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Abstract: Master–slave teleoperation systems with haptic feedback enable human operators to
interact with objects or perform tasks in remote environments. This paper presents a sliding-mode
control scheme tailored for bilateral teleoperation systems operating in the presence of unknown
uncertainties and time-varying delays. To address unknown but bounded uncertainties, adaptive
laws are derived alongside controller design. Additionally, a linear matrix inequality is solved to
determine the allowable bound of delays. Stability of the closed-loop system is ensured through
Lyapunov–Krasovskii functional analysis. Two-degree-of-freedom mechanisms are self-built as
haptic devices. Free-motion and force-perception scenarios are examined, with experimental results
validating and comparing performances. The proposed adaptive-sliding-control method increases the
position performance from 58.48% to 82.55% and the force performance from 83.48% to 99.77%. The
proposed control scheme demonstrates enhanced position tracking and force perception in bilateral
teleoperation systems.

Keywords: adaptive control; sliding-mode control; teleoperation system; time-varying delays

1. Introduction

The structure of teleoperation systems typically consists of several key components:
human operator, master manipulator, slave manipulator, and communication channel. The
interactions between these components form the basis of teleoperation systems, enabling
human operators to control systems and interact with remote environments effectively [1,2].
In a teleoperation system, the human operator controls the master manipulator, usually
through prescribed trajectories or specific tasks. The slave robot then follows the move-
ments of the master manipulator in a free space, replicating the actions performed by
the operator in the remote environment. Integrating haptic feedback into teleoperation
systems enhances the operator’s situational awareness and dexterity, enabling more in-
tuitive and precise control of the master manipulator while interacting with the remote
environment. This contributes to improved task performance and overall efficiency in
various teleoperation applications. The applications of teleoperation systems are versatile,
such as in unmanned aerial vehicles [3–5], virtual reality [6,7], medical training [8–10], and
telesurgery [11–16].

In recent years, significant advancements have been made in the development of
teleoperation systems, with several methods and techniques being addressed to improve
their performance, robustness, and versatility. In [17], an event-triggered mechanism
combined with a PD-like controller was presented for bilateral teleoperation systems to
address communication channel congestion. In [18], an adaptive proportional damping
controller utilizing an RBF neural network and adaptive control strategy was proposed
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to enhance stability and performance in a telerobotic system. On the other hand, time-
domain-passivity control is a widely used approach to preserve the stability of teleoperation
systems. In general, it is expected to maintain the passivity of the system to ensure a safe
and stable operation [19,20]. Bavili et al. [21] investigated the problem of asymptotic
stability and position tracking in nonlinear teleoperation systems when interacting with
non-passive operators and environments. In [22], a passivity controller was presented to
compensate for the non-passivity induced by longitudinal slipping and lateral sliding of
wheeled robots. In [23], a passivity-based delay predictor was proposed to improve the
transparency of a four-channel bilateral teleoperation system. Passivity-based control was
utilized to ensure energy stability, and shared variable impedance control can facilitate
smooth collaboration in teleoperation [24]. Additionally, a passivity-based nonlinear
controller was introduced for bilateral teleoperation system under variable time delay and
load disturbance [25]. In [26], a neural network-based four-channel-time-domain-passivity
approach was proposed for a teleoperation system with time-varying delays.

Obtaining precise dynamic models for both master and slave manipulators in a teleop-
eration system can be challenging due to various factors such as nonlinearities, uncertain-
ties, and complex mechanical structures. Adaptive tuning methods have been proposed
to overcome this problem. Yang et al. [27] addressed the problem of adaptive tracking
control for a teleoperation system with uncertainties in both kinematics and dynamics.
In [28], an adaptive fuzzy neural network-backstepping-control scheme was developed for
bilateral teleoperation systems to handle time delays and uncertainties. In [29], a fixed-time
adaptive neural network-synchronization control was presented for teleoperation systems,
handling position-error constraints and time-varying delays. In [30], a type-2 fuzzy neural
network was proposed to deal with time-varying delays and uncertainties. In [31], a type-2
fuzzy-based observer was introduced to estimate external force/torque information and
simultaneously filter out system disturbances. In [32], an adaptive bilateral control strategy
was introduced for underwater manipulator teleoperation, with adaptive RBF network
compensation for slave-manipulator uncertainties. In [33], a radial basis function-neural
network-based-sliding-mode-control design was developed for nonlinear bilateral teleop-
eration system with transmission delays and uncertainties. In addition, a sliding-mode
controller combined with a nonlinear-disturbance observer was proposed, such that the
asymptotical stability can be preserved [34]. Due to the superiority of its robustness, the
sliding-mode control has become an effective scheme for network control systems that are
subject to time delays, packet losses, uncertainties, disturbances, and/or faults [35].

