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Abstract: Differential drive mobile robots, being widely used in several industrial and domestic
applications, are increasingly demanding when concerning precision and satisfactory maneuverability.
In the present paper, the problem of independently controlling the velocity and orientation angle of
a differential drive mobile robot is investigated by developing an appropriate two stage nonlinear
controller embedded on board and also by using the measurements of the speed and accelerator of the
two wheels, as well as taking remote measurements of the orientation angle and its rate. The model of
the system is presented in a nonlinear state space form that includes unknown additive terms arising
from external disturbances and actuator faults. Based on the nonlinear model of the system, the
respective I/O relation is derived, and a two-stage nonlinear measurable output feedback controller,
analyzed into an internal and an external controller, is designed. The internal controller aims to
produce a decoupled inner closed-loop system of linear form, regulating the linear velocity and
angular velocity of the mobile robot independently. The internal controller is of the nonlinear PD type
and uses real time measurements of the angular velocities of the active wheels of the vehicle, as well
as the respective accelerations. The external controller aims toward the regulation of the orientation
angle of the vehicle. It is of a linear, delayed PD feedback form, offering feedback from the remote
measurements of the orientation angle and angular velocity of the vehicle, which are transmitted
to the controller through a wireless network. Analytic formulae are derived for the parameters of
the external controller to ensure the stability of the closed-loop system, even in the presence of the
wireless transmission delays, as well as asymptotic command following for the orientation angle.
To compensate for measurement noise, external disturbances, and actuator faults, a metaheuristic
algorithm is proposed to evaluate the remaining free controller parameters. The performance of the
proposed control scheme is evaluated through a series of computational experiments, demonstrating
satisfactory behavior.

Keywords: differential drive mobile robots; nonlinear control; I/O decoupling; time delay systems

1. Introduction

Differential drive mobile robots (see [1–9]), being generally equipped with two sepa-
rately driven wheels that are mounted on a common axis and a castor wheel for balance,
provide advantages in various robotic vehicular applications. Their simplistic yet effective
design enables precise turning and maneuvering capabilities, which prove crucial in con-
fined or cluttered spaces. This makes them ideal for indoor environments like warehouses,
factories, hospitals, and laboratories, where agility and the ability to navigate around
obstacles are paramount. The differential drive system allows these robots to rotate in place,
offering superior handling and control in comparison to other drive systems. Additionally,
their straightforward mechanical design translates to lower maintenance costs and easier
repairs, which is beneficial for continuous, high-demand operations. Furthermore, the
inherent simplicity of the control mechanism of differential drive robots facilitates easier

Robotics 2024, 13, 26. https://doi.org/10.3390/robotics13020026 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics13020026
https://doi.org/10.3390/robotics13020026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-5126-5226
https://orcid.org/0000-0002-9856-049X
https://doi.org/10.3390/robotics13020026
https://www.mdpi.com/journal/robotics
http://www.mdpi.com/2218-6581/13/2/26?type=check_update&version=5


Robotics 2024, 13, 26 2 of 39

programming and integration into automated systems, enhancing their adaptability in
tasks that range from material handling to more complex automation processes. The combi-
nation of maneuverability, cost-effectiveness, and ease of integration positions differential
drive mobile robots as a versatile and efficient solution in the ever-evolving landscape of
robotics and automation. In order to control the performance variables of such robotic
vehicles, several control approaches have been proposed, including, among many, PID type
of controllers (see [10–12]), linear static state feedback controllers (see [5]), optimal type
of controllers (see [13–16]), predictive controllers (see [17,18]), and fuzzy (see [19,20]) and
adaptive controllers (see [21,22]).

Of particular interest is the use of inverse dynamics/feedback linearization type of
controllers for the motion control (indicatively see [23–29]) of robotic vehicles, aerial robots,
and robotic manipulators. In [23], a proportional-derivative (PD) feedback linearization
controller, designed for optimal trajectory tracking in nonholonomic wheeled mobile robots,
is introduced. The proposed approach uses a population-based optimization algorithm,
which is utilized to refine the PD controller. In [24], the problem of controlling six-joint
robot manipulators handling various loads through a nonlinear control approach is investi-
gated. The proposed method incorporates nonlinear static feedback alongside a nonlinear
proportional and derivative precompensator, aiming to resolve the position control problem
across all models/different loads using a single controller. The controller is designed to
meet the criteria of common input/output decoupling, while also ensuring the following
of common arbitrary commands. The work in [25] focuses on the trajectory control of
nonholonomic robotic systems in the presence of model uncertainties. It introduces a track-
ing controller that merges inverse dynamics control with an adaptive robust PID control
approach, providing resilience against both parametric and nonparametric uncertainties.
In [26], the motion control of an automated guided vehicle (AGV) is achieved using a blend
of PID control and a controller based on inverse actuator dynamics. This inverse dynamics
controller compensates the unmodeled nonlinearities in the system, achieving a precise
rotor speed control in the DC motor. This is essential for the robot’s accurate following of
the planned trajectory. In [27], a control technique for differential drive wheeled mobile
robots with nonholonomic constraints, which utilizes a backstepping-like feedback lin-
earization approach, is introduced. The proposed method employs cascaded kinematic and
dynamic linearization, resulting in a more straightforward and modular control framework.
Initially, pseudo commands for the robot’s linear forward velocity and heading angle are
crafted based on kinematics. Subsequently, actual torque inputs are formulated to ensure
these real movements align with the pseudo commands. In [28], the problem of trajec-
tory tracking control in differential drive robots with input limitations is investigated. In
particular, a robust, set-based receding horizon tracking method that effectively manages
state-dependent input constraints is proposed. In [29], the authors propose a strategy
for avoiding collisions, specifically designed for differential drive robots operating under
constraints in environments with static but unknown obstacles. To achieve this, they use the
nonlinear kinematics of the robot towards developing a feedback linearization controller.
Additionally, they develop a receding horizon control approach that is specially adapted to
handle constraints on states and inputs that vary over time.

For an improved maneuverability, despite the presence of communication delays, the
problem of independently controlling the velocity and orientation angle of a differential
drive mobile robot is investigated in the present paper; this investigation is carried out
via the developing of an appropriate two-stage nonlinear controller embedded on board
and using measurements of the speed and accelerator of the two active wheels, as well
as the remote measurements of the orientation angle and its rate. The system model is
described in nonlinear state space form, accounting for inaccuracies which stem from
external disturbances and actuator faults. The external disturbances are translated to
additive motor torques and the actuator faults are expressed additively to the motor
voltage. Utilizing this nonlinear system model, the input/output relationship is established,
leading to the development of a two-stage nonlinear controller. The internal controller



Robotics 2024, 13, 26 3 of 39

linearizes the closed-loop system and decouples the dynamics of the linear velocity and
the angular velocity. This way, the independent control of the performance variables of
the system is achieved. The controller is of the nonlinear PD type and relies on real-time
measurements of the wheels’ angular velocities and accelerations. The controller has the
advantages of the various versions of the inverse dynamic control scheme (see [23,24,26]).
The goal of the external controller is to regulate the vehicle’s orientation angle by using
a linear delayed feedback scheme that uses the remote measurements of the vehicle’s
orientation angle and angular velocity, which are assumed to be wirelessly transmitted to
the controller. The external controller is supported by an appropriate signal transmission–
reconstruction algorithm, developed in [30], that makes constant the uncertain and fast
varying communication delays. Considering that communication delays may significantly
influence the performance of the closed loop system, one of the main advantages of the
herein proposed approach is the derivation of the analytic formulas of the external controller
parameters that ensure the system’s stability, despite wireless transmission delays, and
the achievement of asymptotic command following for the orientation angle. To offset the
influence of measurement noises, external disturbances, and actuator faults, a metaheuristic
algorithm is suggested for fine-tuning the remaining controller parameters. The efficacy of
this control strategy is confirmed through numerous computational tests, demonstrating its
satisfactory performance. It is important to mention that the nonlinear nature of the herein
proposed control scheme appears to have the distinct advantage of not depending on the
operating point of the mobile robot, similarly to, for example, the controllers in [5,11,31]. In
the present case, the operating points would be affected by the unknown modelling errors.
Furthermore, the dual stage form of the proposed controller facilitates the design procedure,
providing the interpretability of each controller stage. It is important to mention that the
inner stage is offered to be used independently in cases where the design requirements are
limited to the angular velocity control of the vehicle.

2. Dynamics of the Differential Drive Mobile Robot
2.1. Mobile Robot Nonlinear Dynamics with Additive Modelling Errors

Here, the dynamics of the differential drive mobile robot depicted in Figure 1 are
studied, under pure rolling and no lateral slip conditions. The active wheels of the mobile
robot are driven by appropriate DC motors, indicatively see [1–5]. As already mentioned,
the dynamics of the vehicle will be extended to include unknown external disturbances
and unknown actuator faults. Clearly, since the mobile robot is constrained to ensure
pure rolling and no lateral slip conditions, external forces and moments can equivalently
be represented as additive torques applied to the active wheels of the robot. Similarly,
the actuator faults are represented as unknown additive voltages of the driving motors.
According to [5] and considering the above additive disturbances and faults, the nonlinear
dynamic model describing the motion of the mobile robot is expressed in a nonlinear state
space form as follows:

x(1)(t) =
[

Ẽ(x)
]−1[

Ãx(t) + B̃u(t) + J̃ξ(t)
]
, (1)

y(t) = Cx(t), (2)

where Ẽ(x) is the state derivative matrix, Ã is the state matrix, B̃ is the actuatable input
matrix, J̃ is the disturbance matrix, and C is the performance output matrix,

x(t) =
[
x1(t) x2(t) x3(t) x4(t) x5(t)

]T
=
[
ωW,l(t) ωW,r(t) φ(t) im,l(t) im,r(t)

]T ,

u(t) =
[
u1(t) u2(t)

]T
=
[
Vm,l(t) Vm,r(t)

]T , y(t) =
[
y1(t) y2(t)

]T
=
[
v(t) φ(t)

]T ,

ξ(t) =
[
ξ1(t) ξ2(t) ξ3(t) ξ4(t)

]T
=
[
τD,l(t) τD,r(t) VD,l(t) VD,l(t)

]T .
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and where x,u,ξ, and y are the state, input, unknown disturbance, and performance output
vectors, respectively. The system matrices are expressed in terms of their elements as
follows: Ẽ(x) =

[
ẽi,j(x)

]
∈ R5×5, Ã =

[
ãi,j
]
∈ R5×5, B̃ =

[
b̃i,j

]
∈ R5×2, J̃ =

[
j̃i,j
]
∈ R5×4,

and C =
[
ci,j
]
∈ R2×5, where the nonzero elements of Ẽ(x), Ã, B̃, J̃, and C are the following:

ẽ1,1(x) = ẽ2,2(x) =
1
4

(
ν1 + ν2b−2

W

)
, ẽ1,2(x) = ẽ2,1(x) =

1
4

(
ν1 − ν2b−2

W

)
, ẽ1,3(x) = −dWmPr2

W x2(t)/2bW ,

ẽ2,3(x) = dWmPr2
W x1(t)/2bW , ẽ3,3(x) = ẽ4,4(x) = ẽ5,5(x) = 1, c1,1 = c1,2 =

1
2

rW , c2,3 = 1,

ã1,1 = ã2,2 = −Bm, ã1,4 = ã2,5 = Kmrm, ã3,1 = −ã3,2 = −1
2

rWb−1
W , ã4,1 = ã5,2 = −KbrmL−1

r , ã4,4 = ã5,5 = −RmL−1
r ,

b̃4,1 = b̃5,2 = L−1
r , j̃1,1 = j̃2,2 = 1, j̃3,3 = j̃4,4 = L−1

r ,

where ν1 = 2JW,y +(mP + 2mW)r2
W and ν2 = JPr2

W + b2
W
(
ν1 − mPr2

W
)
+ r2

W
(
d2

WmP + 2JW,z
)
.
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Figure 1. Abstractive representation of the differential drive mobile robot and its basic activation
components.

The elements of ξ(t) are unknown signals. The first two represent external force
and torque disturbances, e.g., unmodelled effects, small-inertia obstacles, small-scale sin-
gularities of the horizontal plane, expressed as additive motor torques. The remaining
two elements of ξ(t) are actuator faults or unmodelled effects of the circuit of the motor,
expressed additively to the motor voltages. Roughly speaking, in general, the influence of
ξ(t) is small.

The following lemma will facilitate the control design that will be presented in Section 3.

