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Abstract: Accurate and complete 3D point clouds are essential in creating as-built building informa-
tion modeling (BIM) models, although there are challenges in automating the process for 3D point
cloud creation in complex environments. In this paper, an autonomous scanning system named
BIMBot is introduced, which integrates advanced light detection and ranging (LiDAR) technology
with robotics to create 3D point clouds. Using our specially developed algorithmic pipeline for point
cloud processing, iterative registration refinement, and next best view (NBV) calculation, this system
facilitates an efficient, accurate, and fully autonomous scanning process. The BIMBot’s performance
was validated using a case study in a campus laboratory, featuring complex structural and mechanical,
electrical, and plumbing (MEP) elements. The experimental results showed that the autonomous
scanning system produced 3D point cloud mappings in fewer scans than the manual method while
maintaining comparable detail and accuracy, demonstrating its potential for wider application in
complex built environments.

Keywords: autoscanning system; next best view; 3D point cloud creation

1. Introduction

Reality capture using light detection and ranging (LiDAR) technology has emerged
as a vital advancement in fields such as surveying, construction, architecture, and urban
planning. In surveying and mapping, LiDAR is extensively used for land surveying
and geospatial mapping to create detailed and accurate 3D point clouds of terrains and
structures. In construction, 3D point clouds assist in site surveying, progress monitoring,
quality control, and clash detection [1]. In archaeology and cultural heritage preservation,
it documents archaeological sites and heritage structures, capturing intricate details of
historical significance [2]. In urban planning, it contributes to generating detailed city
models [3]. In environmental monitoring, LiDAR technology with autonomous drones
and underwater robots is used for mapping ecosystems, tracking changes in landscapes,
and monitoring pollution. Interestingly, LiDAR point clouds have been found to be useful
in the visualization and promotion of tourist attractions, as evidenced in [4].

In this article, we focus on reality capture using 3D LiDAR technology, specifically
using a terrestrial laser scanner (TLS). Despite the development of lightweight and high-
speed laser scanners, manual scanning using the tripod method is still time-consuming and
tedious. Point cloud preprocessing and registration for complex environments are compli-
cated, making the manual acquisition of accurate 3D point clouds of these environments
burdensome and expensive.

To speed up registration, the Riegl VZ-400i uses a micro-electromechanical system
(MEMS) inertial measurement unit (IMU) for scanner pose estimation. The Leica RTC360
3D laser scanner uses photogrammetry to determine the positions of devices in 3D spaces
based on visual inertial system (VIS) technology. Faro scanners use global positioning
system (GPS) information for the rough placement of scans that have been taken outdoors.
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To increase the mobility of scanners, Faro® designed cart systems, named Faro® Swift
and NavVis® systems, which allow survey personnel to place tripods and scanners on
carts to push around survey sites for faster scanning. NavVis® developed a simultaneous
localization and mapping (SLAM)-based wearable mobile LiDAR mapping system, en-
abling survey personnel to capture 3D data flexibly and quickly by wearing the system
while walking around survey site. Both the Faro® Swift and NavVis® systems significantly
reduce scanning times compared to traditional TLS methods. However, the quality of the
acquired point cloud data is not as high as those from TLS methods and human operation
is still required to manipulate the scanning systems.

To automate the scanning process, Faro® developed a solution known as Faro® Trek 3D
laser scanning integration, which enables autonomous scanning via the Boston Dynamics
Spot®. Their solution initially requires survey personnel to guide the robot through a site to
record the scanning path. Afterward, the system can autonomously scan the environment
by following the recorded route. However, some limitations include the requirement of
human guidance for the initial walk-through, inflexible scanning routes, and the low height
of the scanner, which mean that it may not be suitable for scanning cluttered environments.

To address these challenges, this article introduces BIMBot, an autonomous scanning
system that integrates TLS and robotics for efficient, accurate, and fully autonomous 3D
point cloud creation in architectural and construction surveying. The system minimizes
human intervention and scanning times without compromising on detail or completeness.
BIMBot represents a significant step toward efficient autonomous reality capture in complex
environments by streamlining the process and improving the quality of as-built BIM models.
Our contributions include:

1. A TLS-based autonomous scanning system;
2. A new UFOMap-based next best view (NBV) algorithm for optimal scanner placement.