The presence of communication time delays and model uncertainties can significantly
impact the transparency and stability of teleoperation systems [36,37]. For constant delays,
a terminal sliding-mode controller was discussed for time-delayed nonlinear teleoperation
systems [38]. In [39], an observer-based force control scheme was proposed to guarantee
the position and force tracking in nonlinear teleoperation systems, subject to a constant
communication time delay. Moreover, a bilateral neural network adaptive controller
was designed for a class of teleoperation systems with constant time delays, external
disturbances, and internal friction [40]. In practice, it is more attractive to investigate
the tracking stability of teleoperation systems subject to time-varying delays. In [41], a
general framework was presented to analyze and optimize the transparency of multilateral
systems under time-varying delays. In [42], an adaptive control framework was developed
to simultaneously handle both unknown kinematics/dynamics and time-varying delays.
In [43], a finite-time control method was presented for bilateral teleoperators to ensure
the coordination of master and slave manipulators in the presence of time-varying delays,
external disturbances, and dynamic uncertainties. Zakerimanesh et al. [44] presented a
control framework for bilateral teleoperation systems experiencing bounded time-varying
delays in their communication channels.

When analyzing time-delay issues, delay-dependent approaches are generally less con-
servative than delay-independent approaches. However, the derivation of delay-dependent
stability conditions can be more complex than that for delay-independent approaches, par-
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ticularly because delays are explicitly considered in the design of stabilizing controllers. In
general, when dealing with time-delay systems, ensuring closed-loop stability is crucial for
the overall performance and reliability of the system. To achieve this, various conditions
related to controller parameters are often desired, especially those that explicitly consider
the time delays. Lyapunov–Krasovskii functions and linear matrix inequalities (LMIs) are
commonly employed tools for investigating the stability of time-delay systems [45–51].

The synthesis problem in time-delayed teleoperation systems involves designing sta-
bilizing controllers to ensure closed-loop stability while minimizing conservatism and
preserving transparency in teleoperation. This entails finding less conservative stabiliz-
ing controllers that can effectively handle time delays, especially those that vary over
time. Delay-dependent approaches are preferred due to their ability to explicitly consider
time delays, which leads to more accurate estimation of stability conditions and efficient
controller designs. By addressing practical considerations such as time-varying delays, tele-
operation systems can achieve robust performance and seamless interaction between the
operator and the remote environment. In the works of [52], both symmetric and asymmetric
time-varying delays in communication were addressed. Symmetry of the communication
delays means that the delays of the forward and backward channels are equal. Symmetric
delays could exist in a constrained environment such as a local wire-connected network
with a strictly defined protocol. On the other hand, asymmetric communication delays
would be more practical in internet or wireless networks. In existing works of asymmetric
time-varying delays, the bounds of time-varying delays are usually given in advance, then
a delay-dependent controller can be obtained to ensure closed-loop stability. In this paper,
it is desired to find the allowable boundary of time-varying communication delays. For the
purpose of concise computations, a symmetric teleoperation system is addressed. How to
relax this assumption of symmetry would be another interesting topic.

Transparency is a critical issue in teleoperations. Ensuring precise force feedback across
versatile environments is a primary task. Our proposed control strategies are designed
to maintain high transparency by accurately replicating forces encountered in the remote
environment, thus enhancing the user’s sense of presence and control. In this work, a
novel adaptive-sliding-mode control scheme is proposed for bilateral teleoperation systems
encountering model uncertainties and time-varying delays. The main contributions are
as follows:

1. The proposed method allows for the determination of admissible bounds of time-
varying delays by solving linear matrix inequalities (LMIs), thus providing valuable
insights into temporal constraints.

2. The derived adaptive laws enable the estimation of bounds for unknown uncertainties,
thereby enhancing the robustness of the controller against model uncertainties.

3. Utilizing delay-dependent Lyapunov–Krasovskii functional analysis ensures the
closed-loop stability of the teleoperation system, offering theoretical assurances even
in the presence of delays and uncertainties.

4. The control scheme addresses both free-motion and force-perception aspects of a
general non-passive teleoperation system, thereby expanding its applicability across
various scenarios.

5. Conducting master–slave experiments validates the feasibility and effectiveness of
the proposed control scheme in real-world settings, demonstrating its practical appli-
cability and performance.