Lemma 1. The nonlinear I/O dynamics of the differential drive mobile robot, with additive I/O
external disturbances and actuator faults, are

y(2)1 (t) + a1,1y(1)1 (t) + a1,2y1(t) + a1,3y(1)2 y(2)2 + a1,4

(
y(1)2 (t)

)2
= a1,5(u1(t) + u2(t)) + εy,1(t), (3)

y(3)2 (t) + a2,1y(2)2 (t) + a2,2y(1)2 (t) + a2,3y1(t)y
(2)
2 (t) + a2,4y1(t)y

(1)
2 (t) + a2,5y(1)1 (t)y(1)2 (t) =

a2,6(u1(t)− u2(t)) + εy,2(t), (4)

where
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a1,1 = RmL−1
r + 2Bmv−1

1 , a1,2 = 2L−1
r ν−1

1

(
KbKmr2

m + BmRm

)
, a1,3 = −2dWmPr2

Wν−1
1 , a1,4 = −dWmPRmL−1

r ν−1
1 r2

W ,

a1,5 = KmrmrW L−1
r ν−1

1 , a2,1 = RmL−1
r + 2Bmb2

Wν−1
2 , a2,2 = 2b2

W L−1
r ν−1

2

(
KbKmr2

m + BmRm

)
, a2,3 = dWmPν−1

2 r2
W ,

a2,4 = dWmPL−1
r ν−1

2 Rmr2
W , a2,5 = dWmPν−1

2 r2
W , a2,6 = bWKmrmrW L−1

r ν−1
2 ,

and where the I/O modelling errors are related to the state space modelling errors as follows

εy,1(t) =
RmrW
Lrν1

(ξ1(t) + ξ2(t)) +
KmrmrW

Lrν1
(ξ3(t) + ξ4(t)) +

rW
ν1

(
ξ
(1)
1 (t) + ξ

(1)
2 (t)

)
, (5)

εy,2(t) =
bW RmrW

Lrν2
(ξ2(t)− ξ1(t)) +

bWKmrmrW
Lrν2

(ξ4(t)− ξ3(t)) +
bWrW

ν2

(
ξ
(1)
2 (t)− ξ

(1)
1 (t)

)
(6)

Proof. In order to produce the nonlinear I/O dynamics of the differential drive mo-
bile robot, with additive I/O external disturbances and actuator faults, a similar design
procedure to that presented in [32,33] will be applied. Define

Γ(x, u, ξ) =
[

Ẽ(x)
]−1[

Ãx(t) + B̃u(t) + J̃ξ(t)
]
, (7)

where

Γ(x, u, ξ) =
[
γ1(x, u, ξ) γ2(x, u, ξ) γ3(x, u, ξ) γ4(x, u, ξ) γ5(x, u, ξ)

]T , (8)

and where the elements of Γ(x, u, ξ), namely the nonlinear functions γj(x, u, ξ)(j = 1, . . . , 5),
are presented in the Appendix A. From relation (2), it can readily be observed that

y(1)1 (t) =
1
2

rW

(
x(1)1 (t) + x(1)2 (t)

)
, (9)

y(1)2 (t) = x(1)3 , (10)

y(2)1 (t) =
1
2

rW

(
x(2)1 (t) + x(2)2 (t)

)
, (11)

y(2)2 (t) = x(2)3 (t). (12)

Taking into account (1) and (7), relations (9) to (12) can be rewritten as

y(1)1 (t) =
1
2

rW(γ1(x, u, ξ) + γ2(x, u, ξ)), (13)

y(1)2 (t) = γ3(x, u, ξ), (14)

y(2)1 (t) =
1
2

rW

(
∂γ1(x, u, ξ)

∂x
+

∂γ2(x, u, ξ)

∂x

)
x(1)(t)+

1
2

rW

(
∂γ1(x, u, ξ)

∂u
+

∂γ2(x, u, ξ)

∂u

)
u(1)(t) +

1
2

rW

(
∂γ1(x, u, ξ)

∂ξ
+

∂γ2(x, u, ξ)

∂ξ

)
ξ(1)(t), (15)

y(2)2 (t) =
∂γ3(x, u, ξ)

∂x
x(1)(t) +

∂γ3(x, u, ξ)

∂u
u(1)(t) +

∂γ3(x, u, ξ)

∂ξ
ξ(1)(t). (16)
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Furthermore, from (2), (8), and (14), the following relations are derived

x1(t) =
y1(t)− bWy(1)2 (t)

rW
, (17)

x2(t) =
y1(t) + bWy(1)2 (t)

rW
. (18)

Substituting (17) and(18) to (13), (14), (15), and (16) and applying appropriate alge-
braic manipulations, the inputs and outputs of the mobile robot are related by the set of
differential equations in (3) and (4).

According to the Formulas (5) and (6), the additive errors εy,1 and εy,2 can be due to
various causes like unmodeled dynamics, unexpected interactions with external objects in
the workspace of the mobile robot, and voltage actuator faults, leading to deviations from
the ideal behavior. Based on these observations, and taking into account the coefficients
of the state modelling errors and their derivatives, it is observed that the modelling error
εy,1, multiplied by ν1, corresponds to an additive yank term and the modelling error εy,2,
multiplied by ν2, corresponds to an additive rotatum term. The I/O additive errors εy,1 and
εy,2 will be treated as unknown but bounded signals. □

2.2. Measurable Output Varables and Remote Measurement Noise

The measurable variables of the mobile robot are grouped into two classes. The vari-
ables of the first class are motion variables, namely the angular velocities and accelerations
of the active wheels, being measured onboard and using optical encoders, see [34,35]. The
variables of the second class are motion variables, namely the heading angle and heading
angle rate (the time derivative of the heading angle) of the mobile robot. The heading angle
of the vehicle, as well as its derivative, are measured externally by remote optical sensing
systems, indicatively see [36,37]. Here, the controller is implemented onboard the robot.
Thus, the measurement signal of the optical sensing system is wirelessly transmitted to the
controller. Clearly, the transmission of these measurements through the network introduces
a time varying delay on the transmitted signal. Hence, the measurable output vector is
determined as follows:

ψ(t) = Cm,0x(t) + Cm,1x(1)(t) + Cm,2x(t − τ1(t)) + Cm,3x(1)(t − τ2(t)) + ψn(t), (19)

where

ψ =
[
ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

]T , ψn =
[
ψn,1 ψn,2 ψn,3 ψn,4 ψn,5 ψn,6

]T .

The transmission delays τ1 and τ2 are time varying, as they depend upon the accuracy
of the communication protocol and the communications noise, see [30] and the references
therein. These two delays are usually equal, e.g., the same communication channel and
the same equipment are used for both measurements. However, in several cases, they are
different. The matrices Cm,k =

[
(cm,k)i,j

]
∈ R6×5 (k = 0, . . . , 3) are appropriate constant

matrices, where their non-zero elements are

(cm,0)1,1 = (cm,0)2,2 = (cm,1)3,1 = (cm,1)4,2 = (cm,2)5,3 = (cm,3)6,3 = 1.

Here, the measurement noise vector ψn is generated by the remote optical sensing
system. The angular velocities of the active wheels are accurately measured, while the
measurements of the heading angle and its derivative are considered not to be accurate.
This inaccuracy is due to the presence of the wireless network as well as the quantization
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and discrete time nature of the image processing algorithms. Hence, the respective noise
signals are non-zero. Thus, ψn(t) is of the following form

ψn(t) =
[
0 0 0 0 ψn,5(t) ψn,6(t)

]T . (20)

3. A Two-Stage Controller Design

In the present section, a two-stage controller scheme will be proposed. The first stage is
an internal controller, being of the nonlinear measurable output feedback type. The second
stage is an external controller of the time delay measurement output feedback type. The
superposition of both controllers is a time delay nonlinear measurement output controller.
Regarding the performance outputs of the mobile robot, the design goals of the overall
controller are the following three goals:

• The I/O stability of the closed loop system,
• The independent control of the velocity and the heading angle of the vehicle, and
• The asymptotic command following of the performance outputs.

The above design goals provide the conditions for the efficient maneuvering of the
vehicle (see [5]).

The architecture of the two-stage controller is presented in Figure 2. The internal
controller will achieve the independent control of the linear velocity and the angular velocity
of the vehicle, using only measurements of the angular velocities and the accelerations of
the active wheels of the robot.
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ond stage is an external controller of the time delay measurement output feedback type. 
The superposition of both controllers is a time delay nonlinear measurement output con-
troller. Regarding the performance outputs of the mobile robot, the design goals of the 
overall controller are the following three goals: 
• The I/O stability of the closed loop system, 
• The independent control of the velocity and the heading angle of the vehicle, and 
• The asymptotic command following of the performance outputs. 

The above design goals provide the conditions for the efficient maneuvering of the 
vehicle (see [5]). 

The architecture of the two-stage controller is presented in Figure 2. The internal con-
troller will achieve the independent control of the linear velocity and the angular velocity 
of the vehicle, using only measurements of the angular velocities and the accelerations of 
the active wheels of the robot. 

 
Figure 2. Block diagram of the two-stage control scheme. 

The external controller will regulate the heading angle, using only remote measure-
ments of the heading angle and the heading angle rate, both transmitted through the same 
network. Both controllers will be designed under the assumption of zero external 

Figure 2. Block diagram of the two-stage control scheme.

The external controller will regulate the heading angle, using only remote measure-
ments of the heading angle and the heading angle rate, both transmitted through the
same network. Both controllers will be designed under the assumption of zero external
disturbances and zero actuator faults in (1), as well as zero additive measurement noise in
(19). Later on, certain free parameters of the external controller will be used to satisfy the
attenuation of the influence of the additive modelling errors and the additive measurement
noise to the performance of the systems.

3.1. Stage 1: Internal Controller for the Independent Control of the Linear and the Angular Velocity
of the Mobile Robot

In the present subsection, an I/O decoupling feedback linearization type of controller
will be designed for the independent control of the linear and the angular velocities of
the mobile robot. The design procedure will be carried out by using only the onboard
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measurable variables, namely the angular velocities of the active wheels and the respective
accelerations. The internal controller is of the following parametric form:

u1(t) =
λ0,1

2a1,5
w1(t) +

λ0,2

2a2,6
w2(t) +

a2,5

2a2,6
ỹ(1)1 (t)ỹ(1)2 (t) +

a2,3

2a2,6
ỹ1(t)ỹ

(2)
2 (t)

+
a1,3

2a1,5
ỹ(1)2 (t)ỹ(2)2 (t) +

a2,1 − λ1,2

2a2,6
ỹ(2)2 (t) +

a1,1 − λ1,1

2a1,5
ỹ(1)1 (t) +

a1,4

2a1,5

(
ỹ(1)2 (t)

)2
+

a2,4

2a2,6
ỹ1(t)ỹ

(1)
2 (t) +

a2,2 − λ0,2

2a2,6
ỹ(1)2 (t) +

a1,2 − λ0,1

2a1,5
ỹ1(t), (21)

u2(t) =
λ0,1

2a1,5
w1(t)−

λ0,2

2a2,6
w2(t)−

a2,5

2a2,6
ỹ(1)1 (t)ỹ(1)2 (t)− a2,3

2a2,6
ỹ1(t)ỹ

(2)
2 (t)+

a1,3

2a1,5
ỹ(1)2 (t)ỹ(2)2 (t) +

a1,1 − λ1,1

2a1,5
ỹ(1)1 (t) +

a1,4

2a1,5

(
ỹ(1)2 (t)

)2
− a2,4

2a2,6
ỹ1(t)ỹ

(1)
2 (t)+

λ0,2 − a2,2

2a2,6
ỹ(1)2 (t) +

a1,2 − λ0,1

2a1,5
ỹ1(t), (22)

where
ỹ1(t) =

rW
2
(ψ1(t) + ψ2(t)), (23)

ỹ(1)1 (t) =
rW
2
(ψ3(t) + ψ4(t)), (24)

ỹ(1)2 (t) =
rW

2bW
(ψ2(t)− ψ1(t)), (25)

ỹ(2)2 (t) =
rW

2bW

(
ψ
(1)
2 (t)− ψ

(1)
1 (t)

)
. (26)

The parameters λi,j ∈ R+ (i = 0, 1, j = 1, 2) are arbitrary positive real parameters and
the variables w1 and w2 are the external commands of the first stage controller, operating
as the control input of the external controller. For the case of zero I/O modelling errors, i.e.,
εy,1(t) = εy,2(t) = 0, and zero remote measurement noise, i.e., ψn,5(t) = ψn,6(t) = 0, the
resulting closed system, derived by substituting (21) and (22) to (3) and (4), is computed to
be of the following linear decoupled parametric form:

y(2)1 (t) + λ1,1y(1)1 (t) + λ0,1y1(t) = λ0,1w1(t), (27)

y(3)2 (t) + λ1,2y(2)2 (t) + λ0,2y(1)2 (t) = λ0,2w2(t). (28)

Since ωR(t) = y(1)2 (t) is the angular velocity of the mobile robot, the relation (28) can
be rewritten as

ω
(2)
R (t) + λ1,2ω

(1)
R (t) + λ0,2ωR(t) = λ0,2w2(t). (29)

Regarding the closed loop system in (27) and (29), it is observed that the two per-
formance outputs are decoupled and independently regulated via two linear dynamic
systems, with arbitrary and stable I/O poles, called also transmission poles, and satisfying
asymptotic command following. The arbitrary stable closed loop poles and the asymptotic
command following of (27) and (29) are satisfied as the arbitrary controller parameters
λi,j(i = 0, 1,j = 1, 2) are constrained only to be positive and the coefficients of the external
commands are the parameter λ0,j.

