
Citation: Tsiakas, K.; Tsardoulias, E.;

Symeonidis, A.L. Autonomous Full

3D Coverage Using an Aerial Vehicle,

Performing Localization, Path

Planning, and Navigation towards

Indoors Inventorying for the Logistics

Domain. Robotics 2024, 13, 83.

https://doi.org/10.3390/

robotics13060083

Academic Editor: Yugang Liu

Received: 18 April 2024

Revised: 17 May 2024

Accepted: 23 May 2024

Published: 23 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Autonomous Full 3D Coverage Using an Aerial Vehicle,
Performing Localization, Path Planning, and Navigation towards
Indoors Inventorying for the Logistics Domain
Kosmas Tsiakas , Emmanouil Tsardoulias * and Andreas L. Symeonidis

School of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece; ktsiakas@iti.gr (K.T.); asymeon@eng.auth.gr (A.L.S.)
* Correspondence: etsardou@ece.auth.gr

Abstract: Over the last years, a rapid evolution of unmanned aerial vehicle (UAV) usage in various
applications has been observed. Their use in indoor environments requires a precise perception of the
surrounding area, immediate response to its changes, and, consequently, a robust position estimation.
This paper provides an implementation of navigation algorithms for solving the problem of fast,
reliable, and low-cost inventorying in the logistics industry. The drone localization is achieved with
a particle filter algorithm that uses an array of distance sensors and an inertial measurement unit
(IMU) sensor. Navigation is based on a proportional–integral–derivative (PID) position controller that
ensures an obstacle-free path within the known 3D map. As for the full 3D coverage, an extraction of
the targets and then their final succession towards optimal coverage is performed. Finally, a series
of experiments are carried out to examine the robustness of the positioning system using different
motion patterns and velocities. At the same time, various ways of traversing the environment are
examined by using different configurations of the sensor that is used to perform the area coverage.

Keywords: UAV; localization; particle filter; logistics; inventorying; 3D coverage; OctoMap;
indoor environments

1. Introduction

The unmanned aerial vehicles market is currently facing a large growth and is esti-
mated to further advance in the upcoming years. Drones were initially used for military
applications, a fact that creates several ethical and legal challenges, as well as concerns
about the invasion of privacy that may occur with their usage. Nowadays, most of the UAVs
are autonomous and operate in dynamic environments, without the need for a specialized
operator. The scientific community considers drones as an emerging technology, since their
capabilities allow the development of more and more innovative robotic applications.

Some typical applications of UAVs are the following:

• The inspection and maintenance of large areas or buildings, such as bridges, tunnels,
underground mines, etc.

• The provision of humanitarian aid in inaccessible regions after natural disasters.
• The continuous inventorying in large warehouses, without the need for human

intervention.
• The management and inspection of agricultural lands.
• The transport of small-volume packages.

The current paper focuses on the problem of autonomous inventorying in any indoor,
three-dimensional space. Manual inventorying by personnel is a painful process, related
to burdens on the workers health, due to the repeated movements they are asked to
make for elongated time spans. Furthermore, in any procedure in which humans are
involved, possible errors may exist, especially due to mental or physical fatigue. By using

Robotics 2024, 13, 83. https://doi.org/10.3390/robotics13060083 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics13060083
https://doi.org/10.3390/robotics13060083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0003-2580-4446
https://orcid.org/0000-0001-9034-4832
https://orcid.org/0000-0003-0235-6046
https://doi.org/10.3390/robotics13060083
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics13060083?type=check_update&version=2

Robotics 2024, 13, 83 2 of 28

drones, this procedure becomes much simpler and, in theory, more precise, since every
product’s position can be determined within a few centimeters’ accuracy. The autonomous
inventorying from a drone consists of the following technical subproblems: (a) the drone
localization in the indoor environment; (b) the position estimation of the products’ tags;
and (c) the full and autonomous 3D area coverage.

Drone localization describes the calculation of the position and the orientation of the
robot within a known map. The usage of UAVs in indoor environments is of great interest,
due to the fact that a Global Positioning System (GPS) sensor that could directly provide
the pose cannot be used. Any action that the drone is performing inside the environment
requires a precise perception of the surrounding area and direct response to its changes,
as well as stable and safe navigation. Apart from the robust localization, the UAV must
follow a predetermined flight plan, shaped according to points of interest in the map.
In this way, the full 3D coverage of the area can be established. In order to achieve full
3D coverage, the existence of an accessible and finite path is assumed, whose points are
suitable for accessing all products via the desired detection sensors.

The successful achievement of autonomous aerial vehicle inventorying in an indoors
environment is not an easy task, since it comprises several components, the most impor-
tant of which are localization, path planning, and navigation. Concerning localization,
the indoor environments are usually cluttered with obstacles, as well as being dynamic,
since moving actors may exist in them (e.g., humans). These facts pose a challenge to
the efficient and sound sensor integration and fusion, as several sensors (LiDARs, sonars,
IMUs, cameras, radars, etc.) must be properly calibrated to operate in such complex envi-
ronments and then be synchronized and ultimately fused. This is a necessity since indoor
localization lacks support from GPS signals, making harder the correct pose identification
of the drone. Furthermore, since aerial vehicles are concerned, the localization degrees of
freedom are now six (x,y,z, yaw, pitch, roll), instead of three (x,y, yaw) of the 2D plane, a
fact that allows for more errors to exist/accumulate that can potentially lead to collisions
with 3D obstacles. Where path planning is concerned, most of the algorithmic solutions
require exponentially more computational resources when the dimensions increase (in our
case, from two to three). Furthermore, if the environment is cluttered, special care must
be taken to evaluate the 3D model of the drone against the 3D obstacles, so as to produce
obstacle-free and safe paths, something that also is computationally intensive. Finally,
navigation in 3D environments must again deal with dynamic obstacles (therefore, local
planning is obligatory), environmental constraints, and 3D vehicle dynamics, which are
much more complex in nature from their 2D counterparts, as the system (air) can induce
severe disturbances in the UAV motion.

The aim of this paper is to present a complete approach on an autonomous aerial
vehicle localization, path planning, and navigation towards the full 3D coverage of a known
map, targeted at the logistics domain. The drone used is equipped with a distance sensors
array, a laser altimeter sensor, and an IMU. The localization system is based on a particle
filter algorithm that combines the distance and the IMU measurements to estimate the pose
in real time. An obstacle-free path planning inside the 3D map is achieved using the RRT*
(Rapidly exploring Random Tree) algorithm [1] through the Open Motion Planning Library
(OMPL). The path that occurs can be smoothed by using B-spline functions. The navigation
of the UAV is performed with a PID position controller. Finally, in order to achieve full
coverage, a subsampling method is used to detect the points that offer the maximum
visibility of objects. By having these points, we use the nearest neighbor algorithm in
combination with hill climbing search to reduce the total distance and provide the UAV
with the final trajectory to follow. In order to evaluate the coverage, we are using a
simplified, simulated radio frequency identification (RFID) antenna, which presumably
detects the products when they are in its field of view and finally calculates the percentage
of the covered vertical surfaces.

The whole implementation relies on the Robot Operating System (ROS) [2], which
offers a message-passing interface that provides structured communication between dif-

Robotics 2024, 13, 83 3 of 28

ferent software packages and components. It also deals with the allocation of resources,
such as memory and processor time, among others, and allows for solving standard robotic
problems using preexisting libraries. The environment in which the drone operates is
considered known (no simultaneous localization and mapping (SLAM) is performed), and
its map is available in OctoMap format [3].

The rest of the paper is structured as follows. Initially, in Section 2, the state-of-the-art
in the fields of autonomous aerial vehicles localization, navigation, and full 3D coverage
is provided. In Section 3, the algorithms and tools employed in this work are described,
whereas in Section 4, the implementation of the proposed solution is described in detail.
Finally, Section 5 presents the experimental results, and Section 6 contains a conclusion of
the work and proposes possible future work.

2. Related Work

In recent years, plenty of approaches have been presented in order to deal with the
problem of UAV localization, navigation, and coverage path planning. The solutions that
have been proposed vary mostly in the type of sensors that are available on the drone and
the environment map representation. We are going to examine some approaches on these
problems separately.

2.1. Localization

The most common way to deal with localization issues for drones is using an RGB-D
camera, due to their low cost and weight. Perez-Grau et al. [4] proposed the use of the
classic Monte Carlo localization (MCL) algorithm [5] in combination with a red green
blue-depth (RGB-D) camera for visual odometry and point cloud matching, as well as
radio-based sensors localized within the known 3D map. The use of multiple monocu-
lar cameras with an existent 3D point-cloud map was presented in [6]. A simultaneous
tracking and rendering approach, based in a monocular camera, appeared in [7]. There,
real-time localization with limited hardware in a known mesh map of the environment
was achieved using a semi-direct image alignment technique. Nevertheless, research also
exists regarding localization using IMU measurements fused with a position generation
mechanism. In [8], the authors mitigated the noise induced by the system and erroneous
IMU measurements by using sporadic position measurements from a four-beacons ultra-
wide band (UWB) system, leading to improved localization results of the end-point of a
robotic arm, as well as to lower execution times. A similar technique was suggested in [9],
where IMU measurements and a UWB positioning system were fused using an unscented
Kalman filter (UKF), improving the overall positioning accuracy.

