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Abstract: The automatic control of vehicle traffic in large urban networks constitutes one of the most
serious challenges to modern societies, with an impact on improving the quality of human life and
saving energy and time. Intersections are a special traffic structure of pivotal importance as they
accumulate a large number of vehicles that should be served in an optimal manner. Constructing
intelligent models that manage to automatically coordinate and steer vehicles through intersections
is a key point in the fragmentation of traffic control, offering active solutions through the flexibility of
automatically adapting to a variety of traffic conditions. Responding to this call, this work aims to
propose an integrated active solution of automatic traffic management. We introduce a multi-agent
reinforcement learning framework that effectively models traffic flow at individual unsignalized
intersections. It relies on a compact agent definition, a rich information state space, and a learning
process characterized not only by depth and quality, but also by substantial degrees of freedom and
variability. The resulting driving profiles are further transferred to larger road networks to integrate
their individual elements and compose an effective automatic traffic control platform. Experiments
are conducted on simulated road networks of variable complexity, demonstrating the potential of the
proposed method.

Keywords: multi-agent reinforcement learning; traffic control; intersection patterns; knowledge transfer

1. Introduction

Traffic congestion in urban areas is a major problem that significantly affects the daily
rhythm of life within cities as transportation demands escalate. Congestion is mainly
observed at intersections where conflicting vehicles with disparate trajectories converge
within shared road spaces. Intersections constitute an important traffic component that
plays a crucial role in the efficiency, safety, and energy consumption of the entire traffic
system. Traffic at intersections poses challenges for autonomous driving vehicles and
contains considerable dynamic characteristics and uncertainty. Therefore, traffic manage-
ment at intersections is directly linked to the smooth operation of traffic within urban
road networks.

With the significant advancements in vehicle-to-everything technologies that provide
real-time information exchange, a promising prospect emerges: the potential for automated
vehicles to seamlessly navigate through intersections cooperatively, without relying on
traffic lights, i.e., “unsignalized intersections”. However, ensuring driving safety while im-
proving intersection traffic management efficiency remains a challenging issue, due to the
existence of multifaceted factors, including real-time processing, system robustness, intri-
cate scheduling, and inherent complexity of the task. These issues demand comprehensive
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solutions for effective resolution. Furthermore, autonomous driving within unsignalized in-
tersections generates complex environmental state spaces, introducing profound challenges
to the scalability of the scheduling algorithms. This requires the design of scalable learning
strategies to guarantee driving safety, while concurrently enhancing traffic efficiency for
autonomous vehicles [1,2]. Moreover, an important challenge is to manage cooperative
driving to address traffic conflicts [3,4].

Machine learning (ML) and especially reinforcement learning (RL) [5] constitutes a
framework with tools as leverage for constructing intelligent decision-making algorithms in
an attempt to provide a more efficient, comfortable and accident-free traffic system. Several
attempts have been made towards providing the use of RL algorithms for intelligent
transportation systems in order to generate optimal driving profiles of automated vehicles
with less energy consumption and fewer emissions, including approaches to regulate the
traffic around an intersection [6].

Agent-based methodologies encompass two essential objectives: (a) providing robust-
ness against environmental variations, and (b) fostering the ability to transfer the acquired
knowledge and skills from a specific environment or scenario to new and diverse ones,
without necessitating significant modifications or re-training.

Nowadays, in RL agent research, the concept of knowledge transfer has gained much
traction [7]. In direct knowledge transfer, distinct models are trained independently for each
source task. Subsequently, their policies are directly applied and evaluated on other similar
tasks within the broader system. This approach can be particularly effective when the
source tasks share substantial similarities with the target tasks. By leveraging pre-trained
models on specific tasks, the general system can quickly benefit from the knowledge gained
during the individual training processes.

Motivated by these challenging issues, this study introduces a holistic approach
to traffic management in complex road networks that unfolds in two stages. Initially,
autonomous driving strategies are constructed for specific intersection patterns based
on a novel multi-agent deep reinforcement learning scheme. Then, a direct knowledge
transfer framework is established that enforces the existing pre-trained driving policies
at the intersections of the studied road network. The proposed methodology promotes
robust traffic management in diverse scenarios and network structures, and thus naturally
facilitates scalability over large road networks and complex environments with a large
degree of variability.

In a recent work of ours [8], we proposed a collaborative multi-agent reinforcement
learning approach for addressing the traffic control problem, by treating the potential
routes taken by vehicles as the agents. This approach offered the flexibility, from both
modeling and learning perspectives, to design an economical solution for multi-agent
schemes by alleviating increased complexity and constraints of common practices that treat
each vehicle as a distinct agent. Nonetheless, the complexity issue remains a substantial
obstacle, particularly when handling large-scale networks, given the exponential expansion
of available routes that corresponds to the network’s size. In addition, the transferability of
the acquired knowledge is limited to the level of the respective reference road network and
thus the exploitation of the generalization ability is significantly minimized.