The characteristic polynomials of the closed loop systems (27) and (29) are

pj(s) = s2 + λ1,js + λ0,j ; j = 1, 2. (30)

The inequality constraints
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0 < λ0,j <
λ2

1,j

4
; j = 1, 2 (31)

are the necessary and sufficient conditions for the poles of the characteristic polynomial
in (30) to be real, negative, and distinct. So, via the appropriate choice of the coefficients
of the characteristic polynomial in (30), i.e., λ0,j and λ1,j, the closed loop step response
characteristics are easily adjusted. It is mentioned that the design requirement of I/O
decoupling with simultaneous I/O arbitrary stable pole assignment is a widely used
combination of requirements, indicatively see [6].

The control scheme proposed above is a nonlinear PD (Proportional plus Derivative)
measurement output feedback system, sharing an analogous structure and goal with
the inverse dynamics state feedback controller presented in [24] for robotic manipulator
carrying loads. The goal of both controller types is to achieve decoupling with arbitrary
I/O poles in a closed loop system.

Regarding the implementation of the derivative term of the controller, namely the
implementation of the time derivatives of measurement signals used by the controller,
approximate time derivatives (see [37]) or filters (see [38,39]) can be used in order to avoid
the differentiation of the eventually high frequency noise of the measurement variables.

3.2. Stage 2: External Controller for the Regulation of the Heading Angle of the Mobile Robot

In the present subsection, an external controller was designed for the stabilization and
asymptotic command following for the heading angle of the mobile robot. The external
controller uses delayed measurements of the heading angle and the angular velocity of
the mobile robot. As already mentioned in Section 2.2, the transmission delays of the
measurements of the heading angle and angular velocity of the robot are time varying and,
in general, different from one another. In order to make the delays constant, an appropriate
signal transmission–reconstruction algorithm, developed in [30], will be used. This algo-
rithm is quite general and applicable to several delays. The basic idea of the algorithm is
to repeatedly transmit the same sampled value in order to practically guarantee that the
sample is accurately received by the controller. In the receiver, a set of serially transmitted
values is used to generate a continuous time signal through polynomial interpolation.
Clearly, this procedure artificially increases any transmission delay and makes it equal to
the constant delay. Clearly, this algorithm is independent from the communication protocol.
An important characteristic of the algorithm is that, after a small extension, all constant
delays of the different measurement variables become equal. In the present paper, after
developing this extension, the fact that the delays become constant and equal facilitates the
development of a delay-dependent controller for the regulation of the second performance
variable, namely the heading angle of the mobile robot.

After the application of the above algorithm and its extension, it holds that
τ1(t) = τ2(t) = τ, where τ is now the actual signal delay. The proposed external controller
will be considered to be of the following static measurable output feedback form:

w2(t) = −ρ1ψ5(t)− ρ0ψ6(t) + κw̃2(t), (32)

where ρ0, ρ1, and κ ∈ R are the parameters of the controller, and w̃2 is the external command
of the controller of Stage 2. Using (19), the external controller in (32) can be rewritten as

w2(t) = −ρ1y(1)2 (t − τ)− ρ0y2(t − τ) + κw̃2(t). (33)

By substituting the controller (33) to the part of the closed loop system of Stage 1,
presented in (28), and by applying series of computations, it is concluded that the forced
response of the closed loop system of Stage 2 is expressed in the frequency domain as fol-
lows:

Y2(s) = Hy,2(s, z)W̃2(s), (34)
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where Y2(s) = L{y2(t)}, W̃2(s) = L{w̃2(t)}, L{•} denotes the Laplace Transform of the
argument signal,

Hy,2(s, z) = λ0,2κ/pc(s, z), (35)

pc(s, z) = s3 + λ1,2s2 + (λ0,2 + λ0,2ρ1z)s + λ0,2zρ0. (36)

and where z = exp(−sτ). Choosing λ0,2 = η1µ0, λ1,2 = η1 + µ0, ρ0 = η0/η1, and
ρ1 = η0/η1µ0, where η0, η1, and µ0 ∈ R are arbitrary real parameters, the characteristic
quasi-polynomial pc(s, z) becomes

pc(s, z) = pc,1(s)pc,2(s, z), (37)

where
pc,1(s) = s + µ0, (38)

pc,2(s, z) = s2 + η1s + η0z. (39)

The parameters µ0, η0, and η1 are initially constrained to enable the stability requirement
for the closed loop system. The stability requirements are the following three conditions:

i. the I/O poles of the closed loop system of Stage 1 are stable,
ii. the delay-free characteristic polynomial pc(s, 1) of the closed loop system of Stage 2 is

stable with real and distinct roots, and
iii. the delayed characteristic quasi-polynomial pc(s, z) of the closed loop system of Stage

2 is stable for all delays τ ∈ (0, τ∗], where τ∗ is a positive real number, being large
enough to cover all cases of possible transmission delays.

In the second requirement, the constraint of real and distinct roots is introduced to
facilitate the analysis of the third requirement. The second requirement is translated to the
following simple and elegant criteria:

µ0, η0, η1 ∈ R+, η0 <
η2

1
4

, µ0 ̸=
η1 ±

√
η2

1 − 4η0

2
.

For the satisfaction of the third stability requirement, the following lemma is established:

Lemma 2. Let the positive controller parameters µ0, η0, and η1, as well as a delay bound τ∗,
be given. The overall closed loop system characteristic quasi-polynomial in (39) is stable for
all τ ∈ [0, τ∗], if and only if

τ∗ < τmax (40)

where

τmax = 2 tan−1
(

Tc

√
η0

1 + Tcη1

)
/
√

η0

1 + Tcη1
, Tc = − 1

η1
+

η1

2η0
+

1
2

√
4
η2

1
+

η2
1

η2
0

. (41)

Proof. Using the stability analysis procedure presented in [40], the Rekasius transformation
is applied on the characteristic quasi-polynomial (39), and the following transformed delay-
free characteristic polynomial is derived:

p̃c,2(s, T) = Ts3 + (1 + Tη1)s2 + (η1 − Tη0)s + η0, (42)

where T ∈ R. Applying the classical Routh–Hurwitz criterion to the polynomial in (42),
then, according to [40], the following quantities are defined:

R2,1(T) = 1 + Tη1, (43)

R1(T) = − η0η1

1 + Tη1
T2 +

η2
1 − 2η0

1 + Tη1
T +

η1

1 + Tη1
, (44)



Robotics 2024, 13, 26 11 of 39

R0(T) = η0. (45)

Relation (44) can be rewritten as

R1(T) = − η0η1

1 + Tη1
(T − Tc,1)(T − Tc,2), (46)

where

Tc,1 = −
2η0 − η2

1 +
√

4η2
0 + η4

1

2η0η1
, (47)

Tc,2 =
−2η0 + η2

1 +
√

4η2
0 + η4

1

2η0η1
, (48)

with Tc,1 and Tc,2 being candidate values for checking sign changes in the first column of
the Routh–Hurwitz array. From (47) and (48), it can be observed that Tc,1 < 0 and Tc,2 > 0.
Considering that η0 and η1 are constrained to be positive, as well as taking into account
(43) and (45), it can be observed that

R2,1(Tc,1)R0(Tc,1) < 0, (49)

R2,1(Tc,2)R0(Tc,2) > 0, (50)

According to [40], the above two inequalities determine the only valid root of (44) to
be (48). Also, it is observed that Tc,2 = Tc. From (43), (45), and (48), it is observed that the
critical frequency used in [40] can be expressed as follows:

ωc =

√
R0(Tc)

R2,1(Tc)
=


√

4η2
0 + η4

1 − η2
1

2

1/2

. (51)

Root crossings between the left and right imaginary half planes occur for delay values
satisfying the relation:

τk =
2

ωc

[
tan−1(ωcTc) + kπ

]
; k = 0, 1, . . . (52)

Define the root tendency as

RT(τk, ωc) = sgn

Re

 ds
dτ

∣∣∣∣ s = ωc j
τ = τk


 ; k = 0, 1, . . . (53)

where

sgn(χ) =


1, χ > 0
0, χ = 0
−1, χ < 0

(54)

and where (see [41])
ds
dτk

= − ∂pc,2(s)
∂τk

/
∂pc,2(s)

∂s
. (55)

Taking into account (39), relation (55) takes on the form of

ds
dτk

=
sη0

esτk (2s + η1)− η0τk
. (56)
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From (53) and (56) and through applying a series of computations, it is concluded that

RT(τk, ωc) = η0ω3
c (2ωc cos(2δ) + η1 sin(2δ))/

{
4k2π2η2

0 + η2
1ω2

c + 4ω4
c+

+4η0

[
4(kπ + δ)2η2

0 + η2
1ω2

c + 4ω4
c + 4(kπ + δ)η0ωc(2ωc sin(2δ)− η1 cos(2δ))

]}
; k = 0, 1, . . . (57)

where δ = tan−1(ωcTc), with δ ∈ (−π, π). From (41) and (50), it is concluded that
0 < ωcTc < 1 and consequently that δ ∈

(
0, π

4
)
. In this range, the denominator in

(56) is a strictly increasing function with a positive minimum value, independently of
k. Additionally, the numerator is always positive. Consequently, it is observed that
RT(τk, ωc) > 0 for all positive η0 and η1. Hence, given a set of η0 and η1, once the closed
loop system has reached the delay bound in (41), by increasing the delay, the closed loop
system never returns to stability. □

Remark 1. If the controller parameters meet all stability constraints, then choosing κ = η0/η1,
asymptotic command following for the heading angle is guaranteed. ▲

As already mentioned in the proof of Lemma 2, Tc and ωc are constrained to satisfy
the inequality

Tc <
1

ωc
(58)

Let
β = Tcωc; β ∈ (0, 1) (59)

Using (59), the general form of the controller parameters η0 and η1 preserving stability
of the closed loop system is presented in the following proposition.

Proposition 1. For any given real number τmax > 0, the stability of the quasi-polynomial in
(39), for all delays τ ∈ [0, τmax), can always be satisfied by an appropriate choice of the controller
parameters η0 and η1. The general solution of η0 and η1, preserving stability of (39) for all
delays τ ∈ [0, τmax), is expressed in terms of the free parameterβ ∈ (0, 1) and τmax > 0 as follows

η0 =

(
1 − β4)η2

1
4β2 , (60)

0 < η1 <
4ν tan−1(β)

(1 − β2)τmax
. (61)

Proof. From (48), (51), and (59) and through applying a series of computations, it is
observed that the controller parameters η0 and η1 are constrained to satisfy the relation (60).
Using Lemma 2, it can readily be observed that the polynomial in (39) remains stable for all
delays τmax, satisfying the inequality (40), which can be rewritten as follows:

τmax <
2 tan−1(β)

ωc
, (62)

or equivalently

ωc <
2 tan−1(β)

τmax
. (63)

Using (59) and (51), it can be observed that

ωc =
1
2

(
1
β
− β

)
η1. (64)
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From (63) and (64), as well as the positivity constraint for η1 it is observed that the
inequality in (63) is satisfied if and only if the inequality in (61) is satisfied. □

Given a desired delay stability margin τ∗ ∈ R+, a set of special solutions of controller
parameters preserving stability for all τ ∈ [0, τ∗] is presented in the following corollary:

Corollary 1. Given a desired delay stability margin τ∗ ∈ R+, a class of controller parameters
preserving stability of the quasi-polynomial (39) for all τ ∈ [0, τ∗] where τ∗ < τmax is expressed by
the following analytic expression:

η0 =
4
(
1 + β2) tan−1(β)2

(1 − β2)(τmax)
2 , (65)

η1 =
4ν tan−1(β)

(1 − β2)τmax
, (66)

where the free parameter is β ∈ (0, 1).