2. Materials and Methods
2.1. Preliminaries

The dynamic model for an nth degree master–slave robotic system can be described
using the following equations:

Mm(qm)
..
qm + Cm

(
qm,

.
qm

) .
qm + gm(qm) + δm = τm + fh (1)
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Ms(qs)
..
qs + Cs

(
qs,

.
qs
) .
qs + gs(qs) + δs = τs − fe (2)

where the subscripts m and s represent the master and slave, respectively, qm and qs ∈ Rn

are the vectors joint positions, Mm(qm) and Ms(qs) ∈ Rn×n are the inertia matrices,
Cm

(
qm,

.
qm

)
and Cs

(
qs,

.
qs
)
∈ Rn×n are the Coriolis matrices, gm(qm) and gs(qs) ∈ Rn

are the gravitational vectors, τm and τs ∈ Rn are vectors of input torques, fh and fe ∈ Rn

are the human operation force and the environmental force, and δm and δs are the un-
known uncertainties of the master and slave robots, respectively. In this paper, the human
operator’s force fh and the environmental force fe are non-passive [53,54]:

fh = kh − Dh
.
qm − Khqm (3)

fe = ke − De
.
qs − Keqs (4)

where kh and ke are constant vectors of Rn, and Dh and Kh ∈ Rn×n are the damping and
spring-constant matrices for human force, respectively. In addition, De and Ke ∈ Rn×n rep-
resent the damping and spring-constant matrices for the environmental force, respectively.

Property 1. The inertia matrix Mi(qi) is symmetric and positive definite. Let λi be the maximum
eigenvalue of Mi(qi). Then, Mi(qi) ≤ λiIn where In ∈ Rn×n is the identity matrix, i ∈ {m, s}.

Property 2. The matrix
.

Mi(qi)− 2Ci
(
qi,

.
qi
)

is skewed symmetric, i ∈ {m, s}.

Property 3. There exists a positive constant ci such that
∥∥Ci

(
qi,

.
qi
)∥∥

2 ≤ ci, where ∥·∥2 represents
the L2 norm, i ∈ {m, s}.

Assumption 1. Let δi = [δi1 δi2 . . . δin]
T be bounded by δi =

[
δi1 δi2 . . . δin

]T ,∣∣δij
∣∣ < δij, where δij is an unknown constant, i ∈ {m, s}, j = 1, 2, . . . n.

Lemma 1. [55] Given a positive-definite matrix R, the following inequality holds

2XTY ≤ XTRX + YTR−1Y, (5)

where X and Y are two matrices with proper dimensions.

Lemma 2. [56] Let O =

[
O11 O12
OT

12 −O22

]
be a matrix with proper dimensions, O22 > 0. Then the

following equation holds:

O < 0 ⇐⇒ O11 + O12O−1
22 OT

12 < 0. (6)

2.2. Adaptive-Sliding-Mode-Controller Design

In the context of the time-delayed teleoperation system described by Equations (1) and (2),
a sliding-mode controller will be designed to achieve asymptotically stable sliding motion.

Assumption 2. The forward and backward communication delays are symmetric, and the time-
varying delay d(t) satisfies the conditions that

0 < d(t) ≤ d < ∞,
.
d(t) ≤ µ < 1, (7)

where d and µ are positive constants.

Remark 1. If
.
d(t) ≥ 1, then the delay will grow faster than the increase in time. As the manipulator

devices are required to track some delayed trajectories, the control loop becomes open. Under this
circumstance, the controller design and related stability analysis opens a new theoretical problem,
which cannot be solved at current stage and needs to be investigated separately [42].
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In the following equations, the notations qm,d and qs,d are used to stand for qm(t − d(t))
and qs(t − d(t)), respectively, for simplicity. The sliding surfaces for the master and slave
robots are defined, respectively, as

sm =
.
qm + Km

(
qm − qs,d

)
ss =

.
qs + Ks

(
qs − qm,d

)
(8)

where Km = diag{km1, km2, . . . , kmn} ∈ Rn×n and Ks = diag{ks1, ks2, . . . , ksn} ∈ Rn×n,
kmj > 0, and ksj > 0, j = 1, 2, . . . , n. Then, the sliding mode of (8), sm = ss = 0, can be
equivalently described as

.
qm = −Km

(
qm − qs,d

)
.
qs = −Ks

(
qs − qm,d

)
(9)

Let the error functions of the master and slave sides, respectively, be defined as

em = qm − qs, es = qs − qm (10)

From (9) and (10), it can be determined that

.
e = −A1e − A1ed (11)

where e =
[
eT

m eT
s
]T, ed = e(t − d(t)), and A1 = diag{Km, Ks}.

Theorem 1. The error functions of (10) are asymptotically convergent if the following inequal-
ity holds: 

Θ11 A1Ps 02n A1

PsA1 −d−1Rs 02n 02n

02n 02n −∼
µQs A1

A1 02n A1 −
(
dRs

)−1

 < 0 (12)

where Ps, Qs, and Rs are symmetric positive-definite matrices of R2n×2n, Θ11 = −4PsA1 + Qs,
∼
µ = 1 − µ, and 02n is a zero matrix of dimension 2n × 2n.