The remainder of this paper is organized as follows: Section 2 introduces related
works; Section 3 describes the proposed system; experimental analyses are presented in
Section 4; a discussion of a few issues with the current approach is found in Section 5;
finally, our discussion and conclusions are presented in Section 6.

2. Related Work

A comprehensive survey on autonomous scanning platforms can be found in [5],
which emphasizes the autonomous 3D scanning of buildings. In this brief review, we focus
on automating scanning approaches for BIM model reconstruction and digital twin appli-
cations.

The first published autonomous scanning platform dates back to 1996 [6] and com-
prised a 3D model reconstruction procedure involving multiple range images from a laser
range finder. Their point cloud registration method was based on the high-level features of
the range images, for example, edges and surfaces. Another pioneering work by [7] also
proposed an autonomous mobile robot for the 3D digitalization of indoor environments.
In their implemented system, they used simultaneous matching to register multiple 3D
scans. Their 2D-based NBV algorithm simulated a horizontal laser scanner and calculated
the number of intersections with unseen edges to estimate information gain. The choice of
next best view pose was optimized based on information gain value, distance, and angle
from the current position.

In [8], an autoscanning robot equipped with a modern 3D laser range scanner was
proposed. Their work emphasized scanning position planning by proposing a two-stage
approach. The first stage dealt with optimizing scanning location as an art gallery problem,
solved using randomized methods with scanning constraints. The second stage involved
a 3D view planner to estimate one single next best viewing position at a time, using ray
tracing to count boundary unseen voxels. The limitation of this method lies in the assump-
tion that 2D floor plans are always available. Ref. [9] presented a system for autonomous
3D exploration and thermal mapping. The main sensor was a Riegl VZ-400 laser scanner,
complemented by optical and thermal cameras. The sensor placement planning strategy
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alternated between 2D and 3D NBV, depending on whether the exploration was within or
between rooms. Ref. [10] introduced a method for the automatic 3D scanning of structural
elements using robots to navigate and scan prominent structural elements in cluttered
indoor environments. Ref. [11] introduced an autonomous system capable of creating
detailed 3D semantic models of buildings across five semantic levels using the mobile
platform for autonomous digitization (MoPAD). The system performed real-time data
collection within building interiors, guided by the next best scan (NBS) algorithm, which
strategically selected scan locations that maximized the visibility of structural elements.

Other studies [12–15] have explored different scanning approaches and devices for
evaluating point cloud quality in 3D as-built BIM model creation. These studies have
suggested that point clouds generated by low-quality LiDAR devices using SLAM are often
too sparse and inaccurate. As a result, they are generally unsuitable for creating as-built
BIM models. In contrast, Ref. [16] developed an advanced autoscanning system equipped
with a high-quality LiDAR device, which proved more effective in generating accurate
point clouds for as-built BIM model reconstructions. Ref. [16] utilized TLS technology in
conjunction with unmanned ground vehicles (UGVs) to efficiently automate indoor 3D
digitization for building maintenance and construction tasks. Their approach overcame the
time-intensive data acquisition and postprocessing challenges associated with traditional
TLS systems by employing path planning based on 2D computer-aided design (CAD) floor
plans. For point cloud pre-alignment, a combination of Harris 3D detection and the fast
point feature histogram (FPFH) descriptor was used. Subsequent alignment refinement
was performed using the iterative closest point (ICP) algorithm.

In summary, the evolution of autonomous scanning systems has transitioned from
basic laser range finders to modern laser scanners, which incorporate advanced algorithms
and robotics. This study specifically focuses on automating the creation of 3D point clouds
to enhance both the accuracy and efficiency of this process for downstream applications,
including the creation of as-built BIM models and the development of digital twins.

3. Materials and Methods
3.1. Materials

To automate the TLS-based scanning process, a system named BIMBot was developed,
in which a TLS scanner was mounted on a UGV. Specifically, the FARO® Focus s70 was
used in our experiments (see Figure 1a). This LiDAR scanner model is ideal for both
outdoor and indoor applications as it is capable of performing long-range scans of up to
70 m with a ranging error of 1 mm and offers configurable resolution. The ranging error,
defined as systematic measurement error, was assessed at distances of around 10 m and
25 m. For the UGV, the Volta designed by Botsync® was chosen as the robot base. Volta is a
low-profile indoor mobile platform, which operates on a differential drive with a maximum
payload capacity of 30 kg and is equipped with a 2D LiDAR for obstacle avoidance. Its
compact dimensions (520 × 365 × 233 mm) facilitate navigation in tight spaces, as depicted
in Figure 1c.