Localization of RFID tags was performed in [10] with a ground robot that performs
SLAM in an indoor environment. The work presented in detail the way the RFID technology
works in robotic problems. Beul et al. [11] used a micro aerial vehicle (MAV) equipped
with a dual 3D laser scanner, three stereo camera pairs, an IMU, and an RFID reader to deal
with the problem of the autonomous inventorying in large warehouses. Every acquired
3D scan is represented as a multiresolution grid and is aligned to the map that has already
been created. As for the drone navigation, the A* algorithm in combination with a reactive
obstacle avoidance system is used. A similar approach was presented in [12], where a 3D
lidar handles the self-localization and mapping problems and the MAV is capable of flying
up to 7.8 m/s. The positioning of passive RFID tags with a UAV is achieved through a
flying ultra-high-frequency (UHF) RFID reader and a synthetic aperture radar (SAR)-based
localization processing in [13]. This work is related to outdoor environments and the drone
trajectory is directly provided by a Global Navigation Satellite System (GNSS).

In the previous approaches, the UAVs could keep a safe distance from the surrounding
obstacles. However, in [14], an MAV that is capable of autonomously navigating through a
dark and smoke-filled environment of a ship was presented. The vehicle can navigate in
narrow passages autonomously by using its two onboard computers, a forward-looking

Robotics 2024, 13, 83 4 of 28

RGB-D camera and a downward-looking optical flow camera for pose and velocity estima-
tion, respectively. Also, a point laser and a sonar sensor are used for height estimation.

2.2. 3D Coverage Planning and Control

Coverage path planning is about creating a path that passes from all the points of
interest in an environment, while avoiding all obstacles. As presented in [15], there are
six requirements:

1. The robot must move through all the points in the target area covering it completely.
2. The robot must fill the region without overlapping paths.
3. Continuous and sequential operation without any repetition of paths is required.
4. The robot must avoid all obstacles.
5. Simple motion trajectories (e.g., straight lines or circles) should be used (for simplicity

in control).
6. An “optimal” path is desired under available conditions.

This problem can be solved either with a heuristic approach or a complete one. An of-
fline planner that computes an efficient coverage trajectory is presented in [16]. A grid-based
decomposition of the map is performed in order to pick positions for the drone. Then,
a wavefront algorithm calculates all coverage paths with the minimum number of turns
and chooses the one with the minimum total cost. Finally, cubic splines are used to provide
smooth trajectories to the UAV. Bircher et al. [17] presented a three-dimensional coverage
path planning for aerial inspection. One viewpoint for every triangle of the mesh of the
environment is selected to ensure the complete coverage. Without focusing on minimizing
the number of waypoints, an iterative resampling scheme is employed to minimize the
total cost of the trajectory. Another approach in inspection cases was presented in [18].
A coverage path planning algorithm with adaptive viewpoint sampling constructs accurate
3D models of complex large structures using a UAV. Using the sensor models, an offline
path is created and a prediction of coverage percentage is calculated. A different approach
was presented in [19], where a neural network architecture is able to represent a dynam-
ically varying environment. The workspace is discretized into squares and a real-time
path planning is achieved, even in unstructured environments. A heuristic approach was
presented in [20], where the energy restrictions are taken into account and the optimal
speed for minimizing the energy consumption is calculated.

In [21] the coverage problem was discretized into generating potential target locations.
These, along with the drones poses (which are dynamic), are added as nodes in a common
graph, whose edges denote allowed motion paths. Then, a graph neural network is
trained and employed to perform full coverage on the growing and changing graph.
In [22], the authors proposed a coverage controller for an autonomous UAV that calculates
coverage plans for 3D objects (surface-based). There, the plans consist of graphs, whose
edges are probability constraints, which, via the unscented transformation, formulate
the coverage as an optimal control problem, allowing the concurrent optimization of the
drone’s motion and camera control inputs. Similarly, in [23], the authors classify regions
of interest into clusters, for each of which they use an exact formulation based on mixed
linear programming to obtain approximate optimal point-to-point paths that fully cover
the solution space. In [24], the coverage path planning problem is optimized towards
minimizing the energy consumption by reducing the route’s turns, using a precise tracking
of energy consumption for a number of different drone actions (takeoff, cruise, hover, etc.).
Similarly, in [25], the authors dealt with power consumption in the form of constraints.
Specifically, they proposed a double deep-Q learning approach that generates coverage-
oriented paths, containing a control policy that optimizes the routes given random start
positions and varying power constraints. Finally, in [26], an ant colony system (ACS)-based
algorithm was proposed to generate sufficiently good paths to fully cover the required
regions, and approximately optimal solutions towards minimizing the exploration time
consumption were performed.

Robotics 2024, 13, 83 5 of 28

2.3. Novelty Statement

The contribution of this work in comparison with the existing state-of-the-art tech-
niques can be summarized to the following statements. First, the UAV is equipped with the
minimum number of sensors that can be used, i.e., range sensors and an IMU. That leads to
a small quantity of information that is available for localization purposes, without the use
of any external sources that provide additional data from the indoor environment. This
approach constitutes the solution low-cost in comparison to similar methodologies that
reside on LiDAR range finders (LRFs), RGB, or RGB-D cameras. The main contribution
of this work lies in the way of implementing an OctoMap full-coverage path planning by
solving the traveling salesman problem (TSP) in 3D space, while ensuring the optimization
of the trajectory length. Specifically, we target the logistics domain, where the usual tasks
are the inventorying of the products or the search of the position of a specific product.
Our approach differs to the others mentioned in the state of the art section, since the
vast majority of them treats coverage as a horizontal problem (2D, or 2.5D, i.e., to cover
the surface of an area). In our work, we implement vertical coverage approaches, as the
products are usually placed in high shelves, at different heights. Therefore, the proposed
algorithm computes targets near the vertical obstacles of the OctoMap, along with their
normal vectors perpendicular to the obstacles. Then, optimal full path traversing calcu-
lation is proposed for two different coverage strategies (horizontal and vertical), whose
performance is evaluated against different coverage sensor field of view (FOV) properties.
Also, the drone’s navigation within the OctoMap is proposed, which relies solely on the
localization system output, ensuring object collision avoidance and easy adaptability to
any kind of UAV, irrespective of its sensors.

3. Theoretical Background

In this section, a short description of the utilized tools and concepts is presented,
necessary to establish a knowledge base for the implementation description.

3.1. Principles of the UAV Operation

The UAVs are classified into different categories, depending on the number and the
formation of their rotors. In this project, we are using a quadcopter, which is a type of
drone that is lifted and propelled by four rotors; it is shown in Figure 1. Each propeller has
a variable and independent speed which allows a full range of movements. A quadcopter
can achieve six degrees of freedom, but only by planning maneuvers that make use of its
four controllable degrees of freedom. The most useful operations of the drone used in this
project are the following:

• Altitude hold/hover: Staying in the same 2D position while airborne.
• Take-off and landing.
• Headless mode: Keeping the yaw heading stable, no matter which direction the

drone moves.
• Waypoint navigation: Using localization methods to navigate to an intermediate

location on a travel path.

Figure 1. Quadcopter format.

Robotics 2024, 13, 83 6 of 28

3.2. PID Controller

A proportional–integral–derivative controller is an algorithm used in industrial control
applications to regulate temperature, flow, pressure, speed, and other process variables.
PID control is a well-established way of driving a system towards a target position. It uses
closed-loop control feedback to keep the actual output from a process as close to the target
output as possible. Its operation is displayed in Figure 2.

Figure 2. PID operation (https://se.mathworks.com/matlabcentral/mlc-downloads/downloads/
submissions/58257/versions/2/screenshot.png, Source) (accessed on 22 May 2024).

The controller output depends on three basic control behaviors, the proportional,
the integral, and the derivative one. Each one of these terms is separately tuned and affects
the output in a different way. The P-controller gives output, which is proportional to
current error, the I-controller integrates the error over a period of time until the error value
reaches zero, and the D-controller’s output depends on error rate of change with respect
to time. Each of these terms is multiplied with a constant that can be determined with
various methods.

3.3. OctoMap

The OctoMap library [3] provides a way to represent a 3D environment in a way that
is suitable for robotic applications. The map implementation is based on an octree, which
provides great advantages. It is capable of representing both the known and the unknown
space, as well as of extending the map with new information at any time. The map updating
is performed in a probabilistic way, due to the sensors’ noise and the chance of dealing
with dynamic objects in the environment. An important feature of OctoMap is that it
can be multiresolution, suitable for plenty of applications. Last, but not least, its octree
representation leads to a compact format, both in disk and in memory.