Proof. A Lyapunov–Krasovskii function is chosen as

Vs = eTPse +
∫ t

t−d(t)
eT(s)Qse(s)ds +

∫ 0

−d

∫ t

t+θ

.
eT
(s)Rs

.
e(s)dsdθ. (13)

The time derivative of Vs from (11) is derived as

.
Vs ≤ 2eTPs(−A1e − A1ed) + eTQse − ∼

µeT
dQsed

+ d(−A1e − A1ed)
TRs(−A1e − A1ed)−

∫ t
t−d

.
eT
(s)Rs

.
e(s)ds

(14)

It is noted that ed = e −
∫ t

t−d(t)
.
e(s)ds. Then, from Lemma 1 and Assumption 2, it

leads to the following inequality

.
Vs ≤ −4eTPsA1e + deTPsA1R−1

s A1Pse + eTQse−∼
µe

T
dQsed + deTA1RsA1e

+ 2deTA1RsA1ed + deT
dA1RsA1ed=

[
e
ed

]T

Θ

[
e
ed

] (15)

where
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Θ =

[
Θ1 dA1RsA1

dA1RsA1 dA1RsA1 −
∼
µQs

]
, Θ1 = −4PsA1 + Qs + dPsA1R−1

s A1Ps + dA1RsA1 (16)

From Lemma 2,
.
Vs is negative if (12) holds. This implies that the error dynamics of

(11) is asymptotically stable. This completes the proof. □

The sliding-mode-based controllers for the torques acting on the delayed teleoperation
system are designed as

τm = τeq,m + τsw,m (17)

τs = τeq,s + τsw,s (18)

where τeq,m and τeq,s are the equivalent control actions and τsw,m and τsw,s are the switch-
ing controllers. From (1) and (2), considering the uncertainty-free case, the equivalent
controllers τeq,m and τeq,s can be determined as

τeq,m = −MmKm

( .
qm − .

qs,d

)
+ Cm

.
qm + gm (19)

τeq,s = −MsKs

( .
qs −

.
qm,d

)
+ Cs

.
qs + gs (20)

It is noted that the uncertain terms δm and δs of (1) and (2) are unknown but bounded.
To estimate δm =

[
δm1 δm2 . . . δmn

]T and δs =
[
δs1 δs2 . . . δsn

]T, the adaptive
laws are designated as follows:

.

δ̂m =

{
ΓM−1

m |sm|, i f fh = 0,

0, i f fh ̸= 0.
(21)

.

δ̂s =

{
ΓM−1

s |ss|, i f fe = 0,

0, i f fe ̸= 0.
(22)

where δ̂m and δ̂s ∈ Rn, Γ = diag{γ1, γ2, . . . , γn} ∈ Rn×n, γj > 0, j = 1, 2, . . . , n,

|sm| =
[
|sm1| |sm2| . . . |smn|

]T, and |ss| =
[
|ss1| |ss2| . . . |ssn|

]T.
In this paper, the switching controllers are formulated as

τsw,m = −
(
Φm + ∆̂m

)
sgn(sm), (23)

τsw,s = −
(
Φs + ∆̂s

)
sgn(ss), (24)

in which Φm = diag{ϕm1, ϕm2, . . . , ϕmn} ∈ Rn×n, Φs = diag{ϕs1, ϕs2, . . . , ϕsn} ∈ Rn×n,
ϕmj > 0, ϕsj > 0, j = 1, 2, . . . , n, and sgn(·) is a standard sign function. In addition,

∆̂m = diag
{

δ̂m1, δ̂m2, . . . , δ̂mn

}
and ∆̂s = diag

{
δ̂s1, δ̂s2, . . . , δ̂sn

}
.

Remark 2. The required input torques on the master and slave sides are shown in (17) and (18). The
input torques include both equivalent and switching control actions. For example, the input torque
τm can be obtained from τeq,m and τsw,m in Equations (17), (19) and (23). In (23), an adaptive
law for the unknown bounded uncertainties is designed as (21). Similarly, the input torque τs can
be implemented with Equations (18), (20), (22), and (24). The scheme diagram of the proposed
teleoperation system is shown in Figure 1.

Remark 3. There could be a potential issue of chattering associated with the use of the sign
function in the controller (23) and (24). To address this common chattering problem, a smoothing
technique can be employed by replacing the sign function with a continuous approximation, such as
a saturation function or a boundary-layer approach.
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Theorem 2. Consider the bilateral teleoperation systems (1) and (2). In free motion, fh = fe = 0,
and the state trajectories of teleoperation systems (1) and (2) will be driven onto the sliding surfaces
(8) with the controllers (17) and (18) and the adaptive laws (21), (22).