Proof. From relations (48), (51), and from Lemma 2, it can be observed that there exists a one-
to-one relation between η0 and η1 and ωc and Tc. Consequently, instead of determining η0 and
η1, it suffices to determine ωc and Tc. From (62), it can be verified that the quasi-polynomial
(39) becomes marginally stable for τ = τmax, where the following expression is used:

τmax =
2

ωc
tan−1(β). (67)

Solving (67) with respect to ωc results in

ωc =
2

τ∗ tan−1(β), (68)

while from (59), we get

Tc =
τ∗β

2 tan−1(β)
. (69)

Equating (48) to (69) and (51) to (68), and applying a series of algebraic manipulations,
it can be verified that η0 and η1 take on the form of relations (65) and (66). The controller
parameter forms in (65) and (66) guarantee that the quasi-polynomial (39) remains stable
for all τ ∈ [0, τ∗] where τ∗ < τmax. □

4. Enhancing Multi Performance Criteria via Controller Parameter Tunning

In Sections 3.1 and 3.2, the primary issue for the choice of the free controller parameters
λ0,1, λ1,1, µ0, and β, given τ∗, being the stability of the internal and the external closed
loop system has been studied. In the present section, a multi-criteria control scheme for
the selection of the remaining free controller parameters will be proposed. Particularly,
additional constraints upon the controller parameters will be imposed toward desirable
closed loop response characteristics, despite the presence of modelling errors and measure-
ment noise. In Section 3, it has been shown that the performance outputs of the system are
decoupled. Hence, the controller parameter selection problem will be broken down into
two separate problems. In the first, the parameters λ0,1 and λ1,1 will be chosen such that
the first performance variable is appropriately regulated. In the second, the parameters µ0
and β will be chosen such that the second performance variable is appropriately regulated.

Regarding the first problem, the controller parameters λ0,1 and λ1,1 will be chosen
such that (a) the transfer function mapping the external command w1 to the performance
output y1 is equal to a desired model transfer function, as an exact model matching problem
(see [42–44]), and (b) the influence of the modelling error to the first performance variable
is in an acceptable range. Regarding the second problem, the controller parameters µ0
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and ν will be chosen such that (a) the forced response of the second performance variable
resembles the response of an ideal model, being equivalent to a model following problem
or an approximate model matching problem (see [11]), (b) the influence of the modelling
error to the second performance variable is in an acceptable range, and (c) the influence of
the measurement noise to the second performance variable is also in an acceptable range. It
is noted that, in both problems, the acceptability of the influence of the modelling error and
the influence of the measurement noises will be defined as the norm bounds of appropriate
transfer functions (see [45,46]).

4.1. Operation of the Closed Loop System in the Presence of Measurement Noise and
Modelling Errors

In this subsection, the case where the vector ξ, including external disturbances and
actuator faults, as well as the fifth and sixth element of the measurement error noise vector,
denotes as ψn,5 and ψn,6, are different than zero. The application of the internal controller (21)
and (22) to the open loop nonlinear I/O description of the mobile robot in (3) and (4) yields

y(2)1 (t) + λ1,1y(1)1 (t) + λ0,1y1(t) = λ0,1w1(t) + εy,1(t), (70)

ω
(2)
R (t) + λ1,2ω

(1)
R (t) + λ0,2ωR(t) = λ0,2w2(t) + εy,2(t). (71)

The outer loop controller in (32) takes on the form

w2(t) = −ρ1

(
y(1)2 (t − τ) + ψn,6(t)

)
− ρ0(y2(t − τ) + ψn,5(t)) + κw̃2(t). (72)

Applying a series of manipulations, the forced response of the overall closed loop
system is expressed in the frequency domain as follows:

Y1(s) = Hw,1(s)W1(s) + Ĥ1,1(s)(Ξ1(s) + Ξ2(s)) + Ĥ1,2(s)(Ξ3(s) + Ξ4(s)), (73)

Y2(s) = Hw,2(s, z)W̃2(s) + Ĥ2,1(s, z)(Ξ1(s)− Ξ2(s))+

Ĥ2,2(s, z)(Ξ3(s)− Ξ4(s)) + Ĥ2,3(s, z)Ψn,5(s) + Ĥ2,4(s, z)Ψn,6(s), (74)

where Y1(s) = L{y1(t)}, W1(s) = L{w1(t)}, Ξ1(s) = L{ξ1(t)}, Ξ2(s) = L{ξ2(t)},
Ξ3(s) = L{ξ3(t)}, Ξ4(s) = L{ξ4(t)}, Ψn,5(s) = L{ψn,5(t)}, Ψn,6(s) = L{ψn,6(t)},
and where

Hw,1(s) = λ0,1/p1(s), Hw,2(s, z) = η0µ0/pc(s, z), Ĥ1,1(s) =
(

rWv−1
1 s + RmrW L−1

r ν−1
1

)
/p1(s),

Ĥ1,2(s) = KmrmrW L−1
l ν−1

1 /p1(s), Ĥ2,1(s, z) = −bWrW L−1
r v−1

2 (Rm + Lrs)/pc(s, z),

Ĥ2,2(s, z) = −bWKmrmrW L−1
r v−1

2 /pc(s, z), Ĥ2,3(s, z) = −η0µ0/pc(s, z), Ĥ2,4(s, z) = −η0/pc(s, z).

4.2. Model Matching with Simultaneous Attenuation of the Modelling Error toward Regulation of
the Velocity of the Vehicle

In this subsection, the aim of the choice of the free parameters of the controller is the
satisfactory behavior of the closed loop system, despite the presence of modelling errors
and measurement noise. Regarding the velocity of the mobile robot, this requirement
corresponds to finding λ1,1 and λ0,1 such that the transfer function Hw,1(s) has a desirable
form, while, simultaneously, the transfer functions mapping the modeling error signals to
the velocity to have appropriately bounded norms, i.e., to hold that(∥∥Ĥ1,1(s)

∥∥
∞ ≤ γ̃1,1

)
∧
(∥∥Ĥ1,1(s)

∥∥
2 ≤ γ̃1,2

)
∧
(∥∥∥ĥ1,1(t)

∥∥∥
1
≤ γ̃1,3

)
∧

(∥∥Ĥ1,2(s)
∥∥

∞ ≤ γ̃2,1
)
∧
(∥∥Ĥ1,2(s)

∥∥
2 ≤ γ̃2,2

)
∧
(∥∥∥ĥ1,2(t)

∥∥∥
1
≤ γ̃2,3

)
, (75)
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where ĥ1,1(t) and ĥ1,2(t) denote the inverse Laplace transforms of Ĥ1,1(s) and Ĥ1,2(s),
respectively, γ̃i,j ∈ R+ (i = 1, 2, j = 1, 2, 3), ∥·∥∞, and ∥·∥2 are the infinity induction norm
and the induction norm-2 of the argument rational function, respectively, and ∥·∥1 denotes
the norm-1 of the argument signal (see [45,46]). Given that Hw,1(s) is an all-pole transfer
function, with a second order delay-free denominator polynomial, the ideal model transfer
function mapping the external command to the performance output is selected to be of the
form of

Hm,1(s) =
1(

(Tm,1)1s + 1
)(
(Tm,1)2s + 1

) , (76)

where (Tm,1)i ∈ R+(i = 1, 2) and (Tm,1)1 > (Tm,1)2. The form in (76) guarantees stability,
asymptotic command following, and zero overshoot and oscillations for an external command
of the step input form and the arbitrary regulation of the settling time for the closed loop
response. Note that, from the analytic point of view, the above transfer function requirement
is equivalent to a model matching problem via state feedback, see [42–44]. The necessary and
sufficient conditions for the above design goal are expressed in the following proposition:

Proposition 2. The problem of model matching with simultaneous modeling error attenuation,
defined in (75) and (76), for the velocity of the mobile robot, can always be satisfied if and only
if the parameters of the model (Tm,1)1 and (Tm,1)2 are constrained to satisfy the following set
of inequalities:

(χ1 ≥ RmrW
Lrγ̃1,1ν1

)
∧

Lr ≤
Rm

√
χ2

2 − 2χ1

χ1

∨
2R2

m + L2
r
(
2χ1 − χ2

2
)
+ 2
√
(R2

m + L2
r χ1)

2 − L2
r R2

mχ2
2

4χ1χ2
2 − χ4

2
≤
(

Lrν1

rW

)2
 ∧

Lr >
Rm

√
χ2

2 − 2χ1

χ1

, (77)

χ2 >
r2

W
2γ̃2

1,2ν2
1

, (78)

χ1 ≥ max

{
RmrW

Lrγ̃1,3ν1
,

KmrmrW
Lrγ̃2,1ν1

,
K2

mr2
mr2

W
2L2

r γ̃2
2,2ν2

1 χ2
,

R2
mr2

W
2L2

r γ̃2
1,2ν2

1 χ2 − L2
r r2

W

}
, (79)

where χ1 = 1
(Tm,1)1(Tm,1)2

and χ2 = 1
(Tm,1)1

+ 1
(Tm,1)2

.
The general solution of the free parameters of the controller is

λ1,1 =
1

(Tm,1)1
+

1
(Tm,1)2

, (80)

λ0,1 =
1

(Tm,1)1(Tm,1)2
. (81)

Proof. From (73) and (76), it can be observed that the closed loop transfer function
mapping the external command to the vehicle’s velocity equals the model transfer function
if, and only if, (

(Tm,1)1 + (Tm,1)2
)
λ0,1 − λ1,1 = 0, (82)

(Tm,1)1(Tm,1)2λ0,1 − 1 = 0. (83)



Robotics 2024, 13, 26 16 of 39

Solving (82) and (83), with respect to λ0,1 and λ1,1, the expressions in (80) and (81) are
derived. Using (80) and (81), the transfer matrices Ĥ1,1(s) and Ĥ1,2(s) take on the form of

Ĥ1,1(s) =
rW(Lrs + Rm)(Tm,1)1(Tm,1)2

Lrν1
(
(Tm,1)1s + 1

)(
(Tm,1)2s + 1

) , (84)

Ĥ1,2(s) =
KmrmrW(Tm,1)1(Tm,1)2

Lrν1
(
(Tm,1)1s + 1

)(
(Tm,1)2s + 1

) . (85)

From (84) and (85), the following expressions are derived:

ĥ1.1(t) =
rW

Lrν1(ρ1,1 − ρ2,1)
[exp(−tρ1,1)(Lrρ1,1 − Rm) + exp(−tρ2,1)(Rm − Lrρ2,1)], (86)

ĥ1.2(t) =
KmrmrW

Lrν1(ρ1,1 − ρ2,1)
(exp(−tρ2,1)− exp(−tρ1,1)), (87)

where ρ1,1 = (Tm,1)
−1
1 and ρ2,1 = (Tm,1)

−1
2 . Applying appropriate algebraic manipula-

tions to (84)–(87) and using a series of computations, the following analytic expressions
are derived:

∥∥Ĥ1,1(s)
∥∥

∞ =


RmrW

Lrν1ρ1,1ρ2,1
, if 0 < Lr ≤

Rm

√
ρ2

1,1+ρ2
2,1

ρ1,1ρ2,1

rW

√
L2

r (ρ2
1,1+ρ2

2,1)−2R2
m−2

√
(R2

m−L2
r ρ2

1,1)(R2
m−L2

r ρ2
2,1)

Lrν1(ρ2
1,1−ρ2

2,1)
, if Lr >

Rm

√
ρ2

1,1+ρ2
2,1

ρ1,1ρ2,1

, (88)

∥∥Ĥ1,2(s)
∥∥

∞ =
KmrmrW

Lrν1ρ1,1ρ2,1
, (89)

∥∥Ĥ1,1(s)
∥∥2

2 =
r2

W
(

R2
m + L2

r ρ1,1ρ2,1
)

2L2
r ν2

1 ρ1,1ρ2,1(ρ1,1 + ρ2,1)
, (90)

∥∥Ĥ1,2(s)
∥∥2

2 =
K2

mr2
mr2

W
2L2

r ν2
1 ρ1,1ρ2,1(ρ1,1 + ρ2,1)

, (91)

∥∥∥ĥ1.1(t)
∥∥∥

1
=

RmrW
Lrν1ρ1,1ρ2,1

, (92)

∥∥∥ĥ1.2(t)
∥∥∥

1
=

KmrmrW
Lrν1ρ1,1ρ2,1

. (93)

From (88) and (92), it can be verified that if

0 < Lr ≤
Rm

√
ρ2

1,1 + ρ2
2,1

ρ1,1ρ2,1
. (94)

then ∥∥Ĥ1,1(s)
∥∥

∞ =
∥∥∥ĥ1.1(t)

∥∥∥
1
. (95)

Furthermore, from (89) and (93), the following equality is derived:∥∥Ĥ1,2(s)
∥∥

∞ =
∥∥∥ĥ1,2(t)

∥∥∥
1
. (96)