3.4. Open Motion Planning Library

The Open Motion Planning Library [27] contains plenty of motion planning algorithms
suitable for robotic applications. The algorithms it contains, (RRTs, Probabilistic Roadmaps
(PRMs), etc.), are sampling-based and operate on very abstractly defined state spaces. It
is open source and is widely used by the scientific community, both for education and
research reasons. The basic concept of OMPL is the space decomposition into states and
the use of a graph that contains these states as nodes. The graph’s edges denote all the
feasible paths in the environment. The state format depends on the object of the occasion,
for example, in our case, a state consists of the variables that describe the position in
three axes, as well as the orientation of the object.

https://se.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/58257/versions/2/screenshot.png
https://se.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/58257/versions/2/screenshot.png

Robotics 2024, 13, 83 7 of 28

4. Implementation

This section discusses the implementation of the localization, navigation, and 3D
coverage methodology.

4.1. Drone Localization

Drone localization is referred to as the problem of estimating the position and the
orientation of the UAV within a known 3D map of an indoor environment, which has been
previously acquired using a 3D SLAM approach. Due to the lack of GPS, the operation
of drones in such environments is of great interest, as there is a need to take advantage
of all the available sensors and resources. In our case, the UAV consists of an array of
distance sensors placed circumferentially to the drone, an IMU, and a laser altimeter. Our
approach implements the MCL algorithm, which is based on a particle filter. Specifically,
the exact type of particle filter used is the bootstrap filter, a form of the sequential Monte
Carlo algorithm. The core idea is to evaluate a set of states, using a specific weighting
parameter, and consider the one with the highest weight as the currently correct state. Each
particle pi is described by a state vector as follows:

pi =

x
y
z

yaw

 (1)

In the general case, pitchand roll also exist in the state vector, but in the current work
it is assumed that these variables are close to zero when the drone reaches the poses where
the products are visible to the detection sensor.

The particle filter approach requires as input the previous set of particles, a motion,
and a measurement model for the specific UAV. The process followed by the particle filter
is described in Figure 3.

Figure 3. Particle filter process.

As for the filter initialization, this depends on the prior knowledge of the initial
position. If this is known and given as a parameter, the particles are initialized around
this position given a Gaussian distribution described by a known standard deviation
(position tracking localization). In the case of not having any information about the initial
position, the particles are distributed in the whole map with a normal distribution (global
localization). In both cases, the associated weights of N particles are all equally initialized
to 1/N.

Regarding the motion model, there is the need to calculate the robot’s motion over
time, as we have no direct source of odometry. The obvious solution would be to use visual

Robotics 2024, 13, 83 8 of 28

odometry from the RGB camera, but since the controller was developed in a simulated en-
vironment, such an approach was not possible. The combination of the IMU measurements
and the laser altimeter, as well as the velocity commands, can provide a robust motion
estimation. The timestamped messages from these sources are handled by the Approxi-
mateTime Policy of ROS Message Filters https://wiki.ros.org/message_filters (accessed on
22 May 2024), as this provides a time-adaptive algorithm to merge these measurements.

The yaw value in the state vector is directly provided by the IMU and the z by the
height altimeter. Given this, we transform the linear velocity vector from the robot frame
to the world frame, as shown in Equation (2). This value is then integrated over time to
estimate the drone’s motion, which is added to the previous state vector (Equation (3)).
The final estimation is published to the proper ROS topic and handled by the motion model,
in order to sample the particle set in every step of the filter execution.

u′ =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 ux
uy
uz

 (2)

 x′

y′

z′

 =

 x
y
z

+
∫ t2

t1
u′dt (3)

The measurement model uses the simultaneous data point acquisition of the eight
rays on the range finder around the UAV, as shown in Figure 4.

Figure 4. Range finder used by the UAV (https://www.terabee.com/shop/lidar-tof-multi-
directional-arrays/teraranger-tower-evo/, Source) (accessed on 22 May 2024).

Formally, the measurement model is defined as a conditional probability distribution
p(zt|xt, m), where xt is the robot pose, zt is the measurement at time t, and m is the map of
the environment, as is described in [28]. In that way, noise existence is taken into account
for the calculations. Four types of measurement errors are incorporated in our model
and are described below. Figure 5 displays the distribution functions that describe the
measurement model.

Correct range with local measurement noise: Even if the sensor correctly calculates the
distance from the nearest object, the value returned may be affected by some noise. The lat-
ter is due to the limited sensor resolution, the atmospheric influences, etc. This noise is
modeled by a Gaussian distribution, as shown in Figure 5a. The measurement probability
is described in Equations (4) and (5).

phit(zk
t |xt, m) =

{
ηN(zk

t , zk∗
t , σ2

hit) if 0 < zk
t < zmax

0 else
(4)

N(z
k
t , zk∗

t , σ2
hit) =

1√
2πσ2

hit

e
− 1

2
(zk

t −zk∗
t)2

σ2
hit (5)

https://wiki.ros.org/message_filters
https://www.terabee.com/shop/lidar-tof-multi-directional-arrays/teraranger-tower-evo/
https://www.terabee.com/shop/lidar-tof-multi-directional-arrays/teraranger-tower-evo/

Robotics 2024, 13, 83 9 of 28

Figure 5. Measurement model description.

Unexpected objects: The environments in which the moving robots operate are dynamic,
while the maps are static. As a result, any object that is not included in a map may be
the cause for the distance sensors to calculate really small ranges several times. A simple
method to overcome this issue is to consider these ranges as noise. An exponential dis-
tribution is used to describe this case, as shown in Equation (6). The parameter λshort is
an intrinsic parameter of the measurement model. We obtain the following equation for
pshort(zk

t |xt, m):

pshort(zk
t |xt, m) =

{
ηλshorte−λshortzk

t if 0 < zk
t < zmax

0 else
(6)

Failures: Sometimes obstacles are not detected. For example, sonar sensors fail when
they measure on a steep angle, and laser range finders cannot measure in bright light or
black, light-absorbing objects. Maximum range measurements are also a typical sensor
failure, when the result is the maximum allowable value zmax. This case is modeled with a
point-mass distribution centered at zmax, as shown in Figure 5c and described below:

pmax(zk
t |xt, m) =

{
1 if z = zmax

0 else
(7)

Random measurements: Range finders occasionally output some random inexplicable
measurements. For simplicity, we model such measurements using a uniform distribution
spread over the entire sensor measurement range [0, zmax], depicted in Figure 5d.

prand(zk
t |xt, m) =

{
1

zmax
if 0 < zk

t < zmax

0 else
(8)

The aforementioned distributions are combined using a weighted average, defined by
the coefficients zhit, zshort, z f ail and zrand, whose sum must be equal to 1.

Since the models have been fully described and the data preprocessing has been
completed, the particle filter is created. The number of particles is defined as a system
parameter, and it remains constant throughout the filter execution and provides a balance

Robotics 2024, 13, 83 10 of 28

between the calculation accuracy and the computing load. Each particle is sampled ac-
cording to its weight via the roulette wheel methodology. Using the motion model and the
previous state, we can calculate the difference in the robot pose, which is then added to
each particle’s state. This transform is applied in every particle, along with a portion of
noise related to the specific motion model, and changes its position and orientation within
the 3D map. The new state is now evaluated by using the measurement model, and every
particle’s weight is modified.

The final position estimation is determined by the mean of the best X% of the particles
with the highest weight value. The percentage of the particles that contribute in the final
estimation is a parameter of the localization system and can be easily modified.

The number of particles N remains the same throughout the algorithm execution.
As a result, some of them end up with zero weight and do not contribute in the final
pose estimation. For this reason, a process called Resampling is applied every time the
deviation of the particles’ weights (Ne f f) is less than the half of the total number of particles,
as shown in Equation (9) [29]. Ne f f describes the distribution equality of the particles in
space and this process aims to focus on the space areas that matter the most. In order to
cover the space of samples in a more systematic fashion than an independent random
sampler, the low-variance sampling strategy [30] is applied.

Ne f f =
1

∑Ns
i=1(w

i
k)

2
<

Total number of particles
2

(9)

4.2. Drone Navigation

In order to achieve safe and stable navigation throughout the environment, a cascaded
PID approach is implemented. The controller used is designed to receive as input the
UAV’s current position and the target position. Its output is their difference, which is then
transformed to the necessary velocity commands. The position controller feeds another
PID controller that is responsible for converting these commands to the rotor force that is
required for the UAV to move towards the right direction with the right speed.

The target positions come from a set of waypoints that lead to the final goal through
an obstacle-free and smooth path. The waypoints consist of four variables, x, y, z, θ,
as it is assumed that for each waypoint, pitch = roll = 0. In order to ensure the path
smoothness, we make use of the OMPL library, which provides motion planning solutions
for environments of any dimension. For our case, the selected 3D environment (a simulated
library) is used to calculate state vectors that will lead to the desired goal, given the MCL
pose estimation. Each of these waypoints are checked that are within the map bounds and
do not lead to any undesired collision. The UAV is considered as a moving object with
fixed dimensions, and a safe distance is kept from every object in the environment.

The initial path is created with the RRT* algorithm [31], which ensures its convergence
in a finite time. In the case that the start or goal state coincide with an insecure position, we
want to automatically find a nearby state that is valid, so motion planning can be performed.
Given the allowed distance for both states and the maximum number of attempts, the states
may be switched to a safer and valid position, if needed. This process samples the states
within a neighborhood controlled by the distance parameter and returns one that can
be accepted.