Proof. Let a Lyapunov function be chosen as

Vc =
1
2

(
sT

msm +
∼
δ

T

mΓ−1
∼
δm + sT

s ss +
∼
δ

T

s Γ−1
∼
δs

)
(25)

where
∼
δm = δm − δ̂m, and

∼
δs = δs − δ̂s are the estimation errors. The derivative of (8) is

obtained as
.
sm =

..
qm + Km

( .
qm − .

qs,d

)
,

.
ss =

..
qs + Ks

( .
qs −

.
qm,d

)
. (26)

The derivative of Vc along (26) is

.
Vc = sT

m

(
M−1

m
(
τm − Cm

.
qm − gm − δm

)
+ Km

( .
qm − .

qs,d

))
+ sT

s

(
M−1

s
(
τs − Cs

.
qs − gs − δs

)
+ Ks

( .
qs −

.
qm,d

))
−

∼
δ

T

mΓ−1
.

δ̂m −
∼
δ

T

s Γ−1
.

δ̂s.
(27)

From Assumption 1, this gives the following:

.
Vc < sT

m

(
M−1

m
(
τm − Cm

.
qm − gm

)
+ Km

( .
qm − .

qs,d

))
+ sT

s

(
M−1

s
(
τs − Cs

.
qs − gs

)
+ Ks

( .
qs −

.
qm,d

))
+ |sm|TM−1

m δm + |ss|TM−1
s δs −

∼
δ

T

mΓ−1
.

δ̂m −
∼
δ

T

s Γ−1
.

δ̂s.

(28)

Substituting (17), (18), and (21) into (28), it yields

.
Vc < −sT

mΦmM−1
m sgn(sm)− sT

s ΦsM−1
s sgn(ss) (29)

From (25) to (29), it is evident that the negative definiteness of Vc can be preserved,

which means that sm, ss,
∼
δm, and

∼
δm are bounded. Therefore, the systems (1) and (2) are

stable. Hence, the states of the teleoperation system (1) and (2) will reach the sliding surface
(8). The proof is completed. □
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2.3. Stability Analysis

Substituting (3), (4), (17), and (18) into (1) and (2), the closed-loop teleoperation systems
can be represented as

Mm
..
qm = −MmKm

( .
qm − .

qs,d

)
+ ϵm + kh − Dh

.
qm − Khqm

Ms
..
qs = −MsKs

( .
qs −

.
qm,d

)
+ ϵs + ke − De

.
qs − Keqs. (30)

where ϵm = −δm − ∆̂msgn(sm)− Φmsgn(sm) and ϵs = −δs − ∆̂ssgn(ss)− Φssgn(ss).

Remark 4. According to Assumption 1 and Theorem 2, the uncertainty terms δm and δs are
bounded and the estimated terms ∆̂m and ∆̂s are bounded. Thus, both the ϵm and ϵs are bounded.

Theorem 3. With non-passive human and environment forces (3) and (4), the closed-loop teleopera-
tion system (30) is asymptotic stable if the following LMI holds:

Ω =


Ω11 0n 0n 0n

0n λsKs −
∼
µQ 0n 0n

0n 0n Ω33 0n

0n 0n 0n λmKm − ∼
µQ

 < 0 (31)

where Q ∈ Rn×n is a symmetric positive-definite matrix, and

Ω11 = −λmKm + (2cm + αm)In + Q − 2Dh

Ω33 = −λsKs + (2cs + αs)In + Q − 2De (32)

in which αm and αs are positive constants and 0n is a zero matrix of Rn×n.

Proof. Consider a Lyapunov–Krasovskii function candidate as follows:

V =
.
qT

mMm
.
qm + qT

mKhqm +
∫ t

t−d(t)
.
qT

m(s)Q
.
qm(s)ds +

.
qT

s Ms
.
qs

+ qT
s Msqs +

∫ t
t−d(t)

.
qT

s (s)Q
.
qs(s)ds

(33)

From Property 2, the time derivative of V along (30) can be reformulated as

V ≤ 2
.
qT

m

(
−MmKm

( .
qm − .

qs,d

)
+ Cm

.
qm + ϵm + kh − Dh

.
qm

)
+ 2

.
qT

s

(
−MsKs

( .
qs −

.
qm,d

)
+ Cs

.
qs + ϵs + ke − De

.
qs

)
+

.
qT

mQ
.
qm − ∼

µ
.
qT

m,dQ
.
qm,d +

.
qT

s Q
.
qs −

∼
µ

.
qT

s Q
.
qs,d.