Given the considerable weight of the FARO® Focus s70 scanner, a robust and durable
support structure was designed to securely mount the scanner on the robot base. To navi-
gate around furniture and potential occlusions at scanning sites, the scanner was positioned
at least 1m above the ground to ensure the optimal point of view. The support structure
was initially designed using CAD and then constructed using aluminum profiles, for which
30 × 30 mm aluminum extrusion T slots (shown in Figure 1b) were selected due to their
light weight, rigidity, and ease of customization and the fact that they can be cut precisely
with a lathe. The final assembly of the BIMBot is illustrated in Figure 1d.
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Figure 1. Robot composition and BIMBot: (a) the FARO® Focus s70 terrestrial laser scanner (TLS);
(b) aluminum extrusion T slots; (c) the Volta robot base by Botsync®; (d) the final assembly of BIMBot.

3.2. Methods
3.2.1. Overview

An autonomous scanning pipeline for BIMBot was developed, as illustrated in Figure 2.
The implemented pipeline comprised five modules: remote scanning, preprocessing, regis-
tration, NBV, and navigation. These modules functioned in a closed-loop system, specifi-
cally designed for the progressive and consecutive digitization of as-built environments.
This closed-loop system unfolded and worked in a sequence of steps, as illustrated in
Figure 3. Within this system, the NBV module was further divided into several steps,
including the construction of occupancy maps, the construction of down-projected maps,
the creation of connectivity maps, and the estimation of the best scan positions. Detailed
explanations of these modules are provided in subsequent sections.

Figure 2. Diagram of the implemented autonomous scanning pipeline. The scanning process exits
the loop once the NBV algorithm determines that the stopping criteria have been met.
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Figure 3. A drawing of how the closed-loop autonomous scanning pipeline unfolds and functions in
a sequential manner.

3.2.2. Scanning Module

The FARO software developer’s kit (SDK) was utilized for the development of the
scanning module. This SDK allows us to write C++ scripts to remotely control the scanning
process. Initially, the scanning module establishes a stable connection to the scanner’s
wireless network. The scanning procedure is automatically triggered when the robot
reaches a defined scanning position. After completing a scan, scanning data are transferred
to a host computer. The SDK also provides various options for adjusting scanner settings,
enabling users to select the desired resolution, quality, and scan mode, whether color or
grayscale. Choosing higher resolution, better quality, and color scanning significantly
increases the duration of each scan. Typically, scans without color take from 30 s at a 1/32
resolution to around 3 min at a 1/8 resolution. Adding color extends the scan time by an
additional 1–2 mins as the scanner needs to capture multiple color photographs for point
cloud colorization.

3.2.3. Preprocessing Module

Without any pre-assumptions on the reference coordinate system, the first scan is
set as the global reference scan. Before the registration of any subsequent point clouds
with the reference scan, it is necessary to normalize the pose of the first point cloud by
aligning it to the XYZ-axis. This step is crucial for facilitating downstream processes, such
as the NBV algorithm. For example, rotating walls that are perpendicular or parallel to the
X-axis yields optimal results for the NBV algorithm. Additionally, due to inherent human
error, the scanner may not be perfectly leveled; thus, any small misalignments can result in
significant discrepancies at large distances from the center. For example, the estimation of
scanner height is affected if the point cloud is not properly leveled. Therefore, an algorithm
was developed to accurately align the point clouds to the XYZ-axis.