Each geometric path is evaluated by a metric S that indicates the smoothness of it.
The closer S is to 0, the smoother the path is. We apply ⌈5 × S⌉ steps of smoothing with
B-splines, while maintaining the path validity. At each step, the path is subdivided and
states along it are updated such that the smoothness is improved. Fewer steps are applied if
no progress is detected. This set of state vectors is then sent to the UAV controller, until the
final goal is reached. In Figure 6, the input path is shown in red and the optimized output
path is shown in blue.

Robotics 2024, 13, 83 11 of 28

Figure 6. Path smoothing with B-splines.

An example of a path planning procedure performing obstacle avoidance is visible in
Figure 7.

Figure 7. Drone path planning and obstacle avoidance.

Regarding the UAV motion, we employ a proportional–derivative (PD) controller for
each one of the state vector variables, x, y, z, roll, pitch, and yaw. Initially, while keeping
the orientation stable, we control the position variables until the UAV reaches the position
goal. Once it approaches the goal within an accepted distance, the position variables remain
stable and a PD controller attempts to control the yaw value, while keeping the roll and
pitch variables equal to 0. This happens in order to achieve a more stable motion. We also
apply a speed limit for the drone movement for experimental reasons.

We define the error function for the position and rotation variables as follows: ex(t)
ey(t)
ez(t)

 =

 xgoal(t)
ygoal(t)
zgoal(t)

−

 xcurrent(t)
ycurrent(t)
zcurrent(t)

 (10)

Robotics 2024, 13, 83 12 of 28

 eroll(t)
epitch(t)
eyaw(t)

 =

 0
0

yawgoal(t)

−

 rollcurrent(t)
pitchcurrent(t)
yawcurrent(t)

 (11)

Even though a PID controller would allow a better control of the UAV in real life,
the whole project takes place in a simulated environment. For this reason, the I part of the
controller remains equal to zero as there are no unexpected disturbances, such as wind, that
will cause instability issues for the UAV. Kp and Kd parameters were defined as dynamic
ROS parameters, which means that they could be modified during the execution. The value
of Kp is chosen as the maximum value that allows the UAV to reach the goal in a quick
and stable way and was experimentally configured. The same happens for Kd. Its value
remains really small to avoid instability, due to instant changes.

The final controller formula is described in the following equations.

[
x(t)
y(t)

]
=

 ex(t)
ex(t)

dt
ey(t)

ey(t)
dt

×
[

Kp
Kd

]
Kp = 0.6
Kd = 0.005

(12)

z(t) = Kpez(t) + Kd
ez(t)

dt
Kp = 0.35
Kd = 0.05

(13)

 roll(t)
pitch(t)
yaw(t)

 =

eroll(t)

eroll(t)
dt

epitch(t)
epitch(t)

dt
eyaw(t)

eyaw(t)
dt

×
[

Kp
Kd

]

Kp = 2.0
Kd = 0.01

(14)

The output of the controller is converted from world frame to the robot frame using
the rotation formula described in Equation (15). x(t)

y(t)
z(t)

trans f ormed

=

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 x(t)
y(t)
z(t)

 (15)

where θ is the current angle of the UAV.
The previous process is repeated consecutively for each one of the subgoals that lead

to the final goal. Once the UAV reaches the final one, it enters a hovering mode, until the
next goal is received.

4.3. 3D Coverage Formulation

The underlying idea of 3D coverage of a known space is that every point of interest
must be within the UAV’s FOV at least once. The drone is equipped with an RFID reader
with specific, but configurable, characteristics, as follows:

• Range.
• Horizontal and vertical field of view (described in angles).
• Scope (orthogonal or circular).
• A unit vector that describes the orientation of the reader.

The evaluation of the coverage process must be based on a metric that is robust and
reliable. The coverage assessment derives from the number of nodes covered by the sensor

Robotics 2024, 13, 83 13 of 28

over the total number of visible nodes in the initial map. While this metric relies on the
quality of the map, it can provide an overview of the coverage performance.

coverage (%) =
Covered nodes

Total nodes
× 100% (16)

Apart from a numeric value, a new OctoMap with the covered surface is created and
can provide a useful insight into the points that are hard to cover or are even unreachable
by the drone. A partially covered map is displayed in Figure 8, and a fully covered space is
evident in Figure 9.

Figure 8. Ongoing coverage.

Figure 9. Full coverage.

4.4. Targets Extraction in a Known OctoMap towards Full 3D Coverage

In order to achieve a full 3D coverage within an OctoMap, it is necessary to define
all the waypoints that the drone should traverse through in order to accomplish the
full coverage. A waypoint is described by the coordinates in 3D space (x,y,z) and an
orientation vector.

These positions are all located within a bounding box around the map’s obstacles,
in order to reduce the boundary noise coming from the mapping process in surfaces, such
as the roof of the environment. We applied a subsampling procedure with a fixed step over
the x-axis and y-axis. A different step is used for the z-axis, as shown in Equation (17).

zstep = range · tan(f ovvertical/2) (17)

Its value depends on the RFID range and the vertical field of view and ensures that
every point of interest will be within the sensor’s FOV at least twice. As shown in Figure 10,

Robotics 2024, 13, 83 14 of 28

the point P will be visible by the UAV’s sensor when its z-coordinate is equal to A and also
when it is equal to B. Next, each of these points is validated as a pose is safe for the robot,
by checking if this point exists in an obstacle, or if the nearest obstacle exists at a distance
smaller than a predefined threshold. The output of this procedure is a set of points in 3D
space that are adjacent to obstacles, but safe as possible targets of the drone.

Figure 10. Point P remains visible from both heights, A and B, where B = A + zstep.

Once these tentative targets have been specified, they should be reordered in a way
that minimizes the total distance of the trajectory and optimizes the UAV’s route. It is also
necessary to exclude the targets that may be nonsafe for the UAV. The following checks
are performed:

1. The target is an occupied OctoMap node.
2. The target’s position belongs in occupied space from the OctoMap projection in

Occupancy Grid Map.
3. There are obstacles at a close distance.
4. Every target is directly accessible by at least another accessible target.

Regarding the last check, the map representation may cause some targets to be sur-
rounded by an obstacle of the environment and, thus, to not be accessible by the UAV.
For this reason, we need to ensure direct visibility between all the targets. This is achieved
by applying a nearest neighbor search in all points recursively, ensuring that each waypoint
can be directly accessed by another without the interference of any obstacle, as can be seen
in Figure 11. Specifically, a UAV located in node B can directly move to nodes A and C.
However, it cannot move to node D, even though their absolute distance |BD| is the same
as |BA|.

Robotics 2024, 13, 83 15 of 28

Figure 11. Direct visibility between nodes.

Apart from the (x, y, z) values, there is a need to define the optimal orientation that
maximizes the area covered. This requires the knowledge of the orientation vector and
the surface’s normal vector. For each position, we examine every angle, starting from −π
with a step equal to FOVhorizontal/2 degrees. We define −→o as the vector that describes the
robot’s orientation vector and −→n as the surface’s normal vector.

For a specific position A and an angle ω, we apply the OctoMap ray-casting function-
ality to determine the coordinates of a position B, which belongs on the surface and is the
center of the sensor’s FOV. These two points provide us −→o . As for −→n , it is calculated using
the getNormals function of OctoMap on point B. The coverage percentage C is given by the
dot product of the normalized vectors.

C = n̂ · ô (18)

The result of the process described is a set of targets in the format of (x, y, z, yaw) that
will lead to full 3D coverage. The values of roll and pitch are considered to be zero, in order
to ensure slow maneuvering and high precision.

4.5. Targets Succession towards Optimal Coverage

Optimal coverage requires minimization of the total distance that the drone will
traverse, while ensuring that all points of interest will be covered, which is essentially
the TSP in 3D space. This is denoted as the task to find, for a finite number of points
whose pairwise distances are known, the shortest route connecting them. As in every other
NP-hard problem, the greater the number of points, the harder it becomes to solve.

A naive approach would be to employ a search or an optimization algorithm (e.g., gra-
dient descent or hill climbing), so as to iteratively find a (locally) optimal solution. Never-
theless, this approach would be time-inefficient due to the large number of possible targets,
especially for realistic scenarios, such as large warehouses.

In order to reduce the number of targets and therefore minimize the algorithmic
processing time, another approach was followed. First, the entirety of targets are grouped
by different heights (position in the z axis), ignoring their orientation vector. This leads to
horizontal slices of targets, which all have the same z but different x, y, essentially mapping
the three-dimensional points to a two-dimensional plane. The outcome of this is a set of
(x, y) points. A nondirectional graph is then created to represent the new targets. Each
vertex contains an (x, y) value and each edge describes the Euclidean distance from one
position to another. Two nodes are connected on the condition that their distance is lower
than 75% of the coverage sensor’s range.

The calculation of the optimal path resides on a combination of the nearest neighbor
and the hill climbing algorithms, in order to take advantage of neighboring targets heuristi-
cally. The A* search algorithm [32] was used to calculate the pairwise distance between all
nodes in the graph.

Robotics 2024, 13, 83 16 of 28

Two nodes can be consecutive on the condition that they are directly visible to one
another. This can be calculated with the computeRayKeys function of the OctoMap library.
Provided that all targets have been extracted from a subsampling process, the minimum
distance between two positions is known and equal to the sampling step.