Conversely, in this study, the traffic control problem is framed as a multi-tasking
problem. It is deconstructed into smaller traffic control sub-problems centered around
intersection patterns. In these patterns, autonomous vehicles are trained to collaborate and
navigate, while adhering to acceleration policies. This approach fosters straightforward
adaptability and transferability.

The main contributions of this work are summarized as follows:

• We introduce an efficient multi-agent reinforcement learning scheme for modeling
the traffic flow management at intersections. We consider the incoming roads to the
intersections as agents, effectively mitigating the escalating complexity and constraints
associated with conventional methods that focus on modeling agents at the vehicle
level. Another novelty is the introduction of a priority feature within the state space
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to ensure seamless coordination among agents at intersections by incorporating this
centralized vision, we aim to enhance the overall efficiency and safety of traffic flow by
offering active solutions that can dynamically respond to changing traffic conditions.

• We aim to provide a compact strategy for urban traffic congestion by dividing the
road network into homogeneous structures based on intersection patterns. This offers
the advantage of independence from traffic fluctuations and immunity to changes of
traffic density. Moreover, partitioning the road network enhances coordination among
traffic patterns at a higher level, leading to improved traffic flow and a more consistent
and reliable traffic management system.

• We promote an advantageous zero-shot knowledge transfer process that associates
intersections in road networks with learned multi-agent policies. Our approach
creates adaptable driving profiles for existing intersection patterns with exceptional
generalization capabilities, facilitating seamless deployment of a traffic management
system to address urban congestion effectively and rapidly.

The structure of this manuscript is as follows. Section 2 summarizes state-of-the-art
reinforcement learning and knowledge transfer strategies for autonomous traffic control.
Then, Section 3 specifies the problem to be solved and describes analytically all stages of the
proposed method. Section 4 presents the simulation cases based on the SUMO environment
and illustrates the depicted results for measuring the performance of our method. Finally,
Section 5 concludes the paper and discusses future directions.

2. Related Work

Ongoing research in autonomous vehicle control and planning explores the problem
from various perspectives, including rule-based, reinforcement learning, and imitation
learning schemes. The majority of the studies focus on employing traffic lights as a means
to model the agents, with the objective to minimize waiting time [9–14]. Nevertheless,
there has been a notable surge in research interest within the field of autonomous vehicle
navigation. Optimum control of smooth and safe driving at intersections is an important
element of traffic that drastically affects the efficiency, safety, and energy consumption of
all traffic [2]. These emerging approaches involve considering the vehicles as the agents
within the multi-agent system, shifting the focus away from traffic lights.

The most significant rule-based approach in autonomous vehicle control is the time-to-
collision (TTC) method [15]. Other commonly used approaches involve trajectory optimization-
based methods [16–19], although hand-crafted heuristics can be extremely difficult and often
lead to suboptimal results. Another solution is given by Carlino et al. [20], where the authors
propose running auctions at each intersection to decide the sequence in which drivers
execute conflicting moves. In Wang et al. [21], there is an intersection access management
method that optimizes vehicle crossing sequences using a cooperative intersection con-
trol strategy and a high-level hybrid queuing model. Furthermore, Levin and Rey [22]
developed a Mixed Integer Linear Programming (MILP) model to determine the optimal
coordination strategies for a single intersection. On the other hand, Li et al. [23] frame the
problem of coordinating multiple vehicles as a Multi-Agent Path Finding (MAPF) problem.
Finally, Lu et al. [24] proposed a fail-safe buffer area for intelligent intersections, enabling
the system to handle emergencies effectively and allowing vehicles to brake in time. In
contrast to the previous works, our approach deals with large-scale traffic networks and
complex scenarios containing multiple intersections and vehicles, while also being less
costly to implement.

Studies involving imitation learning, such as behavior cloning (BC) [25], employ super-
vised learning approaches on expert data. However, they face challenges such as compound-
ing errors and distribution shifts. An online interactive data collection method has been
developed in Menda et al. [26], which uses an online demonstrator during training to
act as a teacher. Nevertheless, the requirement of an expert adds extra complexity to the
training process.
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On the other hand, deep RL schemes have also gained attention recently in the field of
traffic control. In Bouton et al. [27], Monte Carlo was employed to optimize decision-making
at unsignalized intersections. Similarly, deep recurrent Q-networks (DRQNs) are used by
Tram et al. [28] to train a vehicle to pass through an intersection, by adjusting its acceleration
through a negotiation phase with other human-controlled vehicles. In a subsequent work
by the same authors [29], a hierarchical framework encompassing RL-based high-level
decisions and a lower-level controller was proposed. In Isele et al. [30], the intersection
traversal problem was studied using a deep Q-network (DQN) and then was extended to
include situations with occluded intersections [31]. Moreover, in Li and Czarnecki [32],
a thresholded lexicographic Q-learning variant was designed for collision avoidance in
complex scenarios involving multi-lane roads and intersections. A recent work, presented
by Shao et al. [33], addresses collaborative decision-making for autonomous vehicles in
unsignalized intersections using a MARL algorithm based on PPO, incorporating parameter
sharing, local rewards, and an action masking mechanism. While quite similar, our work
operates on much larger and more densely trafficked scenarios, and demonstrates effective
knowledge reuse capabilities. Finally, in our recent study [8], we explored navigating
multiple vehicles in unsignalized traffic networks, treating the possible routes as intelligent
agents of the multi-agent system.