Considering the equality in (96) and assuming, without a loss of generality, that
γ̃2,1 ≤ γ̃2,3, the inequality constraints in (75) reduce to(∥∥Ĥ1,1(s)

∥∥
∞ ≤ γ̃1,1

)
∧
(∥∥Ĥ1,1(s)

∥∥
2 ≤ γ̃1,2

)
∧
(∥∥∥ĥ1.1(t)

∥∥∥
1
≤ γ̃1,3

)
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∧
(∥∥Ĥ1,2(s)

∥∥
∞ ≤ γ̃2,1

)
∧
(∥∥Ĥ1,2(s)

∥∥
2 ≤ γ̃2,2

)
(97)

Applying a series of manipulations upon (97), the inequality constraints in (77) to (79)
are derived. □

4.3. Approximate Model Matching with Simultaneous Attenuation of the Modelling Errors and the
Measurement Noise toward Regulation of the Orientation Angle of the Mobile Robot

The regulation of the orientation angle of the mobile robot will be accomplished using
an ideal model for the mapping of the external command to the orientation angle. Let
Hm,2(s) be the ideal/desirable transfer function mapping the external command to the
orientation angle. The ideal transfer function will be determined by the designer. Let
ym,2(t) be the ideal closed loop orientation angle forced response, where

Ym,2(s) = Hm,2(s)W̃2(s) (98)

where Ym,2(s) = L{ym,2(t)}. Also, let

e2(t) = y2(t)− ym,2(t) (99)

be the error signal between the closed loop response for the orientation angle and the
model response. From (74), it can be readily verified that the forced response of the error is
expressed as follows:

E2(s) = (Hw,2(s, z)− Hm,2(s))W̃2(s) + Ĥ2,1(s, z)(Ξ1(s)− Ξ2(s))+

Ĥ2,2(s, z)(Ξ3(s)− Ξ4(s)) + Ĥ2,3(s, z)Ψn,5(s) + Ĥ2,4(s, z)Ψn,6(s) (100)

where E2(s) = L{e2(t)}. The design goal of approximate model matching (see [11]) consists
of finding appropriate controller parameters β and µ0, such that e2(t) is appropriately
bounded. Define the infinity norm cost function:

J2(β, µ0) = ∥Hw,2(s, z)− Hm,2(s)∥∞. (101)

The mathematical formulation of the present approximate model matching problems with
simultaneous disturbance attenuation is as follows:

• Minimize J2(ν, µ0) under the constraints(∥∥Ĥ2,1(s, z)
∥∥

∞ ≤ γ̂1,1
)
∧
(∥∥Ĥ2,1(s, z)

∥∥
2 ≤ γ̂1,2

)
∧
(∥∥∥ĥ2,1(t)

∥∥∥
1
≤ γ̂1,3

)
∧
(∥∥Ĥ2,2(s, z)

∥∥
∞ ≤ γ̂2,1

)
∧

(∥∥Ĥ2,2(s, z)
∥∥

2 ≤ γ̂2,2
)
∧
(∥∥∥ĥ2,4(t)

∥∥∥
1
≤ γ̂2,3

)
∧
(∥∥∥H̃2,3(s, z)

∥∥∥
∞
≤ γ̂3,1

)
∧
(∥∥∥H̃2,3(s, z)

∥∥∥
2
≤ γ̂3,2

)
∧

(∥∥∥h̃2,3(t)
∥∥∥

1
≤ γ̂3,3

)
∧
(∥∥∥H̃2,4(s, z)

∥∥∥
∞
≤ γ̂4,1

)
∧
(∥∥∥H̃2,4(s, z)

∥∥∥
2
≤ γ̂4,2

)
∧
(∥∥∥h̃2,4(t)

∥∥∥
1
≤ γ̂4,3

)
, (102)

where ĥ2,1(t), ĥ2,4(t), h̃2,3(t), and h̃2,4(t) are the inverse Laplace transforms of Ĥ2,1(s, z),
Ĥ2,4(s, z), H̃2,3(s, z), and H̃2,4(s, z), respectively, and where γ̂k,j ∈ R+ (j = 1, 2, 3,
k = 1, . . . , 4) are appropriate norm bounds to be determined by the designer. The
above mathematical formulation of the approximate model matching problem with
simultaneous disturbance attenuation constitutes a multi-criteria highly nonlinear
minimization problem. Its nonlinear nature does not facilitate the determination of
the controller parameters.

Taking advantage of the property that the unknown quantities are real numbers,
a metaheuristic algorithm, being of the type in [11], will be applied. The basic idea of
the algorithm is to define an initial search area for β and µ0 and, after several loops to
converge to a suboptimal solution, this satisfies the design goals. Let nloop, nrep, and ntotal
be the number of loops, the number of loop repetitions, and the total allowable number of
computations. Also, let σ ∈ R+ be a convergence metric for the controller parameters and
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β̃,
⌢
β , µ̃0, and

⌢
µ 0 be the bounds of the controller parameters, defining a search area for each

parameter being of the form

β̃ ≤ β ≤
⌢
β , (103)

µ̃0 ≤ µ0 ≤ ⌢
µ 0. (104)

From the bounds in (103) and (104), the respective half-widths and centre values can
be evaluated through

βw =
⌢
β − β̃, (105)

(µ0)w =
⌢
µ 0 − µ̃0, (106)

βc =

(
⌢
β + β̃

)
/2, (107)

(µ0)c =
(
⌢
µ 0 + µ̃0

)
/2. (108)

In each cycle of the metaheuristic algorithm, a superset of nloop sets controller param-
eters is determined which satisfy the constraints in (102). For each set of the controller
parameters belonging in the superset, the cost criterion in (101) is evaluated and the optimal
value is extracted. This procedure is repeated for a total number of nrep, producing a new
superset containing the nrep optimal controller parameters, determined in each repetition.
From the second superset, the optimal set of controller parameters defines the new center
values of controller parameters. The updated half widths are evaluated as the difference
between the maximum and minimum values of each parameter in the second superset.
The above procedure is repeated until all controller parameters converge to a certain value,
i.e., when

max
{∣∣∣∣ (µ0)w

(µ0)c

∣∣∣∣, ∣∣∣∣ βw

βc

∣∣∣∣} < σ (109)

The algorithm aborts unsuccessfully if a total number of ntotal sets of controller param-
eters have been generated. The analytic form of the metaheuristic algorithm is as follows
(Algorithm 1):
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Algorithm 1. The metaheuristic algorithm.

Initial Data and Performance Criterion

• The model transfer function Hm,2(s).
• The time delays τ and τ∗.
• The cost function J2.
• The bounds γ̂k,j (j = 1, 2, 3, k = 1, . . . , 4).
• The center values and half widths for the initial search area of the controller parameters βw,

(µ0)w, βc and (µ0)c.
• The iteration parameters nloop, nrep, ntotal ∈ N.
• The convergence threshold σ.

Algorithm

Step 0: Set the numbering index imax = 0.
Step 1: Determine a search area ℑ for the controller parameters according to the inequalities in

(103) and (104).
Step 2: Set the numbering index i1 = 0.
Step 3: Set the numbering index i1 = i1 + 1.
Step 4: Set the numbering index i2 = 0.
Step 5: Set the numbering index imax = imax + 1. If imax > ntotal go to Step 15.
Step 6: Set the numbering index i2 = i2 + 1.
Step 7: Select randomly a set of controller parameters within the search area ℑ, let β = βi2 and

µ0 = (µ0)i2

Step 8: Check if the conditions in (102) are satisfied. If these conditions are satisfied, go to Step 9,
else go to Step 7.

Step 9: Evaluate (J2)i2
= J2

(
βi2 , (µ0)i2

)
.

Step 10: If i2 < nloop, then go to Step 5.

Step 11: Find (J2)i1,min = min
{
(J2)i2

, i2 = 1, . . . , nloop

}
, as well as the corresponding controller

parameters, let βi1 and (µ0)i1
.

Step 12: If i1 = nrep, then find the parameters βmin and (µ0)min corresponding to

(J2)min = min
{
(J2)i1

, i1 = 1, . . . , nrep

}
, as well as the range

δβ = max
{

νi1 , i1 = 1, . . . , nrep
}
− min

{
βi1 , i1 = 1, . . . , nrep

}
δµ0 = max

{
(µ0)i1

, i1 = 1, . . . , nrep

}
− min

{
(µ0)i1

, i1 = 1, . . . , nrep

}
Else go to Step 3.

Step 13: Define βc = βmin, (µ0)c = (µ0)min, β̃ = max{βc − δβ, 0}, µ̃0 = max{(µ0)c − δµ0, 0},
⌢
β = min{βc + δβ, 1},

⌢
µ 0 = (µ0)c + δµ0, and evaluate βw and (µ0)w through (105) and

(106).
Step 14: If the constraint in (109) is not satisfied, go to Step 2.
Step 15: Set β = βmin and µ0 = (µ0)min.

In what follows, the ideal model’s transfer function will be selected to be of the form

Hm,2(s) =
1(

(Tm,2)1s + 1
)(
(Tm,2)2s + 1

) , (110)

Remark 2. The parameter evaluation procedure described by the above metaheuristic algorithm is
based on specific τ and τ∗. This is plausible, as the signal transmission–reconstruction algorithm
developed in [30] results in a constant and known transmission delay. ▲

5. Toward the Robustness of the Proposed Control Scheme for Zero Modelling Errors
and Zero Measurement Noise

The robustness properties of the proposed control scheme in the presence of uncer-
tainties of the model parameters will be examined for the case of zero modelling errors
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and zero measurement noise. Here, the electrical parameters of the motors are uncertain,
while the other physical parameters corresponding to the geometric characteristics of the
mobile robot are precisely known. The uncertain parameters are the active wheels’ viscous
torque constant, the DC motors’ electrical resistance, and the DC motors’ inductance. These
parameters are expressed as follows:

Bm = Bm,0 + δBm (111)

Lr = Lr,0 + δLr (112)

Rm = Rm,0 + δRm (113)

where Bm,0, Lr,0, and Rm,0 are the nominal (known) values of the active wheels’ viscous
torque constant, the motors’ electrical resistance, and the motors’ inductance, respectively,
while δBm, δLr, and δRm are the respective uncertain (unknown) parts of these parameters.
In general, the unknown uncertain parts are significantly smaller than their nominal values.

By applying the controller presented in the previous section to the uncertain nonlinear
system and applying a series of computations, the closed loop system can be expressed
as follows:

x(1)(t) = Fc

(
x(t), x(t − τ), x(1)(t − τ), rc(t), ξ(t); δBm, δLr, δRm

)
, (114)

where Fc(·, ·, ·, ·, ·; ·, ·, ·) is an appropriate multivariable function of the argument quantities
and rc(t) =

[
rc,1(t) rc,2(t)

]T
=
[
w1(t) w̃2(t)

]T is the vector of external commands of the
overall closed loop system. Let the nominal values of the external commands be rc,1 = v∗

and rc,2 = φ∗. These values correspond to a desired trajectory being straight at a constant
speed. Furthermore, let the nominal value of ξ(t) be equal to zero. It can be verified that
the nominal values of the state and performance output variables are of the form

x1 = x2 =
Lr,0v∗λ0,1

[
2JW,y + (mP + 2mW)r2

W
]

rW
{

2Rm,0δBm + 2(Bm,0 + δBm)δRm + Lr,0
[
2JW,y + (mP + 2mW)r2

W
]
λ0,1

} , x3 = φ∗,

x4 = x5 =
Lr,0v∗λ0,1

[
2JW,y + (mP + 2mW)r2

W
]
(Bm,0 + δBm)

KmrmrW
{

2Rm,0δBm + 2(Bm,0 + δBm)δRm + Lr,0
[
2JW,y + (mP + 2mW)r2

W
]
λ0,1

} ,

y1 =
Lr,0v∗λ0,1

[
2JW,y + (mP + 2mW)r2

W
]

2Rm,0δBm + 2(Bm,0 + δBm)δRm + Lr,0
[
2JW,y + (mP + 2mW)r2

W
]
λ0,1

, y2 = φ∗.