Basically, the algorithm first performs Z-axis alignment by extracting the data points
of the floor using the scanner’s height information. Then, it employs a plane fitting method
to estimate the normal of the floor plane and estimate the transformation matrix Tlevel to
align the normal of the floor plane with the Z-axis. Next, it performs either X-axis or Y-axis
alignment. For this study, X-axis alignment was chosen as we assumed that in scanning
sites, there is always at least one surface that is perpendicular to the floor. To extract such
candidate surfaces, the random sample consensus (RANSAC) method is used to identify
planes in which variations in the Z direction exceed a predefined threshold (0.7 in this study,
which reliably identified perpendicular surfaces). Once a candidate surface is identified, its
normal is calculated and the transformation matrix Tperpdendicular is estimated to align its
normal with the X-axis. The final pose normalization transformation is a composition of
the Z-axis and X-axis alignments: Tpose = matmul(Tperpendicular, Tlevel).
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3.2.4. Registration Module

Point cloud registration is the process wherein a transformation matrix is calculated
and applied to a source point cloud, enabling its alignment with a reference point cloud in
a common coordinate system. This step is crucial for various applications as it involves
stitching multiple point clouds from different scanning positions to reconstruct entire
indoor spaces.

In this study, a coarse-to-fine registration scheme was adopted to register current point
clouds with previous point clouds. Initially, a coarse transformation matrix was obtained
directly from the robot pose information. Small misalignments, typically ranging from
20 to 40 cm, were anticipated due to factors like robot wheel friction and the precision
of the SLAM algorithm. These misalignments were subsequently resolved using the
ICP algorithm. Specifically, an ICP-based iterative refinement process was employed, as
outlined in Algorithm 1, which iteratively refined the registration results by progressively
reducing the searching radius. To optimize computation time, instead of processing the
entire combined point cloud, a specific volume centered at the robot’s current position
was cropped out, in which an overlap occurred between the combined cloud and the
current scan. This approach prevented an accumulative increase in computation time as
the number of scans increased.

Algorithm 1: ICP-based registration refinement.
Input : source point cloud cloudsource, combined point cloud cloudcombined and

coarse transformation matrix Tcoarse
Output : refine transformation Matrix Tre f ine

1 /* Based on the experiments with the robot base, the searching
radius list is set as follows: */

2 radiusList = [0.3, 0.1, 0.05, 0.02, 0.01] maxIterList = [80, 50, 40, 40, 30]
n = len(radiusList) Tcurrent = Tcoarse
cloudcropped = crop_pc(cloudcombined, xrobot, yrobot)

3 for i← 0 to n− 1 do
4 maxIter = maxIterList(i) radius = radiusList(i)

Tre f ine = ICP(cloudsource, cloudcropped, radius, maxIter, Tcurrent)
Tcurrent = Tre f ine

5 end for
6 return Tre f ine

3.2.5. Ufomap-Based Next Best View Module

Planning the next scanning position is a key aspect of automatic scanning. The NBV
algorithm addresses this challenge by selecting optimal scanning positions based on the
current point clouds and the robot’s current location. This approach aims to maximize
exploration under certain constraints with the goal of obtaining complete 3D point clouds
of built environments. The solution was designed to be environment-agnostic. In this tudy,
a UFOMap-based NBV algorithm was developed, which comprised four sub-modules: oc-
cupancy map reconstruction, down-projection, connectivity map extraction, and maximum
information gain estimation.

The UFOMap framework was chosen for 3D occupancy map reconstruction because
it is an efficient probabilistic 3D mapping framework [17]. Compared to OctoMap [18],
UFOMap allows for explicit queries of unknown voxels. This feature enabled us to develop
an efficient method for estimating information gain. In this context, information gain is
defined as the number of unknown voxels that can be resolved from a given scanning
position. Details of the UFOMap-based NBV implementation are outlined in Algorithm 2.
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Algorithm 2: UFOMap-based NBV.
Input : A list of registered point cloud [cloudi], i = 1, 2, · · · , n− 1, scanner

center information [centeri] and scanner height hscanner
Output : Next scanning position centern
parameter : r = 0.2, λ = 0.03

1 u f o :: map :: OccupancyMapColor occupancyMap(r)
2 for i← 0 to n− 1 do
3 occupancyMap.insertPointCloud(centeri, cloudi)
4 end for
5 downProjectMap = downProject(occupancyMap)

connectivityMap = DFS(downProjectMap, centern−1)
/* Distance-adjusted information gain estimation */

6 max_gain = 0 centern = [ ]
7 for celli in connectivityMap do
8 xi, yi ← celli Dist = distance(celli, centern−1)

count = unknown_estimator([xi, yi, hscanner], occupancyMap)
gain = count · e−λDist if max_gain < gain then