Starting from a random point N, its distance from the neighbors N − 1 and N + 1 is
calculated. If is equal to the sampling step, this point is considered as the next one in the
succession process. Otherwise, a random node is selected, and since the direct-visibility
criterion is met, its distance is calculated. Then, an iterative search is performed for the next
best target, until the nodes’ distance is minimum or a specific finite number of iterations
has been reached.

Since an optimal path in the two-dimensional space has been found, the solution can
now be transferred to the 3D space. Two methods are applied for this transformation,
the vertical and horizontal connection of waypoints, as shown in Figure 12.

Figure 12. Path transformation from 2D to 3D—horizontal vs. vertical method.

There is one last step involved in the path processing. All targets are sequentially
checked, and those that are redundant are removed. A node is considered to be redundant
when it is located between two other nodes in the same direction, either x, y, or z, and their
distance is equal to the sampling step. Figure 13 depicts this procedure, where targets 2, 5,
and 7 are omitted, leading to the same goal with six targets instead of the initial set of nine.
The benefits of this process are (i) the reduction of waypoints and, thus, less data saved in
memory, and (ii) smoother and continuous drone movement, as fewer speed reductions
that are performed in each goal will be needed.

Robotics 2024, 13, 83 17 of 28

Figure 13. Omitting redundant targets in path processing.

Once the final set of targets has been defined, the drone is now able to traverse through
them. As aforementioned, the OMPL library with the RRT* algorithm is responsible for
creating local paths between two successive targets. An assumption was made regarding the
targets succession: the UAV does not need to reach the target’s position exactly, but needs
to be within a specific range in order to consider the node visited and receive the next goal.
This range is defined as a system parameter and is equal to 20cm for translation and 10◦ for
rotation. Once all nodes have been visited, the UAV returns to its initial position.

5. Experimental Results

In order to evaluate the proposed approaches’ performance, two separate experiments
were performed, both in simulated environments in Gazebo. The first set of experiments
concern the drone localization performance, whereas the second evaluates the full-coverage
algorithms in terms of coverage percentage and time elapsed. All experiments were
simulated and executed on a personal computer, equipped with an Intel Core i7-7500
processor, an Intel HD 620 Graphics card, and 8 GB of RAM, whilst the operating system
was Ubuntu 16.04, 64 bit. Concerning the software libraries used, these included ROS
Kinetic, Gazebo 7.0.0, OctoMap 1.8.1, and OMPL 1.2.1.

Two different environments were used to perform the experiments in the Gazebo
simulator, the corridor and the warehouse, as shown in Figure 14a,b. The corridor’s dimen-
sions are 11.65 m × 2.8 m × 2.35 m, while the warehouse’s are 19.75 m × 7.85 m × 2.4 m.
The drone used was acquired from the Hector Quadrotor ROS stack, https://wiki.ros.
org/hector_quadrotor (accessed on 22 May 2024). This specific model comprises an IMU,
a barometer for simulating the pressure in different heights, a sonar altimeter sensor,
a separate magnetometer, and a GPS receiver. Also, the developers provide optional
camera and LiDAR sensors according to the requirements of each application. In our
work, we used the predefined parameters of the drone’s kinematic and dynamic mod-
els [33], but the sensor parameters were modified to our needs (e.g., different ranges,
FOVs, etc.). Specifically, the drone was equipped with a simulated TeraRanger Tower sen-
sor array https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-tower-evo/
(accessed on 22 May 2024), offering eight laser beams circumferentially to the drone with
a maximum range of 14 m, a laser altimeter (by modifying the parameters of the given
sonar altimeter), and the default IMU. Finally, since in our approach only localization
is performed, the 3D maps were generated a priori using the RTAB-Map 3D SLAM
https://introlab.github.io/rtabmap/ (accessed on 22 May 2024) [34] and a simulated
Turtlebot robot https://wiki.ros.org/turtlebot_gazebo (accessed on 22 May 2024).

https://wiki.ros.org/hector_quadrotor
https://wiki.ros.org/hector_quadrotor
https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-tower-evo/
https://introlab.github.io/rtabmap/
https://wiki.ros.org/turtlebot_gazebo

Robotics 2024, 13, 83 18 of 28

(a) Empty space/corridor (b) Warehouse

Figure 14. Environments used for full-coverage experiments.

5.1. Localization Experiments

The purpose of these experiments is to calculate the difference between the position
estimation of the localization system and the ground truth position. The latter is provided
by the GazeboRosP3D plugin http://docs.ros.org/electric/api/gazebo_plugins/html/
group__GazeboRosP3D.html (accessed on 22 May 2024) in the Gazebo simulator, and it
sends that information to the /ground_truth/state ROS topic. The localization module
exports its position estimation to the /amcl_pose ROS topic. In order to compare the results,
both topics were recorded using the rosbag http://wiki.ros.org/rosbag (accessed on 22
May 2024), tools and were processed offline.

The localization module was tested for three different types of motion: (i) straight line;
(ii) spiral; (iii) meander, and three different maximum velocity values. For each experiment,
five iterations were performed, and their mean was calculated.

The entirety of particles was used to export the final position belief. The parameters
used for the localization algorithm are described in Table 1 and were experimentally defined.
These values were kept stable throughout the simulations.

Table 1. Parameters values used for the localization module.

Number of
Particles zhit zshort zrand z f ail σhit λshort

300 0.6 0.1 0.1 0.2 0.02 0.1

During the simulations, the position error in every axis was recorded, as well as
the orientation error with the corresponding timestamp. Using these data, the following
metrics were calculated:

• APE =
√

error_x2 + error_y2 + error_z2

• Mean = 1
n (∑

n
i=1 errori) =

error1+error2+···+errorn
n

• Median =
error⌊(#n+1)÷2⌋+error⌈(#n+1)÷2⌉

2

• Min Error

• Max Error

• Root Mean Square Error =
√

∑N
i=1(ˆerrori)2

N

• Sum o f Squared Error = ∑n
i=1 error2

i

• Standard Deviation =
√

1
N−1 ∑N

i=1(errori − ¯error)2

http://docs.ros.org/electric/api/gazebo_plugins/html/group__GazeboRosP3D.html
http://docs.ros.org/electric/api/gazebo_plugins/html/group__GazeboRosP3D.html
http://wiki.ros.org/rosbag

Robotics 2024, 13, 83 19 of 28

5.1.1. Moving in a Straight Line

Straight movement was tested in two different environments, a corridor and a ware-
house. The drone, after reaching a specific height, had to move through several targets and
enter the hovering mode in the last one. Figure 15a,b depict this motion in both environments.

In this case, the orientation error was also calculated, but since it was almost zero
in all tests, regardless of the environment and the moving speed, it is not included in
the results tables. This behavior was expected, since the drone does not perform any
turns and the orientation is directly received from the IMU sensor. As shown in Table 2,
the lowest position error appears when the drone moves with the lowest speed, both in
the corridor and the warehouse. Apart from the main value, the maximum value also
remains low, whereas when the UAV flies with the high speed, the position error can be
instantaneously high.

Table 2. Average metric values of position error (in meters). Green cells indicate the lowest error for
the specific velocity setup.

Maximum Speed 0.15m/s 1 m/s 5 m/s 0.15 m/s 1 m/s 5 m/s 0.15 m/s 1 m/s 5 m/s
Environment Metric Straight Line Spiral Pattern Meander Pattern

Mean 0.1266 0.1477 0.2282 0.1466 0.1191 0.1435 0.1705 0.1841 0.3285
Median 0.1201 0.1569 0.1774 0.1586 0.0918 0.1129 0.1533 0.1786 0.3536

Min 0.0112 0.0106 0.0103 0.0068 0.0060 0.0071 0.0066 0.0064 0.0094
Max 0.2592 0.3219 0.5877 0.3947 0.4270 0.5287 0.3861 0.4886 0.7998
SSE 18.7105 14.2431 33.1502 41.9944 18.7636 26.7039 144.4386 92.9411 268.0583
STD 0.0470 0.0736 0.1508 0.0853 0.1005 0.1253 0.0914 0.1055 0.1852

Corridor
/
Empty
space

RMSE 0.1356 0.1658 0.2736 0.1697 0.1560 0.1905 0.2718 0.1980 0.2425
Mean 0.1253 0.1346 0.1970 0.1950 0.1618 0.2048 0.1631 0.2779 0.3479

Median 0.1253 0.1285 0.1578 0.1587 0.1443 0.1950 0.1581 0.2502 0.2814
Min 0.0118 0.0102 0.0110 0.0074 0.0046 0.0078 0.0036 0.0076 0.0109
Max 0.2797 0.3513 0.5051 1.0356 0.4712 0.5303 0.3533 1.0573 1.5004
SSE 20.5720 13.6687 24.3632 121.3379 35.4561 53.8450 123.8913 270.4422 303.8821
STD 0.0590 0.0828 0.1175 0.1864 0.1131 0.1289 0.0730 0.1602 0.2357

Warehouse

RMSE 0.1387 0.1582 0.2330 0.2718 0.1980 0.2425 0.1793 0.3214 0.4213

(a) Corridor (b) Warehouse
Figure 15. Moving in a straight line.