The linear approximant of the closed loop system (114) is of the following neutral time
delay system form:

Ẽ0δx(1)(t) + Ẽ1δx(1)(t − τ) = Ã0δx(t) + Ã1δx(t − τ) + B̃0δrc(t) + J̃δξ(t), (115)

where δrc(t) = ∆rc(t) = rc(t) − rc, δξ(t) = ξ(t), while δx(t) is the response of (115)
that approximates ∆x(t) = x(t) − x. The non-zero elements of the system matrices
Ẽ0 =

[
(ẽ0)i,j

]
∈ R5×5, Ẽ1 =

[
(ẽ1)i,j

]
∈ R5×5, Ã0 =

[
(ã0)i,j

]
∈ R5×5, Ã1 =

[
(ã1)i,j

]
∈ R5×5,

and B̃0 =

[(
b̃0

)
i,j

]
∈ R5×2 are presented in the Appendix A. Regarding the neutral time

delay systems, see [47–49].
Applying series of computations upon (115), the following lemma and proposition

are derived:

Lemma 3. The characteristic quasi polynomial of the linear approximant of the closed loop system
in the presence of uncertainties (111)–(113) is



Robotics 2024, 13, 26 21 of 39

pc,L(s, z) = pc,L,A(s)pc,L,B(s, z), (116)

where

pc,L,A(s) = s2 + α1s + α0, (117)

pc,L,B(s, z) = s3 + β2,0s2 + (β1,1z + β1,0)s + β0,1z, (118)

and where the coefficients of the polynomial in (117) and the quasi-polynomial in (118) are presented
in the Appendix A.

Proposition 3. The polynomial pc,L,A(s), in (117), is stable if and only if(
λ0,1 > max

{
−2[Rm,0δBm + (Bm,0 + δBm)δRm]

2JW,yLr,0 + Lr,0(mP + 2mW)r2
W

, 0

})
∧

(
λ1,1 > max

{
−2[Lr,0δBm + (Bm,0 + δBm)δLr][

2JW,y + (mP + 2mW)r2
W
]
Lr,0

− δRm

Lr,0
, 0

})
(119)

□

Remark 3. Regarding the stability of the quasi polynomial pc,L,B(s, z)in (118), it is mentioned
that an analytic procedure investigating stability is a difficult task. Nevertheless, in the subsections
of the following section and using the clustering procedure presented in Section 3.2, the stability
will be tested for the particular values of the physical parameters of the mobile robot. ▲

Remark 4. The linear approximant (115) is asymptotically stable, if and only if (117) and (118)
are stable. If the linear approximant (115) is asymptotically stable, then the nonlinear model (114) is
locally asymptotically stable. ▲

6. Simulation Results
6.1. Performance of the Controller for Accurate Open Loop System Dynamics and Accurate
Measurement of the System Variabes

To demonstrate the performance of the proposed control scheme, under the assump-
tion of accurate open loop system dynamics and accurate measurements of the measurable
variables, the following parameter values [5] will be used:

JW,y = 0.001168
[
kg m2

]
, JW,z = 0.000584

[
kg m2

]
, JP = 0.009753

[
kg m2

]
,

mP = 1.5[kg], mW = 0.064[kg], bW = 0.105[m], dW = 0.055[m],

rW = 0.0365[m], Bm = 0.002[Nms], rm = 5[−], Km = 0.052[Nm/A],

Kb = 0.052044[Vs], Lr = 4 · 10−4[H], Rm = 2.2[Ω].

Also, the mobile robot is considered to initially move with a constant speed, let
v∗ = 0.1[m/s], and the constant orientation angle φ∗ = π/6[rad]. Applying a series of
computations, the corresponding nominal values of the state variables, the performance
outputs and the actuatable inputs are (see also [5])

x1 = 2.74[rad/s], x2 = 2.74[rad/s], x3 = π/6[rad], x4 = 0.021[A], x5 = 0.021[A], y1 = 0.1[m/s],

y2 = π/6[rad], u1 = 0.759[V], u2 = 0.759[V].

The controller parameters will be evaluated in two steps. In the first step, the velocity
controller parameters λ1,1 and λ0,1 will be chosen such that the inequality constraints in
(97) are satisfied. From (88) to (93), it can be verified that there are several different values
of λ1,1 and λ0,1, providing the same norm values. Indicatively, in Figures 3–7, contour plots



Robotics 2024, 13, 26 22 of 39

of
∥∥L−1{Ĥ1,1(s)

}∥∥
1,
∥∥Ĥ1,1(s)

∥∥
2,
∥∥Ĥ1,2(s)

∥∥
2,
∥∥Ĥ1,1(s)

∥∥
∞, and

∥∥Ĥ1,2(s)
∥∥

∞ are presented for
(Tm,1)j ∈ (0, 0.3] (j = 1, 2). From these figures, it is observed that, given γ̃1,1, γ̃1,2, γ̃1,3,
γ̃2,1, and γ̃2,2, additional criteria must be imposed in order to further constraint the pool
of candidate controller parameters. Toward this goal, the closed loop model response is
considered as an additional criterion, examining the rise time and settling time, without
disturbances and modeling errors (see Figures 8 and 9).
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∥∥Ĥ1,1(s)

∥∥
2.

Robotics 2024, 13, 26 24 of 41 
 

 

Figure 3. Contour plot of ( ){ }− 1
1,1 1
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Ĥ s . 

 

Figure 4. Contour plot of ( )1,1 2
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In what follows, the values of the criteria bounds will be γ̃1,1 = 40, γ̃1,2 = 80, γ̃1,3 = 40,
γ̃2,1 = 5, and γ̃2,2 = 10, while the rise time and settling time of the model will be required to be
smaller than 0.2[s] and 0.3[s], respectively. It can be verified that a set of controller parameters
satisfying the above design requirements is (Tm,1)1 = 0.07 and (Tm,1)2 = 0.01. Using these con-
troller parameters, the norms are evaluated to be

∥∥Ĥ1,1(s)
∥∥

∞ = 31.1938,
∥∥Ĥ1,1(s)

∥∥
2 = 77.9863,∥∥L−1{Ĥ1,1(s)

}∥∥
1 = 31.1938,

∥∥Ĥ1,2(s)
∥∥

∞ = 3.6865, and
∥∥Ĥ1,2(s)

∥∥
2 = 9.2163. Furthermore, the

rise time and settling time are evaluated to be 0.1565[s] and 0.2846[s], respectively. Clearly, the
design requirements are satisfied.

Regarding the orientation angle, the respective controller parameters will be evaluated
using the metaheuristic procedure described in Section 4.3 and the following settings:

nloop = 50, nrep = 10, ntotal = 106, σ = 0.1, β̃ = 0.7,
⌢
β = 1, µ̃0 = 1,

⌢
µ 0 = 2, γ̂1,1 = 460,

γ̂1,2 = 340, γ̂1,3 = 460, γ̂2,1 = 55, γ̂2,2 = 2, γ̂2,3 = 1.5, γ̂3,1 = 2, γ̂3,2 = 1.5, γ̂3,3 = 2, γ̂4,1 = 1.5, γ̂4,2 = 1.5,

γ̂4,3 = 1.1, τ∗ = 0.5[s], τ = 0.1[s], (Tm,2)1 = 0.3, and (Tm,2)2 = 0.6.

The controller parameters are derived to be β = 0.985771 and µ0 = 1.41662. These
controller parameter values result in J2(β, µ0) = 0.0208974 and∥∥Ĥ2,1(s, z)

∥∥
∞ = 456.255,

∥∥Ĥ2,1(s, z)
∥∥

2 = 339.397,
∥∥∥L−1{Ĥ2,1(s, z)

}∥∥∥
1
= 456.25,

∥∥Ĥ2,2(s, z)
∥∥

∞ = 53.921,∥∥Ĥ2,2(s, z)
∥∥

2 = 40.111,
∥∥∥L−1{Ĥ2,2(s, z)

}∥∥∥
1
= 3.921,

∥∥∥H̃2,3(s, z)
∥∥∥

∞
= 1,

∥∥∥H̃2,3(s, z)
∥∥∥

2
= 0.744,∥∥∥L−1

{
H̃2,3(s, z)

}∥∥∥
1
= 1,

∥∥∥H̃2,4(s, z)
∥∥∥

∞
= 0.706,

∥∥∥H̃2,4(s, z)
∥∥∥

2
= 0.525,

∥∥∥L−1
{

H̃2,4(s, z)
}∥∥∥

1
= 0.706.

Clearly, the inequality constraints in (102) are satisfied. In order to demonstrate the
performance of the proposed controller, in the case of zero modelling errors and zero
measurement noise, the external commands are selected to be of the form

w1(t) = y1

(
1 + λ

4

∑
j=1

(−1)j+1us(t − 8j)

)

w̃2(t) = y2 +
π

2

4

∑
j=1

us(t − 8j)

The above selection of external commands corresponds to a vehicle motion having
the following characteristics: For t ∈ [0, 8) [s], the vehicle follows a straight line; for
t ∈ [8, 32) [s], the vehicle follows a rectangular path; and for t ∈ [32, ∞) [s], the vehicle
returns to the original trajectory. During the above time intervals, the vehicle is commanded
to periodically increase and decrease its velocity. In Figures 10 and 11, the closed loop
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responses of the performance variables are contrasted to the respective model responses.
For both performance outputs, it is observed that the closed responses are visually identical
to the respective model responses. The remaining state variables (see Figures 12 and 13)
and the voltage supplies to the motors (see Figure 14) remain appropriately bounded. Also,
it is observed that the voltage is smooth and thus is offered for implementation. Regarding
the resulting vehicle path (see Figure 15), it holds that the maximum distance between the
closed loop response and the model response is 7.8[mm]. It is important to mention that
due to the characteristics of the model matching design requirement used to derive the
controller parameters, the closed loop responses of the linear velocity and the orientation
angle of the vehicle present smooth changes.
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In order to demonstrate the efficiency of the nonlinear controller, proposed herein, its
performance will be compared to the respective performance using the controller proposed
in [11] for the robotic vehicle of the present paper. In [11], a dual stage PI/PID controller is
proposed for the regulation of the velocity and orientation angle of the vehicle. The inner
stage is a decentralized PI controller for the regulation of the angular velocity of the active
wheels of the vehicle. The outer stage is a multivariable PID controller for the regulation of
the velocity and orientation angle. Both inner and outer controllers are metaheuristically
tuned, based upon the linear approximant of the nonlinear model of the vehicle, so that
approximate model matching is achieved for the transfer functions mapping the external
commands to the performance variables. Using the exact same model transfer functions as
in the present paper, and applying a series of computational experiments, the controller
parameters are derived to be fp,m = 0.0188, fi,m = 0.2792,

(
fp
)

1,1 = 341.96, ( fi)1,1 = 363.33,
( fd)1,1 = 1.004,

(
fp
)

2,2 = 21.236, ( fi)2,2 = 7.587, and ( fd)2,2 = 12.411. Using this set of
controller parameters, the following is observed: (a) asymptotic command following is
achieved for both performance variables; (b) the closed loop transfer function, mapping
the first external command to the velocity of the vehicle, approximates accurately the
respective model transfer function; (c) the design procedure fails to accurately approximate
the transfer function mapping the second external command to the orientation angle of
the vehicle; and (d) the orientation angle presents significant overshoot. In conclusion, the
resulting closed loop vehicle path significantly diverges from the model path. Let xc(t) and
yc(t) be the closed loop x and y coordinates of the mobile robot and xm(t) and ym(t) be the
respective model coordinates. Define the percentile distance metric as

d =


Tmax∫

0

[
(xc(t)− xm(t))

2 + (yc(t)− ym(t))
2
]
dt

Tmax∫
0

[
xm(t)

2 + ym(t)
2
]
dt


1/2

× 100%.

In Table 1, the values of the above metric are presented for the present inverse dynamics
controller and the PI/PID controller proposed in [11]. The values of the above metric are
derived for various transmission delays, although the controller parameters have been
determined assuming τ = 0.10[s]. Clearly, from the results in Table 1, it is observed that
the nonlinear inverse dynamics controller, presented here, is far more accurate than the
PI/PID controller presented in [11].
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Table 1. Percentile distance metric for various transmission delays.

τ
Inverse Dynamic

Controller
PI/PID

Controller

0.00[s] 2.12[%] 14.44[%]
0.05[s] 1.30[%] 15.18[%]
0.10[s] 0.50[%] 15.87[%]
0.15[s] 0.38[%] 16.39[%]
0.20[s] 1.24[%] 16.55[%]

6.2. Performance of the Controller under Modeling Errors and Measurement Noise

In order to demonstrate the stability properties of the linear approximant closed
loop system (115), consider the model and controller parameters presented in Section 6.1.
Through applying a series of computational experiments, in Figure 16, the area of uncer-
tainties where the polynomial in (116) is stable is presented.
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Figure 16. Stability region of the closed loop system with respect to uncertainties.

In particular, the uncertain model parameters will be selected to be of the form
δBm = pBm Bm,0, δRm = pRm Rm,0, and δLr = pLr Lr,0 where pBm ∈ (−1, 2], pRm ∈ (−1, 2],
and pLr ∈ (−1, 2]. From Figure 16, it can readily be verified that pc(s, z) remains stable for a
wide range of uncertainties and includes all positive values of them. For the negative values
of pBm , pRm , and pLr , it can be observed that the linear approximant of the closed loop
system may not be stable. Nevertheless, it is important to keep in mind that during motor
operation, electrical resistance and viscous torque constant tend to increase with respect to
time. Thus, from Figure 16, it can be observed that if the electrical resistance and viscous
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torque constant are increased from their nominal values, then the linear approximant closed
loop system remains stable, independently of the motor inductance.