(34)

From Lemma 1, the following inequalities can be obtained:

2
.
qT

m(ϵm + kh) ≤ αm
.
qT

m
.
qm +

1
αm

∥ϵm + kh∥2
2

2
.
qT

s (ϵs + ke) ≤ αs
.
qT

s
.
qs +

1
αs
∥ϵs − ke∥2

2 (35)

and
2

.
qT

mKmMm
.
qs,d ≤ .

qT
mKmMm

.
qm +

.
qT

s,dKmMm
.
qs,d

2
.
qT

s KsMs
.
qm,d ≤ .

qT
s KsMs

.
qs +

.
qT

m,dKsMs
.
qm,d (36)

where ∥·∥2 represents the L2 norm of the signals.
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From Properties 1 and 3, substituting (35) and (36) into (34) yields

.
V ≤ .

qT
Ω

.
q +

1
αm

∥ϵm + kh∥2
2 +

1
αs
∥ϵs − ke∥2

2 (37)

where
.
q =

[
.
qT

m
.
qT

m,d
.
qT

s
.
qT

s,d

]T
. Furthermore, it leads to the following condition,

V ≤ λΩ

∥∥ .
q
∥∥2

2 + ρ (38)

where λΩ < 0 is the maximum eigenvalue of the matrix Ω, ρ = 1
αm

∥ϵm + kh∥2
2 +

1
αs
∥ϵs − ke∥2

2.

Noting that ρ is bounded, ρ ≤ ρ, ρ is a constant. Hence,
.
V is negative, if

∥∥ .
q
∥∥

2 >
√

ρ

−λΩ
.

The controller parameters Km and Ks can be chosen such that
.
q will be arbitrarily small.

Therefore, the closed-loop system (30) is asymptotically stable. □

3. Experimental Results

In this paper, the master and slave devices are a pair of two-degrees-of-freedom-
revolute-prismatic robots. The configuration illustration and 3D framework of the teleoper-
ation devices are shown in Figure 2.
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Figure 2. Configuration diagram of the master- and slave-manipulator robots.

The system parameters of the master and slave robots are listed in Table 1.

Table 1. System parameters of teleoperation systems.

m1 Mass of link 1 0.36 kg

m2 Mass of link 2 0.027 kg

l Distance between joint o and center of link 1 0.02 m

g Gravitational constant 9.8 m/s2

The dynamic models of (1) and (2) are obtained as

Mi(qi) =

[
m1l2 + m2h2

i 0

0 m2

]
, Ci(qi, qi) =

 0 2m2hi
.
θi

−m2hi
.
θi 0

,

Gi(qi) =

[
(m1l + m2hi)gcos(θi)

m2gsin(θi)

]
(39)
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qi =
[
θi hi

]T,
..
qi =

[ ..
θi

..
hi

]T
, τi =

[
τ1i τ2i

]T, fh =
[

fh1 fh2
]T, fe =

[
fe1 fe2

]T,
i ∈ {m, s}. In addition, hi is the length of the joint 2 between the point o and the cen-
ter of mass of the second link, and θi is the angle of the joint 1.

The parameters of the adaptive-sliding-mode controller are set as Ki = diag{2, 2},
Φi = diag{2.5, 2.5}, and Γ = diag{0.5, 0.1} × 10−3, i ∈ {m, s}. The disturbance parts are
assumed as δi = diag{0.5, 0.1} × rand(·)× 10−3 and rand(·) is a uniformly distributed
random number. From Theorem 1, the allowable delay bound can be obtained as d = 0.5 s
by solving LMI (12). In experiments, the time delay is chosen as d(t) = 0.25 + 0.2sin(t) s.
The initial states of the master and slave robots are set as qm = qs =

[
0 0.145

]T, and
the initial velocities and acceleration are zero. Three types of controllers are adopted
for comparison, including the proportional plus damping controller (P + dC) [17,18,45],
sliding-mode controller (SC), and the proposed adaptive-sliding-mode controller (ASC).
The following indices are considered for performance comparisons: the integral absolute
error (IAE), the integral time absolute error (ITAE), the integral square error (ISE), and the
integral time square error (ITSE) [57].

In the following, the cases of both free motion and force perception are performed.
The experimental setup of a bilateral teleoperation system is shown in Figure 3. The
position responses of the master and slave robots are measured by encoders. The control
algorithms and signal interfacing are implemented by Raspberry Pi and a PIC18F4331
microprocessor. The sampling time is selected as 20 ms. In these experiments, the time
delay is realized by software programming. Furthermore, all of the controller parameters
of the teleoperation system are the same as the settings in simulations. The allowable delay
bound is determined to be 0.5 s. The behavior of a delay can be accurately captured if the
delay is multiple times the length of the sampling time.
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3.1. Case 1: Free Motion (Experiment)

During the free-motion operation, the human operator moves the master robot towards
θm = 1 rad and hm = 0.195 m, and the operator leaves the device standing still alone for
t > 5 s. It is desired to see whether the slave robot can track the motion trajectory of the
master device stably. As shown in Figures 4 and 5, the steady-state position errors are
significantly reduced using the ASC method. Quantitative analyses of different methods are
shown in Table 2. The proposed ASC method increases the performance improvement from
70.70% to 90.00%. The video snapshots captured from the ASC are depicted in Figure 6,
where the recording time of each snapshot is indicated on the bottom right.
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Figure 5. Position responses of joint 2 with different control methods for Case 1: (a) P + dC, (b) SC,
and (c) ASC.