5.1.2. Moving in a Spiral Pattern

The next case examined is movement in a spiral pattern. Specifically, the drone was
moving in a circular path directed upwards, since every target was in a higher position than
its previous. During these tests, the orientation was kept stable and the same as the initial
one. Therefore, the following simulations examine the system, while the drone changes its
x, y, and z coordinates at the same time. The environments used were an empty room and
a warehouse (Figure 16).

Robotics 2024, 13, 83 20 of 28

(a) Empty space (b) Warehouse
Figure 16. Moving in a spiral line.

The localization results are presented in Tables 2 and 3 for each case. The orientation
error is mentioned only for the warehouse, as for the empty environment it remained almost
zero in all tests. Despite the fact that the position is constantly changing, the estimation
remains stable. Specifically, moving with a normal velocity results in a lower position
error in all cases, as well as the slow speed tests. Also, the orientation error may present
momentary higher values, but its mean remains low, and as a result, the localization system
does not become affected.

Table 3. Average metric values of orientation error (in radians). Green cells indicate the lowest error
for the specific velocity setup.

Maximum Speed 0.15 m/s 1 m/s 5 m/s 0.15 m/s 1 m/s 5 m/s
Environment Metric Spiral Pattern Meander Pattern

Mean - - - 0.1473 0.0409 0.2287
Median - - - 0.0230 0.0241 0.0357

Min - - - 0.0001 0.0000 0.0002
Max - - - 6.2371 6.2221 6.2421
SSE - - - 2640.5364 143.6294 1764.1298
STD - - - 0.5275 0.2628 0.8545

Corridor
/
Empty
space

RMSE - - - 0.5490 0.2659 0.8855
Mean 0.3939 0.6916 0.4050 0.0351 0.2103 0.1604

Median 0.0573 1.2549 0.0440 0.0271 0.0406 0.0484
Min 0.0000 0.0007 0.0003 0.0000 0.0001 0.0004
Max 5.7539 4.1765 3.7793 4.1947 6.2218 6.1289
SSE 3267.7277 3237.2577 2182.3156 46.8604 1694.70006 112.3038
STD 0.9993 0.8510 0.7518 0.1044 0.8067 0.5096

Warehouse

RMSE 1.0785 1.1321 0.8650 0.1110 0.8343 0.5353

5.1.3. Moving in a Meander Pattern

The last case examined is moving in a meander pattern. The drone followed a set of
targets, which are depicted in Figure 17a,b for each environment. The order of succession
is from the low and outer points towards the inner and higher ones. Also, during this
movement, the drone’s orientation changes in every target, aiming for the next one.

This case presents the highest error from all the previous experiments, as shown
in Figures 18 and 19. Nevertheless, the small velocity also leads to the lowest position
and orientation error. It is worth noting that during the high speed movement, the error
presents a high variance, leading to a nonstable motion.

Robotics 2024, 13, 83 21 of 28

(a) Empty space (b) Warehouse
Figure 17. Moving in a meander.

Figure 18. Localization errors in corridor/empty space.

Figure 19. Localization errors in warehouse.

Robotics 2024, 13, 83 22 of 28

5.2. Full-Coverage Experiments

The purpose of the full-coverage experiments is the calculation of the area percentage
that was covered within the environment, as well as the time needed for this process. Again,
the experiments were conducted in the corridor and the warehouse environments, and the
sensor responsible for covering the environment was a simplified, simulated RFID antenna
in two variations (narrow and wide), described by the parameters shown in Table 4.

Table 4. RFID antenna parameters.

Type Horizontal FOV Vertical FOV Range

Narrow 45◦ 25◦ 1 m
Wide 80◦ 40◦ 2 m

In order to define the set of waypoints that the drone had to visit, different sampling
steps were used depending on the environment and the sensor type used in each case.
We applied a shorter sampling step for the corridor in comparison to the warehouse
environment, due to their size difference. Applying a larger step for small areas, such as the
corridor, will result in a small number of waypoints that cannot ensure truly full coverage.

Given the waypoints, a prior coverage estimation is executed. For each position
(x, y, z) and for the specific angle that was chosen, we calculate the number of OctoMap
nodes that are within the sensor’s FOV at least once. The result of this is divided over the
total number of nodes that the map contains to output the Coverage Estimation. But the
real area that will be covered after the coverage process is obviously larger. This is due to
the fact that the drone, while moving between different targets, also crosses other areas that
have not been explicitly defined, leading to more nodes within the FOV than expected. We
define this as Real Coverage.

A comparison is made between the results that occurred using the horizontal (slice)
and the vertical (lift) method of connection, as described in Section 4.5. It is necessary to
ensure that the localization system is working and is supporting safe and stable navigation
throughout the environment. The maximum speed used in all experiments is the slow one,
as it provides the lowest error for every type of movement, according to Section 5.1.

To begin with, all the experiments for the corridor environment will be examined.
In Figure 20a,b, the coverage percentage in relation to time is depicted, comparing the
connection of targets for both narrow and wide RFID type. The results are shown in detail
in Table 5.

Table 5. Assessing full coverage for corridor environment.

Type Target Sampling Coverage Estimated Real
Connection Step Time Coverage Coverage

Narrow Vertical 0.6 m 25.69 min 72.27% 80.76%
Horizontal 43.06 min 88.46%

Wide Vertical 0.6 m 21.70 min 93.30% 88.69%
Horizontal 18.93 min 96.26%

We observe that when using a wide sensor type, the coverage results are better, and
full coverage is achieved in a shorter period of time, as expected. In the case of using a
narrow sensor type, there is a linear correlation between the coverage percentage and time,
while in the opposite case, the coverage curve is similar to the logarithmic.

Robotics 2024, 13, 83 23 of 28

(a) Narrow RFID antenna (b) Wide RFID antenna

Figure 20. Coverage percentage in relation to time for the corridor environment.

It is worth noting the difference that exists between the different ways of connecting
the targets, according to the sensor type. Specifically, when the sensor has a narrow FOV,
the vertical connection leads to a lower coverage percentage, but needs more time to be
completed. In contrast, when using a wide FOV, the horizontal connection of waypoints
leads to a higher percentage of covered area with a faster process. The difference observed
between the coverage estimation and the real one arises due to the fact that the drone
surpasses more positions in the environment than the limited predefined goals that have
been calculated. This way, it is able to detect more targets that had not been included in the
target set.

Figure 21a,b and Table 6 present the results for the warehouse environment. In this
case, the sampling step used was higher than the previous one, since the environment is
larger in size. For both sensor types, we observe that the coverage curves also have the
same attitude as before. Irrespective of the wide or narrow field of view, using the vertical
connection leads to a more quick completion of the coverage process. Nevertheless, when
the horizontal connection is used, the final coverage percentage is higher. On the other
hand, when this is combined with a narrow FOV, there is a great difference in the total time
needed, due to the many different height levels that the drone must reach. In all cases, it is
typical that there is a difference between the real coverage and its estimation.

In the warehouse, as it presents a more complex environment with several features,
the total coverage percentage is less than the ideal for full coverage. This happens due to
the 3D map’s peculiarities, i.e., the existence of points–nodes that cannot be detected by the
drone and were also not removed with the post-processing procedure previously described.

(a) Narrow RFID antenna (b) Wide RFID antenna

Figure 21. Coverage percentage in relation to time for the warehouse environment.

Robotics 2024, 13, 83 24 of 28

Table 6. Assessing full coverage for warehouse environment.

Type Target Sampling Coverage Estimated Real
Connection Step Time Coverage Coverage

Narrow Vertical 0.8 m 40.40 min 50.18% 65.43%
Horizontal 76.52 min 72.49%

Wide Vertical 0.9 m 37.18 min 62.33% 84.12%
Horizontal 46.59 min 84.88%

5.3. Practical Considerations

At this point, it is important to state that when the aforementioned approach is to be
deployed in a real drone, several additional steps have to be followed for the performance
to be optimal.

5.3.1. IMU Calibration Procedure

The first regards the IMU calibration, which was omitted from our experiments as
the drone was simulated in Gazebo. In reality, prior to the drone deployment, a careful
calibration of the IMU must be performed so as to avoid large errors or drifts and to ensure
accurate sensor readings. The most common approach to calibrate an IMU initiates with
visiting the IMU manual in order to better understand the parameters that mostly affect
the specific device. Then, the IMU should be placed in a stable, horizontal position and
perform calibration of the individual sensors that it contains. For example, zero-rate bias
and scale factor calibration should be performed for the gyroscope, zero-g bias and scale
factor calibration should be performed for the accelerometer, and magnetometer calibration
should be executed (if applicable). Then, the calibration parameters must be applied in the
real hardware and be validated. Finally, the IMUs usually require a periodical calibration
to be performed, since they are affected by environmental factors such as temperature
or aging.