9 max_gain = gain centern ← [xi, yi]
10 end if
11 end for
12 return centern

The algorithm first converts registered point clouds into 3D occupancy maps using the
UFOMap framework [17], in which spatial data are represented as cube voxels. Each voxel
contains occupancy status information (such as unknown, free, and occupied). The occu-
pancy maps are down-projected along the Z-axis, encompassing the space above the floor
and below the ceiling, to create 2D down-projected maps. From the 2D down-projected
maps, connectivity maps are extracted by utilizing the depth first search (DFS) algorithm
across adjacent free cells, starting from the current scanning position. These connectivity
maps represent all accessible cells connected to the current scanning position, with each
cell being a safe candidate scanning position. This process filters out any isolated free cells
and eliminates all occupied and unknown cells.

Next, the algorithm proceeds to calculate the information gain, adjusted for the dis-
tance between current and candidate scanning positions, for each cell in the connectivity
maps. This is achieved by applying the castRay method to the 3D occupancy maps.
This method projects multiple rays from each cell (setting the Z value as equal to the
scanner height) in all directions to estimate the number of unknown voxels within the lines
of sight. The algorithm selects the cell with the highest distance-adjusted information gain
as the next scan position. The stopping criterion is when the number of unknown voxels
falls below a predefined threshold. The strength of this solution lies in its efficiency and
accuracy in estimating unknown voxels, thereby obtaining optimal scanning positions and
reducing scanning times for digitizing interior spaces.

3.2.6. Cloud Integration

The entire solution comprising all of the modules mentioned above was fully inte-
grated into the Amazon Web Services (AWS) cloud, as depicted in Figure 4.
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Figure 4. A diagram of the cloud-integrated solution for BIMBot.

A user-friendly user interface (UI) was also developed, as shown in Figure 5, to
facilitate end-user interactions with the system and provide live feedback through real-time
visualizations. This feature enables users to monitor the scanning process in real time and
access scanning results at any time.

Figure 5. The web-based user interface (UI) developed for the visualization of the scanning results.

4. Experimental Analysis
4.1. Case Study

To validate the BIMBot system, an experiment was conducted in a campus labora-
tory. The space was selected for its geometrical complexity, making it a representative
environment for scanning structural and MEP components. The acquisition area featured
various structural elements, such as walls, columns, beams, floors, ceilings, windows, and
doors, along with MEP components like ducts and pipes. Additionally, the space contained
furniture, such as tables and chairs. Panoramic views of the laboratory are presented in
Figure 6. The laboratory covered an area of approximately 200 m².
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(a)

(b)
Figure 6. Panorama views of the scanning site: (a) Panorama view from scan position #1; (b) Panorama
view from scan position #3.

4.2. Data Acquisition and NBV

The detailed results for each step in the scanning process, as outlined in Figure 3, are
presented in Figure 7. For brevity, we have included detailed results only for scans #1, #2,
and #16, as the results for other scans were similar and repetitive.

In the scanning process for scan #1, shown in Figure 7a, the first column presents the
raw point cloud collected by the remote scanning module. The second column displays the
point cloud after the pose normalization transformation. Since we set the first point cloud
as the reference in our experiment, the point cloud in the third column is identical to that in
the second column. The fourth column illustrates the occupancy map constructed from
the third column’s point cloud using the UFOMap framework, with unknown voxels in
light orange, free voxels in green, and occupied voxels in grey - the original point cloud
colour. The down-projected map, obtained by projecting the occupancy map along the
z-axis, is shown in the fifth column. Inaccessible cells (unknown and occupied voxels being
down-projected) are marked in red, while accessible cells (free voxels being down-projected
onto the floor voxels) are in green. The sixth column shows the connectivity map extracted
using the DFS method, comprising all green cells connected to the current scanning position.
These cells represent candidate scanning positions for the robot. The cell with the maximum
information gain, adjusted by distance, is selected as the next best scanning position and is
indicated as a red cell in the sixth column.

For scan #2, the process is similar, with differences in the second and third columns.
The second column shows the point cloud after pose normalization and registration trans-
formation, while the third column combines the first and second point clouds.
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For the last scan, scan #16, the process is repeated, except in the sixth column, where
the NBV algorithm meets the stopping criterion, and thus no next best scanning position is
output.

