not suitable for estimating
gyroscope static bias terms: this could be the focus of future works.
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Appendix A

We begin considering that expressions of {ux}M,1, {uy}M,1 and {uz}M,1 as in
Equation (23) can be substituted into Equation (30) to obtain:G11H1,j + G12H2,j + G13H3,j + Tjd1

G12H1,j + G22H2,j + G23H3,j + Tjd2
G13H1,j + G23H2,j + G33H3,j + Tjd3

− ∆jRj

 1
ϕe3
−ϕe2

 = 03×1 if h = x,

G11H1,j + G12H2,j + G13H3,j + Tjd1
G12H1,j + G22H2,j + G23H3,j + Tjd2
G13H1,j + G23H2,j + G33H3,j + Tjd3

− ∆jRj

−ϕe3
1

ϕe1

 = 03×1 if h = y, (A1)

G11H1,j + G12H2,j + G13H3,j + Tjd1
G12H1,j + G22H2,j + G23H3,j + Tjd2
G13H1,j + G23H2,j + G33H3,j + Tjd3

− ∆jRj

 ϕe2
−ϕe1

1

 = 03×1 if h = z.

For each of Equation (A1), the second term of the left-hand side can be re-organized to obtain:

−∆jRj

 1
ϕe3
−ϕe2

 = ∆j
[
−Rj,2 Rj,3 03×1 −Rj,1

]
ϕe3
ϕe2
−ϕe1

1

 if h = x,

−∆jRj

−ϕe3
1

ϕe1

 = ∆j
[
Rj,1 03×1 Rj,3 −Rj,2

]
ϕe3
ϕe2
−ϕe1

1

 if h = y, (A2)

−∆jRj

 ϕe2
−ϕe1

1

 = ∆j
[
03×1 −Rj

]
ϕe3
ϕe2
−ϕe1

1

 if h = z.

The first term of the left-hand side of Equation (A1) remain unchanged if the rotation is
performed around ux, uy or uz and it can be re-arranged as follows:

Lj,1ϑ1:9 =

H1,j H2,j H3,j 0 0 0
0 H1,j 0 H1,j H1,j 0 TjI3×3
0 0 H1,j 0 H2,j H3,j





G11
G12
G13
G22
G23
G33
d1
d2
d3


. (A3)

In order to re-write Equation (A2) in a more compact way, we can introduce a new matrix
(Lj,2) defined as in Equation (36). In Equations (A1) and (A2) we implicitly considered,
according to the right-hand rule, that the rotation around x, y or z is happening counter-
clockwise. If a clockwise rotation is performed, the unit vectors representing rotation
axes would result oriented in the opposite direction w.r.t. the one in Figure 1, and their
components in the M,1-frame would result opposite in sign. Alternatively, if the same unit
vectors are considered, this would result in ∆j < 0, obtaining the same result. By taking
this into account and combining Equations (A1)–(A3) we obtain Equation (32).
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Appendix B

Ri rotation matrices computation for the 18-faced housing re-orientation procedure is
shown in Algorithm A1, while Algorithm A2 details how the computation of rotation ma-
trices Ri is conducted for the prismatic one. In the former case, two redundant orientations
are achieved in order to make the re-orientation procedure practically simpler to perform,
making the data acquisition easier.

Algorithm A1 Ri matrices computation for 18-faced housing (continued on the following
page)

1: ixy ← [5, 9, . . . , 29, 33, 34, 38, . . . , 46, 50, 51, 55, . . . , 63, 67]
2: last-ixy ← 71
3: i90 ← [46, 55, 59, 63]
4: prevxsgn← 1
5: prevysgn← 1
6: prevxy ← ’x’
7: R′1 = I3×3
8: N = 74
9: for i = 2, i ++, i ≤ N do

10: j = i− 1
11: if i ∈ ixy then
12: if i ∈ i90 then
13: ∆j =

π
2

14: else
15: ∆j =

π
4

16: end if
17: if prevxy == ’x’ then
18: if prevysgn == 1 then
19: R′i = Ry(∆j)R′i−1
20: prevysgn← 0
21: else
22: R′i = Ry(−∆j)R′i−1
23: prevysgn← 1
24: end if
25: prevxy ← ’y’
26: else if prevxy == ’y’ then
27: if prevxsgn == 1 then
28: R′i = Rx(∆j)R′i−1
29: prevxsgn← 0
30: else
31: R′i = Rx(−∆j)R′i−1
32: prevxsgn← 1
33: end if
34: prevxy ← ’x’
35: end if
36: else if i == last-ixy then
37: ∆j ← π

4
38: R′i = Rx(∆j)R′i−1
39: else
40: ∆j ← π

2
41: R′i = Rz(∆j)R′i−1
42: end if
43: end for
44: Ri ← R′Ti ∀i = 1, . . . , N
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Algorithm A2 Ri matrices computation for prismatic housing

1: i← 1
2: rotx ← [2, 3, 6]
3: rot−x ← 5
4: rot−y ← 4
5: ∆← π

2
6: R′1 = I3×3
7: for f = 1, f ++, f ≤ 6 do
8: i← i + 1
9: if f ∈ rotx then

10: R′i = Rx(∆)R′i−1
11: else if f ∈ rot−x then
12: R′i = Rx(−∆)R′i−1
13: else if f ∈ rot−y then
14: R′i = Ry(−∆)R′i−1
15: end if
16: for rz = 1, rz ++, rz ≤ 3 do
17: if i ̸= 2∨ rz ̸= 1 then
18: i← i + 1
19: end if
20: R′i = Rz(∆)R′i−1
21: end for
22: end for
23: Ri ← R′Ti ∀i = 1, . . . , N

Appendix C

The flowchart in Figure A1 describes the key steps required in order to complete the
calibration procedure proposed in this paper.

Start

Define a rotation scheme that can be performed using only
3D-printed supports. Two examples are given in this work.

Perform rotations with the IMU fixed inside the housing.
Acquire data for all the duration of the rotation procedure.

Distinguish data between (i) acquired during static
intervals and (ii) acquired during non-static interval.

Is the considered
interval static?

Use data acquired dur-
ing static intervals to

compute v̄i, i = 1, . . . , N.

Use data acquired
during non-static in-
tervals to compute L.

Use v̄i, i = 1, . . . , N
to compute M.

Solve Mθ = 0 and Lϑ = 0
for θ and ϑ, respectively,
using the TLS method.

Stop

No

Yes

Figure A1. Flowchart illustrating the key steps of the calibration procedure.
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