In order to demonstrate the performance of the proposed control scheme, in the
presence of measurement noise and modeling errors, a series of computational experiments
will be performed. First, the influence of measurement noise will be examined. The
measurement noise is considered to be a high frequency low amplitude signal of a random
type. For simulation purposes, the noise is produced as a continuous time waveform,
derived using a pseudo-random number generator that produces a zero-mean random
discrete time signal of unity amplitude. The random discrete time signal will be fed to
a continuous time transfer function, considering a zero-order-hold in the input. In order
to study the influence of the amplitude of the noise, the initially generated signal will be
multiplied by an appropriate positive scaling factor.

In what follows, the filter transfer function is selected to be of the form

H f (s) =
1(

Tf ,1s + 1
)(

Tf ,2s + 1
)(

Tf ,3s + 1
) , (120)

where Tf ,1 = 0.001, Tf ,1 = 0.002, and Tf ,1 = 0.003. The heading angle measurement noise
signal will be considered to be of the form

ψn,5(t) = λn fn(t), (121)

where fn(t) is a base waveform (see Figure 17 for t ∈ [0, 0.6][sec]) and λn ∈ [0,+∞) is the
respective scaling factor.
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Figure 17. Base orientation angle measurement noise signal fn(t).

The second noise signal ψn,6(t), although, as already mentioned in Section 2, it is
generally not related to ψn,5(t), for simulation purposes, it will be assumed that ψn,6(t) =
ψ
(1)
n,5(t), where the time derivative of ψn,5(t) will be computed simply by using the filter

H f (s) =
s(

Tf ,1s + 1
)(

Tf ,2s + 1
)(

Tf ,3s + 1
) . (122)

The signal fn(t) and for t ∈ [0, 0.6] will have the following indicative form.
The internal controller achieves decoupling between the velocity of the vehicle and

the angular velocity of the mobile robot. The outer loop controller feeds the command to
the angular velocity. Clearly, the orientation and angular velocity measurement noises only
affect the second performance variable, namely the orientation angle. To quantitatively
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evaluate the performance of the control scheme in the presence of measurement noise, the
simulation experiments, performed in Section 5, will be performed for various values of
λn ∈ [0, 0.08]. The model response and the closed loop response for the second perfor-
mance are denoted by y2,m(t) and y2,n(t), respectively. Through a series of computational
experiments, the difference between y2,m(t) and y2,n(t) will be quantified using appropriate
signal norms. To this end, define norm metrics as

e∞ =
∥y2,m(t)− y2,n(t)∥∞
∥y2,m(t)− y2,n(0−)∥∞

× 100%, (123)

e2 =
∥y2,m(t)− y2,n(t)∥2
∥y2,m(t)− y2,n(0−)∥2

× 100%, (124)

where ∥ f (t)∥∞ = sup
t∈[0,Tmax]

| f (t)| and ∥ f (t)∥2
2 =

Tmax∫
0−

f (t)2dt. In Figures 18 and 19, the met-

rics in (123) and (124) are presented for different values of λn. From Figures 18 and 19, it is
observed that the closed loop system behaves satisfactorily for a wide range of measure-
ment noise amplitudes with norm metrics, being smaller than 0.7% for e∞ and 0.36% for e2.
Additionally, it can be observed that the maximum distance between the model response
path and the noisy response path (see Figure 20) is smaller than 14[mm].
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To quantitatively evaluate the performance of the control scheme in the presence of 
modelling errors, the same simulation experiment performed in Section 6.1 will be re-
peated for various values of μ j  ( = 1, ,4j ). Defining the four-dimensional radius, 

ρ μ
=

= 
4

2

1
j

j

. (128)
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To demonstrate the efficiency of the proposed control scheme in the presence of
disturbances and faults, a computational experiment, being similar to those for the case of
measurement noise, will be executed. For demonstration purposes, the disturbances and
faults signals will be considered to be of the form

ξ j(t) = µj fm,j(t) ; j = 1, . . . , 4 (125)

where fm,j(t) (j = 1, . . . , 4) are continuous time random type signals of unity amplitude,
representing base waveforms, and µj ∈ [0,+∞) are appropriate scaling factors. The
generation of fm,j(t) is similar to that used for the generation of the measurement noise
signal. The continuous signal reconstruction filter will also be of the form (120). Note that
the random discrete time signal generators are different for each fm,j(t), thus producing
independent base waveforms. Let y1,e(t) and y2,e(t) be the performance output responses in
the presence of modelling errors. Let y1(t) and y2(t) be the performance output responses
without modelling errors and measurement noise. Let

γk,∞ =

∥∥yk,e(t)− yk(t)
∥∥

∞
∥yk(t)− yk(0−)∥∞

× 100% ; k = 1, 2 (126)

γk,2 =

∥∥yk,e(t)− yk(t)
∥∥

2
∥yk(t)− yk(0−)∥2

× 100% ; k = 1, 2 (127)

To quantitatively evaluate the performance of the control scheme in the presence of
modelling errors, the same simulation experiment performed in Section 6.1 will be repeated
for various values of µj (j = 1, . . . , 4). Defining the four-dimensional radius,

ρ =

√√√√ 4

∑
j=1

µ2
j . (128)

Applying a series of computational experiments for noise amplitudes up to 10−2, it
can be verified that γ1,∞, γ2,∞, γ1,2, and γ2,2 are smaller than 25% for all ρ, being smaller
than 0.0013, 0.044, 0.0017, and 0.1, respectively. These values, being four-dimensional radii,
correspond to the noise amplitudes in Table 2. Using the simulation data as well as Table 2,
it can be verified that, depending on the combinations of the noise amplitudes, different
radii may be achieved.
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Table 2. Maximum noise amplitudes satisfying performance criterion.

γ1,∞ γ2,∞ γ1,2 γ2,2

µ1 0.000075 0.088755 0.000199 0.1
µ2 0.000083 0.060664 0.000618 0.1
µ3 0.00098 0.076619 0.000441 0.1
µ4 0.000228 0.086698 0.000043 0.1

7. Conclusions

In this study, the development of a nonlinear controller regulating the velocity and
orientation angle of a differential drive mobile robot has been investigated. The system
model being in nonlinear state space form has incorporated unknown disturbances and
actuator faults. Using this nonlinear system, the input/output relationship has been
established. A nonlinear controller consisting of two stages, which used measurable output
feedback, has been developed. This controller has been segmented into internal and
external control elements, a structure that is conducive to implementation on suitable
experimental platforms. The controller has been designed to linearize the closed-loop
system and control the robot’s velocity and angular velocity independently, utilizing a
nonlinear PD controller that used real-time measurements of the wheels’ angular velocities
and accelerations. The external controller, focusing on the regulation of the vehicle’s
orientation angle, has employed a linear delayed PD feedback mechanism that processed
measurements of the vehicle’s orientation angle and angular velocity, presumed to be
wirelessly transmitted to the controller. Analytic formulas of the outer loop’s free controller
parameters have been determined to ensure system stability, despite wireless transmission
delays, and to achieve asymptotic command following to orientation angle commands.
To compensate measurement noise and modelling errors, a metaheuristic algorithm has
been proposed for adjusting the remaining controller parameters. The effectiveness of this
control strategy has been verified through a series of computational experiments, which
revealed satisfactory performances.

Future perspectives of the present work include (a) the investigation of the problem
with delay-dependent controllers (indicatively see [50]), (b) the application of the proposed
approach to robotic vehicles carrying manipulators that grasp known and unknown loads
(indicatively see [51]), (c) the application of the proposed approach robotic vehicles moving in
semi-structured and unstructured environments (indicatively see [52–54]), and (d) the appli-
cation of the proposed approach to multi-transmission delay cases (indicatively see [55–57]).
The experimental validation of the theoretical and simulation results is currently underway.
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A: System Variables

Symbol Definition

x State vector
xj jth state vector element
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A: System Variables

Symbol Definition

u Input vector
uj jth input vector element
y Performance output vector
yj jth performance output vector element
ξ External disturbances and fault vector
ξ j jth element of the external disturbances and fault vector
ψ Measurable output vector
ψj jth measurable output vector element
ψn Measurement noise vector
ψn,j jth measurement noise vector element

B: Physical Variables

Symbol Definition

ωW,l Left active wheel angular velocity
ωW,r Right active wheel angular velocity
φ Vehicle orientation angle
im,l Left motor current
im,r Right motor current
Vm,l Left motor voltage supply
Vm,r Right motor voltage supply
v Linear velocity of the vehicle
τD,l Left motor torque exerted by external forces and torques
τD,r Right motor torque exerted by external forces and torques
VD,l Left motor actuator fault voltage
VD,r Right motor actuator fault voltage
JW,y Moment of inertia of the active wheels around their rotation axis
JW,z Moment of inertia of the active wheels around vertical axis
JP Robot platform’s moment of inertia around the vertical axes through the CM
mP Mass of the robot’s platform
mW Mass of the active wheels
bW Half distance between the hubs of the two active wheels
dW Distance of the center of mass of the vehicle from the wheels’ axis of rotation
rW Active wheel radius
Bm Active wheel viscous torque constant
rm Motor gearbox ratio
Km the motor torque constant
Kb motor back emf constant
Lr motor inductance
Rm motor electrical resistance
τj Transmission delays (j = 1, 2)
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Appendix A.

Appendix A.1. Elements of Γ(x, u, ξ)

γ1(x, u, ξ) =
1

4b2
Wν1ν2
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−dWmPr3

W

(
b2

Wν1 − ν2

)
x1(t)

2 + 4Bmb2
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)
x2(t)+

dWmPr3
W

(
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Wν1 + ν2

)
x2(t)

2 − 2x1(t)
[
2Bmb2

W

(
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]
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4b2
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γ2(x, u, ξ) =
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dWmPr3
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x1(t)
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(
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)
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]}
,

γ3(x, u, ξ) =
rW

2bW
(x2(t)− x1(t)),

γ4(x, u, ξ) = −Kbrm

Lr
x1(t)−

Rm

Lr
x4(t) +

1
Lr

(u1(t) + ξ3(t)),

γ5(x, u, ξ) = −Kbrmx2

Lr
(t)− Rm

Lr
x5(t) +

1
Lr
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Appendix A.2. Closed Loop Linear Approximant System Matrix Elements
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(ẽ1)4,3 =
2Lr,0

[(
JP + 2JW,z + d2

WmP
)
r2

W + 2b2
W
(

JW,y + mWr2
W
)](

1 + β2) tan−1(v)2

bWKmrmrW(Lr,0 + δLr)(β2 − 1)(τ∗)2
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Appendix A.3. Closed Loop Linear Approximant Characteristic Polynomial Coefficients
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Techniques; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 473–481.

14. Hendzel, Z.; Penar, P. Experimental verification of H∞ control with examples of the movement of a wheeled robot. Bull. Pol.
Acad. Sci. Tech. Sci. 2021, 69, e139390. [CrossRef]

15. Penar, P.; Hendzel, Z. Experimental Verification of the Differential Games and H∞ Theory in Tracking Control of a Wheeled
Mobile Robot. J. Intell. Robot. Syst. 2022, 104, 61. [CrossRef]

https://doi.org/10.1007/s10846-018-0805-9
https://doi.org/10.1177/1729881419839596
https://doi.org/10.25103/jestr.133.17
https://doi.org/10.24425/ame.2009.132098
https://doi.org/10.24425/bpasts.2021.139390
https://doi.org/10.1007/s10846-022-01584-6


Robotics 2024, 13, 26 38 of 39

16. Recalde, L.F.; Guevara, B.S.; Cuzco, G.; Andaluz, V.H. Optimal Control Problem of a Differential Drive Robot. In Trends in Artificial
Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020; Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J.,
Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12144.

17. Bouzoualegh, S.; Guechi, E.-H.; Kelaiaia, R. Model Predictive Control of a Differential-Drive Mobile Robot. Acta Univ. Sapientiae
Electr. Mech. Eng. 2018, 10, 20–41. [CrossRef]

18. Sharma, K.R.; Honc, D.; Dušek, F. Predictive Control of Differential Drive Mobile Robot Considering Dynamics and Kinematics.
In Proceedings of the 30th European Conference on Modelling and Simulation, Regensburg, Germany, 31 May–3 June 2016.

19. Hendzel, Z.; Trojnacki, M. Adaptive Fuzzy Control of a Four-Wheeled Mobile Robot Subject to Wheel Slip. WSEAS Trans. Syst.
2023, 22, 602–612.