In the rest of this section, the results of the implemented NBV algorithm for point
cloud data acquisition were evaluated. In the experiment, the occupancy map resolution
was set to 0.4 m by taking the robot base size and computational cost into consideration.
Each new scan was first registered with the combined cloud using Algorithm 1 and then
inserted into the existing occupancy maps to update the voxel statuses, down-project maps,
and connectivity maps. From the updated connectivity maps, Algorithm 2 calculated
the distance-adjusted information gain to determine the next optimal scanning positions.
As depicted in Figure 8, serial scanning positions 1–8 were calculated by the proposed
NBV algorithm. With each scan, additional space was recovered until the predetermined
stopping criterion (i.e., fewer than 20 unknown voxels) was met at scan #8.

Upon examining the completeness of the point clouds, we found that while the
structural data points were adequate for structural BIM model reconstruction, the MEP
data points were insufficient, particularly in areas near the ceiling (as observed in the
first picture in Figure 9). To address this, some adjustments were made: we increased
the occupancy map resolution and reduced the scope of the field of view in the vertical
direction to better scan MEP elements. These adjustments were motivated by two factors:
the smaller sizes of MEP elements compared to structural elements and the locations of
MEP elements near the ceiling. Consequently, Algorithm 2 was amended with the following
changes: (i) we added a logic to control the switch from structural to MEP scanning; (ii) we
increased the occupancy map resolution to 0.1 m for MEP scanning; (iii) we adjusted the
field of view to be between 30 and 90 degrees instead of the original range of between
−60 and 90 degrees in the vertical direction to implement the castRay method for MEP
scanning. The scanner’s field of view settings were accordingly adjusted via the Faro® SKD
API. As shown in Figure 9, these modifications helped the robot to focus on scanning areas
near the ceiling, where the MEP components were primarily located. After conducting
eight additional scans, the NBV process terminated as the stopping criterion was met.
As can be observed in scan #16, the point cloud coverage for the MEP components and
ceiling was much more comprehensive compared to the point cloud in scan #8.

A manual scanning process of the same laboratory was also performed independently
by our colleague, who is an expert in manual scanning and has more than 6 years of
experience in operating different scanners. Using the manual scanning method, 32 scans
were required to cover all structural and MEP elements. An experimental comparison
between the manual and autonomous scanning methods is presented in Table 1. From the
table, it can be seen that BIMBot achieved a similar coverage percentage to the manual
scanning method, but in fewer scans and a lower processing time.

Table 1. Comparison between BIMBot and the manual scanning method.

Comparison

Method #Scans Resolution #Points Acquisition Time Preprocessing
Duration Coverage 1

BIMBot 16 1/16 40,655,084 ∼1 h on-the-fly 2 82.05%

Manual 32 1/16 83,050,144 ∼2 h ∼2 h 86.42%
1 As discussed in the CloudCompare forum (https://www.cloudcompare.org/forum/viewtopic.php?t=1433,
accessed on 23 January 2024), coverage was calculated using the Rasterize tool in CloudCompare software;
2 preprocessing time was embedded in acquisition time.

https://www.cloudcompare.org/forum/viewtopic.php?t=1433
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(a)

(b)

(c)
Figure 7. Detailed results for each step in the scanning process for (a) scan #1; (b) scan #2; (c) scan #16.
The first column represents the original point cloud collected by the remote scanning module. The
second column displays the point cloud after pose normalization and registration transformation.
The third column illustrates the current combined point cloud. In the fourth column, the occupancy
map, constructed using the UFOMap framework, is shown with unknown voxels in light orange,
free voxels in green, and occupied voxels in grey. The fifth column represents the down-projected
map, marking inaccessible cells in red and accessible cells in green. Finally, the sixth column shows
the connectivity map, with the next best scanning position indicated as a red cell.
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Figure 8. A sequence of scans acquired using the NBV algorithm to determine scanner positions,
which are indicated by red circles and numbered accordingly. After completing the first 8 scans,
the NBV process for scanning structural components terminated as the stopping criterion was met.
For enhanced visualization, the ceiling point cloud has been removed.