Table 2. Experimental comparisons of position errors in Case 1.

IAE ITAE ISE ITSE

P + dC
Joint 1 21.38 147.72 1983.70 199.68

Joint 2 0.045 7.79 115.41 0.60

SC
Joint 1 13.38 99.21 1199.80 92.06

Joint 2 0.019 4.81 68.24 0.21

ASC
Joint 1 6.26 36.91 248.95 22.71

Joint 2 0.008 2.70 33.85 0.06
unit: joint 1 (rad), joint 2 (m).
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Figure 6. The snapshots of the experimental results for Case 1 (ASC): (a) joint 1, and (b) joint 2.

3.2. Case 2: Force Perception (Experiment)

In this case, an obstacle is placed on the slave side of the system at a position of
roughly hs = 0.175 m and θs = −0.5 rad, respectively. As it is following the scheduled
movement of the master, the slave robot will contact the pre-placed obstacle. Like in the
in the simulation discussions, the force feedback will be conducted in turn for each joint.
The experimental results corresponding to different methods are presented in Figures 7–10,
where the slave robot contacts the obstacle around t = 4 s. From Figures 7 and 8, it can
be observed that there exist quite clear biases between the joint positions of master and
slave robots with the P + dC method. On the other hand, the proposed ASC controller
can provide significant improvements in position tracking and force perception. As the
force perception in Figures 9 and 10, the proposed ASC control method has superiority in
stably and accurately tracking for t > 4 s. Quantitative analyses of the experimental results
are summarized in Tables 3 and 4. They indicate that the proposed ASC method increases
position performance from 58.48% to 82.55% and improves force performance from 83.48%
to 99.77%. The video snapshots of ASC are depicted in Figure 11, where the recording time
of each snapshot is indicated on the bottom right.
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Figure 9. Force responses of joint 1 with different control methods for Case 2: (a) P + dC, (b) SC, and
(c) ASC.

Table 3. Experimental comparisons of position responses in Case 2.

IAE ITAE ISE ITSE

P + dC
Joint 1 493.82 822.78 13,620.00 8319.10

Joint 2 0.53 27.06 453.25 9.23

SC
Joint 1 155.35 465.18 7588.70 2575.70

Joint 2 0.18 15.84 262.65 3.09

ASC
Joint 1 85.66 343.22 5655.00 1432.80

Joint 2 0.17 15.69 241.20 2.60
unit: joint 1 (rad), joint 2 (m).
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Figure 10. Force responses of joint 2 with different control methods for Case 2: (a) P + dC, (b) SC, and
(c) ASC.

Table 4. Experimental comparisons of force errors in Case 2.

IAE ITAE ISE ITSE

P + dC
Joint 1 24.45 178.45 2497.80 351.22

Joint 2 0.048 7.23 85.57 0.435

SC
Joint 1 13.28 93.91 1348.60 112.79

Joint 2 0.036 4.77 54.07 0.195

ASC
Joint 1 2.87 34.35 412.59 15.84

Joint 2 0.001 0.93 10.41 0.001
unit: joint 1 (N), joint 2 (N).
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Remark 5. To enhance the reader’s understanding of the experimental process and results, exper-
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4. Discussion 
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Remark 5. To enhance the reader’s understanding of the experimental process and results, experi-
mental videos have been uploaded to YouTube (accessed on 11 June 2024).

https://www.youtube.com/watch?v=M0uSr1mg5YU
https://www.youtube.com/watch?v=buR8rsf2_ls
https://www.youtube.com/watch?v=0H8ogvjg2TU
https://www.youtube.com/watch?v=jYd8kWvERj0

4. Discussion

A non-passive environment in the context of teleoperation systems refers to an envi-
ronment where the forces exerted on the slave’s side are not purely passive. This means
that the slave’s side does not simply follow the master’s movements passively but may
exert forces or exhibit behaviors that are independent or reactive to the master’s commands.
Building an experimental setup to replicate a non-passive environment presents several
challenges due to its inherent complexity and unpredictability. To address these challenges,
we conduct a simulation scenario in this study. Key performance indicators in a non-passive
teleoperation environment include the closeness of position responses between the master
and slave sides and the consistency of force tracking. Smaller errors in position and force
tracking generally indicate better system performance.