5.3.2. Computational Resources Requirements

Another important issue to discuss regards the computational resources needed to
deploy the suggested methodology, since real drones are usually equipped with embedded
devices having significantly less power than the PC used in our experiments. Even though
modern embedded devices have become quite small in size, require minimal power con-
sumption, and are quite powerful, it makes sense to provide some comments regarding
the computational requirements of each algorithm. Our approach consists of the following
software modules:

• Drone navigation using RRT* and a PID controller: The RRT* algorithm is expected to have
a slower performance in a computationally weaker system; nevertheless, the increase
in computation time is considered negligible, since RRT* (a) ensures convergence in a
finite time, and (b) can be parameterized so as to perform fewer iterations. Concerning
the PID, since its operation resides in the utilization of closed-form equations, no
performance reduction is expected.

• Drone localization using a particle filter: As known, the performance of a particle filter
is directly affected by the number of particles selected. Furthermore, it makes sense
that the computational requirements to execute the particle filter linearly increase to
the selected number of particles, as the same computations need to occur for each
particle. This being said, it must be noted that our solution implements position
tracking localization, where the initial drone pose is considered known at the start
of the experiment and the particle filter keeps track of the future poses, given the
drone controls and the sensors measurements. The position tracking localization
problem requires significantly fewer particles than the global localization problem,
where the initial drone position is unknown and a large number of particles is spread
in the unoccupied areas of the environment. In the latter case, the position estimator

Robotics 2024, 13, 83 25 of 28

algorithm performance would decrease quadratically to the environment’s dimensions.
Conclusively, since we implement position tracking, the computational requirements
will increase if an embedded device is to be used, but this problem can be mitigated
by decreasing the number of the particles, with no expected performance loss in the
position estimation.

• Calculation of targets towards full 3D coverage: The targets extraction process given an
Octomap includes the subsampling of the 3D space, the filtering of the samples that are
near the vertical walls (which need to be covered), and the calculation of the orientation
vector vertical to the wall for all of them. All of these algorithms require a single
pass on all samples (algorithmic complexity O(n)); thus, no significant computational
increase is expected. Concerning the computation of the optimal path that traverses
the aforementioned targets, the combination of nearest neighbor and hill climbing
algorithms is applied. Since the second algorithm is usually computationally intensive,
the performance is expected to significantly drop. Nevertheless, in the logistics
applications the environment is considered static; therefore, the total path calculation
can be performed only once, and not necessarily using the drone’s resources. Then,
the computed path can be utilized as is in the future deployments of the drone.

5.3.3. Parameters Value Determination

Regarding the parameters used throughout the experiments, their values should be
set according to a systematic approach or a specific line of thought. Specifically:

• Localization—Number of particles: The number of particles should be large enough
to accommodate the complexity of the environment and the possible errors of the
measurement and motion models, but not too large, since significant computational
resources will be needed.

• Localization—zhit, zshort, zrand, z f ail , σhit, λshort coefficients: These are intrinsic parameters
of the measurement device; therefore, when a real sensor is used, they should be either
acquired from the sensor’s manual or be experimentally defined.

• Navigation—PID coefficients: When a real drone is to be used, the PID coefficients
need to be set. The common practice is to perform an initial selection of the P, I,
and D gains either based on the system dynamics or by using a method to specify
the initial parameters, such as the Zeiger–Nichols [35]. Then, the parameters must
be fine-tuned experimentally by using performance metrics like overshoot, rise time,
settling time, etc.

5.3.4. Acceptable Coverage Rates

In the experiments section, two path traversal methodologies were described in order
to perform full 3D coverage of the vertical surfaces, the horizontal and the vertical approach.
There, we showcased that the horizontal strategy is recommended since in all conditions
it reached coverage rates of over 90%, in comparison to the vertical strategy. This raises
a question: Is the 90% coverage rage acceptable in realistic conditions? The acceptable
percentage of coverage rate actually depends on the specific logistics application and
the parameters of the coverage sensor used. For example, if a warehouse includes large
boxes that need to be inventoried, there is no need for a high percentage of coverage
(e.g., >80%), as the drone would detect most (if not all) of the boxes due to their size.
On the contrary, if the warehouse contains many smaller packages, a high coverage rate
is mandatory (e.g., >95%), since several packages will remain undetected. Finally, if a
logistics application requires a very high coverage rate (e.g., >99%), the parameters of
the target sampling algorithm can be altered (e.g., the sampling step) for the drone to be
forced to perform denser coverage. Of course, this would lead to quite large deployment
times; therefore, the exact parameterization must be performed according to the customer’s
requirements. Finally, it should be stated that, realistically, 100% will never be reached, since
targets placed in narrow parts of the environment will always exist, a fact that prevents the
drone from reaching them due to its physical dimensions. Nevertheless, in reality, products

Robotics 2024, 13, 83 26 of 28

will be placed on surfaces/shelves that do not exist in very narrow areas; thus, coverage
rates lower than 100% do not result in loss of information.

6. Conclusions-Future Work

This work presents an autonomous system for solving the problem of low-cost and fast
inventorying using a UAV. Initially, the localization problem was solved by implementing
a particle filter algorithm that uses solely the distance measurements and the IMU sensor.
Also, the full-coverage problem of a 3D known map was solved by first selecting the targets
that the drone must traverse through and then reordering them in order to optimize the
total path.

Overall, the main factors that affect the localization system are the speed of movement
as well as the path pattern followed. When the drone is traveling with the slow speed,
the position estimation is robust and the error is within accepted range. With regard to
full coverage, using a sensor with a wide horizontal and vertical FOV is preferred, as it
leads to a quicker and more complete coverage process. When the targets are connected
in a vertical way, the coverage time is much less than the horizontal one, which leads to a
higher final percentage of area covered.

This provides a good starting point for discussion and further research. Further studies
should investigate the implementation of the adaptive Monte Carlo localization (AMCL)
for a UAV, which will reduce the processing power needed and will also solve the global
localization problem. Also, in order to use this system with a real drone, the implementation
of visual odometry is essential. Additionally, if the localization precision is concerned,
the utilization of more advanced methods should be considered, and/or the employment
of external (environmental) position tracking systems like UWB, that, in collaboration
with the existing sensors, would offer smaller localization errors. Of course, this course of
action would increase the total cost of the solution. Finally, a thorough comparison of these
methods to the proposed one should be made, so as to infer if the complexity/cost increase
is justified against the accuracy benefits.

Another comment on the decisions made in this work is that a PID controller was
implemented towards the proper navigation of the drone. This decision was made since
(a) PID is quite simpler in implementation and understanding in comparison to more
advanced techniques, (b) it is quite robust in simple scenarios where no significant external
disturbances are expected (despite their general sensitivity to noise), a fact that applies in in-
door scenarios, (c) it is computationally cheap to implement, and (d) established approaches
towards its manual or automatic tuning exist. Nevertheless, it should be stated that more
advanced controllers should be used and evaluated towards their inferiority to the PID,
such as the linear quadratic regulator (LQR) [36] or the model predictive control (MPC) [37],
which have been proven to perform better in a wide variety of applications/environments.

Regarding the coverage system, plenty of additional modules could be created. A real-
time coverage method could be implemented that, by using the area that has already
been covered and the time limitations, will be able to define the next targets that will lead
to better results and not just follow the initial plan. It is also interesting to research the
existence of patterns and the usage of topological features in an environment. In addition,
multiple drone coverage shall be of great interest, as their synchronization will lead to a
really fast and effective full coverage. Last, but not least, it is important to research the
power needs of a drone that strongly affect the flight plan.

Author Contributions: Conceptualization: K.T., E.T., and A.L.S.; methodology: K.T., E.T., and A.L.S.;
software: K.T. and E.T.; validation: K.T. and E.T.; investigation: K.T.; writing—original draft prepara-
tion: K.T. and E.T.; writing—review and editing: E.T. and A.L.S.; visualization: K.T.; supervision: E.T.
and A.L.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Robotics 2024, 13, 83 27 of 28

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Karaman, S.; Frazzoli, E. Sampling-based Algorithms for Optimal Motion Planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
2. Morgan, Q.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating

System. In ICRA Workshop on Open Source Software; 2009; Volume 3, p. 5. Available online: https://scholar.google.com/scholar?
hl=en&as_sdt=0%2C5&q=ROS%3A+An+open-source+Robot+Operating+System&btnG= (accessed on 22 May 2024)

3. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees. Autonomous Robots. 2013. Available online: http://octomap.github.io (accessed on 22 May 2024).

4. Perez-Grau, F.J.; Caballero, F.; Viguria, A.; Ollero, A. Multi-sensor three-dimensional Monte Carlo localization for long-term aerial
robot navigation. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417732757. [CrossRef]

5. Fox, D.; Burgard, W.; Dellaert, F.; Thrun, S. Monte Carlo Localization: Efficient Position Estimation for Mobile Robots. Aaai/Iaai
1999, 1, 343–349.

6. Stewart, A.D.; Newman, P. LAPS-localisation using appearance of prior structure: 6-DoF monocular camera localisation using
prior pointclouds. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA,
14–18 May 2012; pp. 2625–2632.

7. Ok, K.; Greene, W.N.; Roy, N. Simultaneous tracking and rendering: Real-time monocular localization for MAVs. In Proceedings of
the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4522–4529.