Figure 9. The sequence of scans acquired using the proposed NBV algorithm to complete the
scanning of MEP components. Red dashed boxes highlight the new areas revealed by each scan.
After 8 additional scans, the NBV process terminated as the stopping criterion was met. For enhanced
visualization, the floor point cloud has been removed.

4.3. Registration and Quantitative Analysis

To check the point cloud quality, the registration accuracy and point cloud complete-
ness were examined visually and compared to the counterpart results from the manual
scanning method. The manual scanning method refers to an operator manually positioning
the scanner at different points to ensure the comprehensive coverage of the environment.
The manual aspect of this method lies in physically moving and adjusting the scanner,
as well as manual point cloud preprocessing and registration. For this comparison, a section
of a column point cloud was chosen. By visually examining its surface data points from the
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top-down view, as shown in Figure 10b, we found that the point cloud of the column was
well reconstructed. Compared to the manual scanning method, as shown in Figure 10a,
the column point cloud from the autoscanning method contained fewer data points as the
NBV minimized the number of scans required to cover all of the column’s surfaces.

(a) (b)

Figure 10. Visual checks of structural point cloud quality using a top-down view of the point
clouds of a column. All of the column’s surfaces were neatly registered using both the manual
and autoscanning methods: (a) results from the manual scanning method; (b) results from the
autoscanning method.

Next, we checked the point cloud quality of the MEP elements. As shown in Figure 11,
we found that the results from the manual scanning and autoscanning methods were
comparable. Parts of two small pipes were missing from the manual scanning results, as
highlighted by the red box in Figure 11a, while parts of four pipes were missing from the
autoscanning results, as highlighted by the red box in Figure 11b. The latter was due to
occlusion from a square-shaped LED directly underneath the pipes, as seen in Figure 6.
Portions of the MEP point clouds, highlighted by the light green boxes in Figure 11, were
also selected to examine the quality from both the top-down view in Figure 12 and the side
view in Figure 13. As seen in Figure 12, the results from both the manual and autoscanning
methods were comparable in terms of registration accuracy and point cloud completeness.
As seen in Figure 13, the results of the autoscanning method were slightly better than those
of the manual scanning method in terms of registration accuracy with visual inspection as
fewer outliers were found; thus, the contours of the pipes and ducts appeared sharper.

Additionally, in the experiment, no special assumptions were made about the reference
coordinate system. Simply, the position and orientation of the first scan were selected as
the global origins. However, the initial scan could be aligned with the global coordinate
system using national CS, thereby generating georeferenced point clouds.
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(a)

(b)

Figure 11. Visual checks of MEP point cloud quality and comparisons between methods of manual
scanning and autonomous scanning: the top-down view of the selected section of the MEP point
cloud resulting from (a) manual scanning; (b) autoscanning. Red boxes highlight missing elements.
Green boxes indicate the zoomed-in portions for further examination. For enhanced visualization,
the ceiling, floor, and furniture point clouds have been removed.
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(a) (b)
Figure 12. The top-down views of small portions of the MEP point clouds, as indicated by the light
green boxes in Figure 11: (a) manual scanning results; (b) autoscanning results.

(a) (b)
Figure 13. The side views of small portions of the MEP point clouds, as indicated by the light green
boxes in Figure 11: (a) manual scanning results; (b) autoscanning results.

5. Discussion

The BIMBot system was specifically designed following the “stop-scan-plan-go” scan-
ning pattern as opposed to the “scanning-while-navigating” pattern, which requires con-
tinuous planning and exploration using the SLAM algorithm. While “scanning-while-
navigating” approaches like those in [19,20] are efficient, they rely heavily on SLAM algo-
rithms, which produce noisy point clouds. This makes them unsuitable for architectural
detail capture, unlike automated TLS-based approaches [12–14].

A few studies have differentiated the importance of unknown voxels depending
on the end-uses of completed point clouds [10]. The rationale for introducing semantic
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labeling onto the voxels of occupancy maps is twofold: firstly, to prioritize objects of
interest for scanning and secondly, to accommodate scanning in semi-open and open
spaces. We also explored this by applying deep learning-based semantic segmentation to
the combined clouds prior to applying the NBV algorithm. However, due to the lower
accuracy of semantic segmentation, which led to inaccuracies in estimating the number
of unknown structural and MEP voxels, we decided not to present these results in this
study. The potential of incorporating semantic information into NBV calculations remains a
subject for future investigation, pending improvements in semantic segmentation accuracy.