20. Štefek, A.; Pham, V.T.; Krivanek, V.; Pham, K.L. Optimization of Fuzzy Logic Controller Used for a Differential Drive Wheeled
Mobile Robot. Appl. Sci. 2021, 11, 6023. [CrossRef]

21. Jardine, P.T.; Kogan, M.; Givigi, S.N.; Yousefi, S. Adaptive predictive control of a differential drive robot tuned with reinforcement
learning. Int. J. Adapt. Control Signal Process. 2019, 33, 410–423. [CrossRef]

22. Szuster, M.; Hendzel, Z. Intelligent Optimal Adaptive Control for Mechatronic Systems; Springer: Berlin/Heidelberg, Germany, 2018.
23. Khooban, M.H. Design an intelligent proportional-derivative (PD) feedback linearization control for nonholonomic-wheeled

mobile robot. J. Intell. Fuzzy Syst. 2014, 26, 1833–1843. [CrossRef]
24. Koumboulis, F.N. On the Common Control Design of Robotic Manipulators Carrying Different Loads. In Advances in Service

and Industrial Robotics, RAAD 2018, Mechanisms and Machine Science; Aspragathos, N., Koustoumpardis, P., Moulianitis, V., Eds.;
Springer: Cham, Switzerland, 2019; Volume 67.

25. Shojaei, K.; Shahri, A.M.; Tabibian, B. Design and Implementation of an Inverse Dynamics Controller for Uncertain Nonholonomic
Robotic Systems. J. Intell. Robot. Syst. 2013, 71, 65–83. [CrossRef]

26. Pedapati, P.K.; Pradhan, S.K.; Kumar, S. Kinematic Control of an Autonomous Ground Vehicle Using Inverse Dynamics Controller.
In Advances in Smart Grid Automation and Industry 4.0; Lecture Notes in Electrical Engineering; Reddy, M.J.B., Mohanta, D.K.,
Kumar, D., Ghosh, D., Eds.; Springer: Singapore, 2021; Volume 693.

27. Chwa, D. Tracking Control of Differential-Drive Wheeled Mobile Robots Using a Backstepping-Like Feedback Linearization.
IEEE Trans. Syst. Man Cybern.—Part A Syst. Hum. 2010, 40, 1285–1295. [CrossRef]

28. Tiriolo, C.; Franzè, G.; Lucia, W. A Receding Horizon Trajectory Tracking Strategy for Input-Constrained Differential-Drive
Robots via Feedback Linearization. IEEE Trans. Control Syst. Technol. 2023, 31, 1460–1467. [CrossRef]

29. Tiriolo, C.; Franzè, G.; Lucia, W. An Obstacle-Avoidance Receding Horizon Control Scheme for Constrained Differential-Drive
Robot via Dynamic Feedback Linearization. In Proceedings of the 2023 American Control Conference (ACC), San Diego, CA,
USA, 31 May–2 June 2023.

30. Koumboulis, F.N.; Kouvakas, N.D.; Giannaris, G.L.; Vouyioukas, D. Independent motion control of a tower crane through wireless
sensor and actuator networks. ISA Trans. 2016, 60, 312–320. [CrossRef] [PubMed]

31. Kouvakas, N.D.; Koumboulis, F.N.; Drosou, T.C. On the Remote Control of Differential Drive Mobile Robots through Wireless
Networks. In Proceedings of the 2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON), Kharagpur,
India, 9–11 December 2022.

32. Kotta, Ü.; Mullari, T. Realization of nonlinear systems described by input/output differential equations: Equivalence of different
methods. In Proceedings of the 2003 European Control Conference (ECC), Cambridge, UK, 1–4 September 2003.

33. Moog, C.H.; Zheng, Y.; Liu, P. Input-Output equivalence of Nonlinear Systems and their Realizations. In Proceedings of the IFAC
15th Trennial World Congress, Barcelona, Spain, 21–26 July 2002; pp. 265–270.

34. Monteriù, A.; Asthana, P.; Valavanis, K.P.; Longhi, S. Real-Time Model-Based Fault Detection and Isolation for UGVs. J. Intell.
Robot. Syst. 2009, 56, 425–439. [CrossRef]

35. Myint, C.; Win, N.N. Position and Velocity Control for Two-Wheel Differential Drive Mobile Robot. Int. J. Sci. Eng. Technol. Res.
2016, 5, 2849–2855.

36. Araki, N.; Sato, T.; Konishi, Y.; Ishigaki, H. Vehicle’s Orientation Measurement Method by Single-Camera Image Using Known-
Shaped Planar Object. In Proceedings of the 2009 Fourth International Conference on Innovative Computing, Information and
Control (ICICIC), Kaohsiung, Taiwan, 7–9 December 2009; pp. 193–196.

37. Suzuki, T.; Kanada, T. Measurement of Vehicle Motion and Orientation Using Optical Flow. In Proceedings of the 1999
IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, Tokyo, Japan, 5–8 October 1999; pp. 25–30.

38. Van Breugel, F.; Kutz, J.N.; Brunton, B.W. Numerical Differentiation of Noisy Data: A Unifying Multi-Objective Optimization
Framework. IEEE Access 2020, 8, 196865–196877. [CrossRef] [PubMed]

39. Segovia, V.R.; Hägglund, T.; Aström, K.J. Measurement noise filtering for PID controllers. J. Process Control 2014, 24, 299–313.
[CrossRef]

40. Olgac, N.; Sipahi, R. An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems. IEEE
Trans. Autom. Control 2002, 47, 793–797. [CrossRef]

41. Ai, B.; Sentis, L.; Paine, N.; Han, S.; Mok, A.; Fok, C.-L. Stability and Performance Analysis of Time-Delayed Actuator Control
Systems. J. Dyn. Syst. Meas. Control 2016, 138, 051005. [CrossRef]

https://doi.org/10.2478/auseme-2018-0002
https://doi.org/10.3390/app11136023
https://doi.org/10.1002/acs.2882
https://doi.org/10.3233/IFS-130863
https://doi.org/10.1007/s10846-012-9762-x
https://doi.org/10.1109/TSMCA.2010.2052605
https://doi.org/10.1109/TCST.2022.3219298
https://doi.org/10.1016/j.isatra.2015.11.011
https://www.ncbi.nlm.nih.gov/pubmed/26654725
https://doi.org/10.1007/s10846-009-9321-2
https://doi.org/10.1109/ACCESS.2020.3034077
https://www.ncbi.nlm.nih.gov/pubmed/33623728
https://doi.org/10.1016/j.jprocont.2014.01.017
https://doi.org/10.1109/TAC.2002.1000275
https://doi.org/10.1115/1.4032461


Robotics 2024, 13, 26 39 of 39

42. Paraskevopoulos, P.N. Modern Control Engineering; CRC Press: Boca Raton, FL, USA, 2002. Available online: https:
//www.taylorfrancis.com/books/mono/10.1201/9781315214573/modern-control-engineering-paraskevopoulos (accessed on
29 January 2024).

43. Garcia-Sanz, M. Robust Control Engineering: Practical QFT Solutions; CRC Press: Boca Raton, FL, USA, 2017.
44. Bhattacharyya, S.P.; Keel, L.H. Linear Multivariable Control Systems; Cambridge University Press: Cambridge, UK, 2022.
45. Levine, W.S. (Ed.) The Control Handbook; CRC Press: Boca Raton, FL, USA, 2011. Available online: https://www.taylorfrancis.

com/books/mono/10.1201/9781315218694/control-handbook-three-volume-set-william-levine (accessed on 29 January 2024).
46. Doyle, J.D.; Francis, B.A.; Tannenbaum, A.R. Feedback Control Theory; Dover Publications: New York, NY, USA, 2009. Available

online: https://books.google.co.jp/books?id=gD9nPgAACAAJ&lr&source=gbs_book_other_versions (accessed on 29 January
2024).

47. Xia, H.; Zhao, P.; Li, L.; Wu, A.; Ma, G. A novel approach to H∞ control design for linear neutral time-delay systems. Math. Probl.
Eng. 2013, 2013, 526017. [CrossRef]

48. Rabeb, B.; Aicha, E.; Naceur, A.M. Fault diagnosis and fault-tolerant control design for neutral time delay system. Automatika
2023, 64, 422–430. [CrossRef]

49. Fu, P.; Niculescu, S.-I.; Chen, J. Stability of linear neutral time-delay systems: Exact conditions via matrix pencil solutions. IEEE
Trans. Autom. Control 2006, 51, 1063–1069. [CrossRef]

50. Šika, Z.; Vyhlídal, T.; Neusser, Z. Two-dimensional delayed resonator for entire vibration absorption. J. Sound Vib. 2021, 500,
116010. [CrossRef]

51. Jaramillo-Morales, M.F.; Dogru, S.; Marques, L. Generation of Energy Optimal Speed Profiles for a Differential Drive Mobile
Robot with Payload on Straight Trajectories. In Proceedings of the 2020 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), Abu Dhabi, United Arab Emirates, 4–6 November 2020.

52. Guastella, D.C.; Muscato, G. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured
Environments: A Review. Sensors 2021, 21, 73. [CrossRef] [PubMed]

53. Mateus, D.; Avina, G.; Devy, M. Robot Visual Navigation in Semi-structured Outdoor Environments. In Proceedings of the 2005
IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005.

54. LeSage, J.R.; Longoria, R.G. Mission Feasibility Assessment for Mobile Robotic Systems Operating in Stochastic Environments. J.
Dyn. Syst. Meas. Control 2015, 137, 031009. [CrossRef]

55. Yu, M.; Wang, L.; Chu, T.; Hao, F. Stabilization of Networked Control Systems with Data Packet Dropout and Transmission
Delays: Continuous-Time Case. Eur. J. Control 2005, 11, 40–49. [CrossRef]

56. Lian, F.-L.; Moyne, J.; Tilbury, D. Modelling and optimal controller design of networked control systems with multiple delays. Int.
J. Control 2010, 76, 591–606. [CrossRef]

57. Olgac, N.; Ergenc, A.F.; Sipahi, R. Delay Scheduling: A New Concept for Stabilization in Multiple Delay Systems. J. Vib. Control
2005, 11, 1159–1172. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.taylorfrancis.com/books/mono/10.1201/9781315214573/modern-control-engineering-paraskevopoulos
https://www.taylorfrancis.com/books/mono/10.1201/9781315214573/modern-control-engineering-paraskevopoulos
https://www.taylorfrancis.com/books/mono/10.1201/9781315218694/control-handbook-three-volume-set-william-levine
https://www.taylorfrancis.com/books/mono/10.1201/9781315218694/control-handbook-three-volume-set-william-levine
https://books.google.co.jp/books?id=gD9nPgAACAAJ&lr&source=gbs_book_other_versions
https://doi.org/10.1155/2013/526017
https://doi.org/10.1080/00051144.2023.2176855
https://doi.org/10.1109/TAC.2006.876804
https://doi.org/10.1016/j.jsv.2021.116010
https://doi.org/10.3390/s21010073
https://www.ncbi.nlm.nih.gov/pubmed/33375609
https://doi.org/10.1115/1.4028035
https://doi.org/10.3166/ejc.11.40-49
https://doi.org/10.1080/0020717031000098426
https://doi.org/10.1177/1077546305055777

	Introduction 
	Dynamics of the Differential Drive Mobile Robot 
	Mobile Robot Nonlinear Dynamics with Additive Modelling Errors 
	Measurable Output Varables and Remote Measurement Noise 

	A Two-Stage Controller Design 
	Stage 1: Internal Controller for the Independent Control of the Linear and the Angular Velocity of the Mobile Robot 
	Stage 2: External Controller for the Regulation of the Heading Angle of the Mobile Robot 

	Enhancing Multi Performance Criteria via Controller Parameter Tunning 
	Operation of the Closed Loop System in the Presence of Measurement Noise and Modelling Errors 
	Model Matching with Simultaneous Attenuation of the Modelling Error toward Regulation of the Velocity of the Vehicle 
	Approximate Model Matching with Simultaneous Attenuation of the Modelling Errors and the Measurement Noise toward Regulation of the Orientation Angle of the Mobile Robot 

	Toward the Robustness of the Proposed Control Scheme for Zero Modelling Errors and Zero Measurement Noise 
	Simulation Results 
	Performance of the Controller for Accurate Open Loop System Dynamics and Accurate Measurement of the System Variabes 
	Performance of the Controller under Modeling Errors and Measurement Noise 

	Conclusions 
	Appendix A
	Elements of ( x,u, )  
	Closed Loop Linear Approximant System Matrix Elements 
	Closed Loop Linear Approximant Characteristic Polynomial Coefficients 

	References