8. D’ippolito, F.; Garraffa, G.; Sferlazza, A.; Zaccarian, L. A hybrid observer for localization from noisy inertial data and sporadic
position measurements. Nonlinear Anal. Hybrid Syst. 2023, 49, 101360. [CrossRef]

9. You, W.; Li, F.; Liao, L.; Huang, M. Data fusion of UWB and IMU based on unscented Kalman filter for indoor localization of
quadrotor UAV. IEEE Access 2020, 8, 64971–64981. [CrossRef]

10. Antonis, D.; Stavroula, S.; Emmanouil, T.; Loukas, P. Robotics Meets RFID for Simultaneous Localization (of Robots and Objects)
and Mapping (SLAM)-A Joined Problem. In Wireless Power Transmission for Sustainable Electronics; John Wiley & Sons, Inc.:
Hoboken, NJ, USA, 2020; pp. 175–222. [CrossRef]

11. Beul, M.; Krombach, N.; Nieuwenhuisen, M.; Droeschel, D.; Behnke, S. Autonomous Navigation in a Warehouse with a Cognitive
Micro Aerial Vehicle; Springer International Publishing: Cham, Switzerland, 2017; pp. 487–524, ISBN 978-3-319-54927-9.

12. Beul, M.; Droeschel, D.; Nieuwenhuisen, M.; Quenzel, J.; Houben, S.; Behnke, S. Fast Autonomous Flight in Warehouses for
Inventory Applications. IEEE Robot. Autom. Lett. 2018, 3, 3121–3128. [CrossRef]

13. Buffi, A.; Motroni, A.; Nepa, P.; Tellini, B.; Cioni, R. A SAR-Based Measurement Method for Passive-Tag Positioning With a Flying
UHF-RFID Reader. IEEE Trans. Instrum. Meas. 2019, 68, 845–853. [CrossRef]

14. Fang, Z.; Yang, S.; Jain, S.; Dubey, G.; Roth, S.; Maeta, S.M.; Nuske, S.T.; Wu, Y.; Scherer, S. Robust Autonomous Flight in
Constrained and Visually Degraded Shipboard Environments. J. Field Robot. 2017, 34, 25–52. [CrossRef]

15. Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. [CrossRef]
16. Nam, L.H.; Huang, L.; Li, X.J.; Xu, J.F. An approach for coverage path planning for UAVs. In Proceedings of the 2016 IEEE 14th

International Workshop on Advanced Motion Control (AMC), Auckland, New Zealand, 22–24 April 2016; pp. 411–416.
17. Bircher, A.; Kamel, M.S.; Alexis, K.; Burri, M.; Oettershagen, P.; Omari, S.; Mantel, T.; Siegwart, R. Three-dimensional coverage

path planning via viewpoint resampling and tour optimization for aerial robots. Auton. Robot. 2015, 40, 11. [CrossRef]
18. Almadhoun, R.; Taha, T.; Gan, D.; Dias, J.; Zweiri, Y.; Seneviratne, L. Coverage Path Planning with Adaptive Viewpoint Sampling

to Construct 3D Models of Complex Structures for the Purpose of Inspection. In Proceedings of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7047–7054. [CrossRef]

19. Yang, S.X.; Luo, C. A neural network approach to complete coverage path planning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
2004, 34, 718–724. [CrossRef] [PubMed]

20. Di Franco, C.; Buttazzo, G. Coverage Path Planning for UAVs Photogrammetry with Energy and Resolution Constraints. J. Intell.
Robot. Syst. 2016, 83, 445–462. [CrossRef]

21. Tolstaya, E.; Paulos, J.; Kumar, V.; Ribeiro, A. Multi-robot coverage and exploration using spatial graph neural networks. In
Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
27 September–1 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 8944–8950.

22. Papaioannou, S.; Kolios, P.; Theocharides, T.; Panayiotou, C.G.; Polycarpou, M.M. Unscented optimal control for 3d coverage
planning with an autonomous uav agent. In Proceedings of the 2023 International Conference on Unmanned Aircraft Systems
(ICUAS), Warsaw, Poland, 6–9 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 703–712.

23. Chen, J.; Du, C.; Zhang, Y.; Han, P.; Wei, W. A clustering-based coverage path planning method for autonomous heterogeneous
UAVs. IEEE Trans. Intell. Transp. Syst. 2021, 23, 25546–25556. [CrossRef]

24. Choi, Y.; Choi, Y.; Briceno, S.; Mavris, D.N. Energy-constrained multi-UAV coverage path planning for an aerial imagery mission
using column generation. J. Intell. Robot. Syst. 2020, 97, 125–139. [CrossRef]

25. Theile, M.; Bayerlein, H.; Nai, R.; Gesbert, D.; Caccamo, M. UAV coverage path planning under varying power constraints using
deep reinforcement learning. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 25–29 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1444–1449.

http://doi.org/10.1177/0278364911406761
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ROS%3A+An+open-source+Robot+Operating+System&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ROS%3A+An+open-source+Robot+Operating+System&btnG=
http://octomap.github.io
http://dx.doi.org/10.1177/1729881417732757
http://dx.doi.org/10.1016/j.nahs.2023.101360
http://dx.doi.org/10.1109/ACCESS.2020.2985053
http://dx.doi.org/10.1002/9781119578598.ch7
http://dx.doi.org/10.1109/LRA.2018.2849833
http://dx.doi.org/10.1109/TIM.2018.2857045
http://dx.doi.org/10.1002/rob.21670
http://dx.doi.org/10.1016/j.robot.2013.09.004
http://dx.doi.org/10.1007/s10514-015-9517-1
http://dx.doi.org/10.1109/IROS.2018.8593719
http://dx.doi.org/10.1109/TSMCB.2003.811769
http://www.ncbi.nlm.nih.gov/pubmed/15369113
http://dx.doi.org/10.1007/s10846-016-0348-x
http://dx.doi.org/10.1109/TITS.2021.3066240
http://dx.doi.org/10.1007/s10846-019-01010-4

Robotics 2024, 13, 83 28 of 28

26. Chen, J.; Ling, F.; Zhang, Y.; You, T.; Liu, Y.; Du, X. Coverage path planning of heterogeneous unmanned aerial vehicles based on
ant colony system. Swarm Evol. Comput. 2022, 69, 101005. [CrossRef]

27. Sucan, I.A.; Moll, M.; Kavraki, L.E. The Open Motion Planning Library. IEEE Robot. Autom. Mag. 2012, 19, 72–82. [CrossRef]
28. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, MA, USA, 2005.
29. Liu, J.S. Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat. Comput.

1996, 6, 113–119. [CrossRef]
30. Douc, R.; Cappe, O. Comparison of resampling schemes for particle filtering. In ISPA 2005, Proceedings of the 4th International

Symposium on Image and Signal Processing and Analysis, Zagreb, Croatia, 15–17 September 2005; IEEE: Piscataway, NJ, USA,
2005; pp. 64–69. [CrossRef]

31. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Department of Computer Science, Iowa State University:
Ames, IA, USA, 1999.

32. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.
Cybern. SSC4 1968, 4, 100–107. [CrossRef]

33. Johannes, M.; Sendobry, A.; Kohlbrecher, S.; Klingauf, U.; Von Stryk, O. Comprehensive simulation of quadrotor uavs using
ros and gazebo. In Simulation, Modeling, and Programming for Autonomous Robots, Proceedings of the Third International Conference,
SIMPAR 2012, Tsukuba, Japan, 5–8 November 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 400–411.

34. Mathieu, L.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for
large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446.

35. Hang, C.C.; Åström, K.J.; Ho, W.K. Refinements of the Ziegler—Nichols tuning formula. IEEE Proc. D (Control. Theory Appl.) 1991,
138, 111–118. [CrossRef]

36. Norman, L.; Sandell, N.J.A.M.; Athans, M. Robustness results in linear-quadratic Gaussian based multivariable control designs.
IEEE Trans. Autom. Control 1981, 26, 75–93.

37. Qin, J.S.; Badgwell, T.A. An Overview of Industrial Model Predictive Control Technology; AIche Symposium Series; American Institute
of Chemical Engineers: New York, NY, USA, 1997; Volume 93, pp. 232–256.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.swevo.2021.101005
http://dx.doi.org/10.1109/MRA.2012.2205651
http://dx.doi.org/10.1007/BF00162521
http://dx.doi.org/10.1109/ISPA.2005.195385
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1049/ip-d.1991.0015

	Introduction
	Related Work
	Localization
	3D Coverage Planning and Control
	Novelty Statement

	Theoretical Background
	Principles of the UAV Operation
	PID Controller
	OctoMap
	Open Motion Planning Library

	Implementation
	Drone Localization
	Drone Navigation
	3D Coverage Formulation
	Targets Extraction in a Known OctoMap towards Full 3D Coverage
	Targets Succession towards Optimal Coverage

	Experimental Results
	Localization Experiments
	Moving in a Straight Line
	Moving in a Spiral Pattern
	Moving in a Meander Pattern

	Full-Coverage Experiments
	Practical Considerations
	IMU Calibration Procedure
	Computational Resources Requirements
	Parameters Value Determination
	Acceptable Coverage Rates

	Conclusions-Future Work
	References