4.1. Case 3: Free Motion (Simulation)

Additionally, a more general free-motion case is considered, where the joint 1 of the
master moves approximately up to 1 rad and then gradually returns to its original position.
During the same period, joint 2 smoothly pulls out. The simulation responses are shown
in Figures 12–17, and the comparisons of position errors with different control methods
are summarized in Table 5. Furthermore, the related control signals regarding to P + dC,
SC, and ASC are shown in Figures 13, 15 and 17, respectively. It can be observed that the
proposed ASC method can provide better trajectory-tracking capability.
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Table 5. Simulation comparisons of position errors in Case 3.

IAE ITAE ISE ITSE

P + dC
Joint 1 1366.5 15,168.1 179.2 1456.9

Joint 2 26.8 296.3 0.09 0.61

SC
Joint 1 710.1 7420.9 54.4 410.4

Joint 2 20.5 249.7 0.04 0.32

ASC
Joint 1 643.1 7295.7 44.5 369.0

Joint 2 18.7 209.6 0.03 0.29
unit: joint 1 (rad), joint 2 (m).

4.2. Case 4: Non-Passive Human and Environment (Simulation)

Consider the case that the human operator and environment forces are all non-passive,
such as

fh =

kh − Dh
.
qm − Khqm, 1 ≤ t ≤ 30 s

0 otherwise
(40)

fe =

ke − De
.
qs − Keqs, 5 ≤ t ≤ 30 s

0 otherwise
(41)

where kh =
[
−0.9 0.2

]T, ke =
[
0.1 −0.15

]T, Dh = De = diag{1, 1}, and Kh = Ke =
diag{1, 1}.

The simulation results of this case are depicted in Figures 18–26, including the posi-
tion responses, force responses, and control signals of the master and slave robots. The
observation revolves around the responses after the addition of the environment force, i.e.,
from 5 to 30 s. From Figure 24, compared to Figures 18 and 21, the position errors of the
master and slave robots are significantly improved using the proposed ASC method. As
regards the force responses shown in Figures 19, 22 and 25, all three methods can support a
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certain degree of inconsistency in the human and environment forces. Similarly, the average
position and force errors of 20 repetitions are summarized, from 5 to 30 s, in Tables 6 and 7.
It can be observed that the proposed ASC scheme has better performance in both position
following and force perception.
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Table 6. Simulation comparisons of position errors in Case 4.

IAE ITAE ISE ITSE

P + dC
Joint 1 66,092.74 116,329.60 1753.97 30,999.84

Joint 2 413.14 7264.24 6.85 120.94

SC
Joint 1 4312.21 75,538.54 747.91 13,093.91

Joint 2 271.31 4772.02 2.95 52.16

ASC
Joint 1 3328.01 58,510.62 444.31 7840.92

Joint 2 207.80 3637.15 1.73 30.30
unit: joint 1 (rad), joint 2 (m).

Table 7. Simulation comparisons of force errors in Case 4.

IAE ITAE ISE ITSE

P + dC
Joint 1 655.09 8101.66 49.21 355.33

Joint 2 44.38 508.72 0.24 1.61

SC
Joint 1 643.66 7720.72 44.83 322.15

Joint 2 35.56 353.51 0.19 1.08

ASC
Joint 1 572.32 5399.46 23.56 153.96

Joint 2 26.39 168.89 0.08 0.19
unit: joint 1 (N), joint 2 (N).

5. Conclusions

This paper introduces an adaptive-sliding-mode controller that has been designed for
a bilateral teleoperation system that is characterized by time-varying communication delays
and unknown but bounded uncertainties. The master and slave devices utilized in the
system are self-made by the authors, with certain components manufactured using CNC
milling and lathe machines. The controller design involves deriving a delay-dependent
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condition for stability and determining the admissible bound of time delays through linear
matrix inequalities. The closed-loop stability of the teleoperation system is ensured via
Lyapunov–Krasovskii stability analysis, aligning the stability analysis with the designed
controllers and adaptive laws. Both passive and non-passive scenarios involving the
human operator and the environment are considered in the design process. A real experi-
mental setup is employed to validate the proposed control scheme, covering free-motion
and force-perception tasks. Results indicate that the proposed adaptive-sliding-control
method increases position performance from 58.48% to 82.55% and force performance
from 83.48% to 99.77%. In conclusion, the proposed control algorithm shows promising
potential for application in generalized haptic devices with expanded degrees of freedom.
Additionally, our control strategies have successfully addressed a wide range of scenarios
and environments, including free motion, force perception, and also both passive and
non-passive situations. Furthermore, our experimental results underscore its viability for
real-world applications.
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