Additionally, we experimented with an adjustable scanner height, ranging from 1.4 m
to 2.7 m. However, the limited range of adjustments resulted in minimal savings in
scanning times.

6. Conclusions

This study introduced an autonomous mobile robot-based scanning system designed
for minimal human intervention and maximum accuracy and completeness in point cloud
creation for applications like BIM model reconstruction and digital twin development. A
TLS-based approach was adopted due to their superior scan quality, despite longer scan
times, compared to SLAM-based mobile solutions. In terms of software design, a pipeline
was meticulously developed to streamline point cloud processing, which included pose
normalization for point cloud–XYZ-axis alignment and iterative registration refinement to
ensure accurate point cloud creation. Furthermore, the UFOmap framework was proposed
for occupancy map construction, which enhanced the efficiency and accuracy of unknown
voxel estimation for optimal scanning positioning. The system was validated in a laboratory
environment, which was rich with structural and MEP elements. The experimental results
demonstrated its potential in point cloud creation for BIM model reconstruction and digital
twins applications.

Future work includes additional testing, customized robot designs for varied terrains,
and collaborative multi-robot approaches to autoscanning. While this study focused
on interior spaces, expanding this method to building exteriors, including facades and
rooftops, would require a collaborative multi-robot approach. As technology advances,
addressing challenges in scanning flexibility, efficiency, and automation will also be crucial
for enhancing autonomous scanning systems.
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Abbreviations
The following abbreviations are used in this manuscript:

LiDAR Light detection and ranging
BIM Building information modeling
MEP Mechanical, electrical, and plumbing
TLS Terrestrial laser scanner
SLAM Simultaneous localization and mapping
NBV Next best view
NBS Next best scan
UGV Unmanned ground vehicle
CAD Computer-aided design
ICP Iterative closest point
SDK Software developer’s kit
RANSAC Random sample consensus
DFS Depth first search
AWS Amazon Web Services
UI User interface

References
1. Raza, M.S.; Tayeh, B.A.; Aisheh, Y.I.A.; Maglad, A.M. Potential features of building information modeling (BIM) for application

of project management knowledge areas in the construction industry. Heliyon 2023, 9, e19697. [CrossRef]
2. Rocha, G.; Mateus, L.; Fernández, J.; Ferreira, V. A Scan-to-BIM Methodology Applied to Heritage Buildings. Heritage 2020,

3, 47–67. [CrossRef]
3. Wang, Y.; Chen, Q.; Zhu, Q.; Liu, L.; Li, C.; Zheng, D. A Survey of Mobile Laser Scanning Applications and Key Techniques over

Urban Areas. Remote Sens. 2019, 11, 1540. [CrossRef]
4. Bieda, A.; Balawejder, M.; Warchoł, A.; Bydłosz, J.; Kolody, P.; Pukanska, K. Use of 3D technology in underground tourism:

Example of Rzeszow (Poland) and Lviv (Ukraine). Acta Montan. Slovaca 2021, 26, 205–221. [CrossRef]
5. Adán, A.; Quintana, B.; Prieto, S.A. Autonomous Mobile Scanning Systems for the Digitization of Buildings: A Review. Remote

Sensing 2019, 11, 306. [CrossRef]
6. Sequeira, V.; Goncalves, J.G.M.; Ribeiro, M.I. 3D reconstruction of indoor environments. In Proceedings of the 3rd IEEE

International Conference on Image Processing, Lausanne, Switzerland, 19 September 1996; Volume 2, pp. 405–408. [CrossRef]
7. Surmann, H.; Nüchter, A.; Hertzberg, J. An autonomous mobile robot with a 3D laser range finder for 3D exploration and

digitalization of indoor environments. Robot. Auton. Syst. 2003, 45, 181–198. [CrossRef]
8. Blaer, P.S.; Allen, P.K. Data acquisition and view planning for 3-D modeling tasks. In Proceedings of the 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, San Diego, CA, USA , 29 October–2 November 2007; pp. 417–422.
[CrossRef]
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