A significant drawback of RL methods is their prolonged training periods, as RL
agents lack awareness of training environment dynamics. Transfer learning (TL) involves
pre-training a network on a different task before fine-tuning it on the target task [7]. By
leveraging the skills acquired during pre-training, the network can benefit and potentially
overcome the challenges of RL training. Furthermore, TL allows reusing learned agent
knowledge on more intricate traffic scenarios than those encountered in initial training.
In Akhauri et al. [34], a model trained on simulated data was transferred to train another
model using real-world data. Additionally, in Chiba and Sasaoka [35], pre-trained model
vehicles are transferred and further trained in modeling autonomous driving. Finally,
in Shu et al. [36] a knowledge transfer deep RL method is presented, where a learned
single-agent intersection-traversing policy is applied to three similar driving tasks.

In the recent bibliography, there are some other alternative transfer learning schemes.
Zero-shot learning refers to the ability of agents to perform tasks they have never encountered
before, relying on learned generalizations from related tasks for autonomous vehicles [37,38].
A similar scheme is curriculum learning, which involves training an agent by gradually
increasing the complexity of tasks, used to learn driving behavior at 4-way intersections [39]
or create an end-to-end driving policy in combination with deep RL [40]. Finally, other
schemes from federated RL perspectives have been presented, where multiple distributed
agents collaboratively learn and share knowledge while training on local data [41–43].

Lastly, building upon single-agent RL, multi-agent reinforcement learning (MARL)
produces agents that not only optimize their individual policies but also collaborate and
share knowledge, enabling the emergence of improved solutions [44,45]. However, in
comparison with single-agent settings, research on the generalization domain of MARL
is either of increased complexity [46] or is focused on transferring policies learned in
simulations to real-world scenarios [47]. Specifically, Candela et al. [47] created a simulated
multi-agent environment that imitates the dynamics of a real-world robotic track, and
successfully transferred the obtained policies of the former to the vehicles of the latter.
Finally, in Jang et al. [48], a pair of autonomous vehicles are initially trained using deep RL
to guide a fleet onto a roundabout, and then the authors directly transfer the policy from
a simulated to a real city environment, encompassing policies with and without injected
noise for training.

3. Proposed Method
3.1. Overall Description of the Method

In this study, we address the problem of navigating multiple vehicles in road traffic
networks containing unsignalized intersections using multi-agent reinforcement learning
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policies and knowledge transfer capabilities. The key idea of our approach lies in perceiving
the road network as a dynamic environment characterized by an intricate interlinking of
multiple roads through unsignalized intersections. Central to our analysis are intersections,
which represent complex and heavily trafficked zones characterized by recurring patterns
and phenomena, requiring traffic control strategies and active solutions to ensure the
secure and efficient passage of vehicles so as to prevent collisions. In our traffic scenarios,
vehicles seamlessly integrate into the traffic network to be served automatically, subject to
a stochastic entry rate.

According to our scenario, each vehicle follows a pre-defined route towards its des-
tination (in real-time scenarios, vehicles’ paths can be automatically designed through a
route-generator mechanism based on the current traffic or environmental conditions).

Thus, every route can be seen as a sequence of intersections that the vehicles visit and
pass through. Based on this framework, we can deconstruct the broader task of vehicle
movement into distinct movements between intersections, which we define as sub-tasks.
This provides us with two notable advantages:

1. Establishment of a well-organized and compact system for managing traffic flow and
optimizing transportation networks.

2. Introduction of traffic and congestion patterns for modeling specific types of intersections.

By concentrating on movements between intersections, we can gain valuable insights
into how traffic behaves at various types of intersections. This knowledge has the advantage
of enhancing our ability to model and simulate large-scale traffic networks more accurately.

This holistic approach encompasses the development of traffic patterns on intersections
that cover various configurations, each possessing unique characteristics. These patterns
can include, for example, Y-intersections, T-intersections, crossroads, X-intersections, round-
abouts, and more, as shown in Figure 1a. More specifically, in this work we considered two
general intersection patterns: 3-way and 4-way intersections. In 3-way intersections, three
roads intersect at a single point. This includes the “Y-intersection”, where two roadways
join to form a single road, and the “T-intersection”, where a minor roadway meets a major
roadway, as shown in Figure 1. Despite their differences in topology and geometry (road
lengths), our scheme treats these cases equivalently and manages them similarly though
a unified general-purpose 3-way intersection pattern. A 4-way intersection is the most
common traffic type that involves the crossing of two roadways. This pattern used in our
analysis covers not only cases where the roads appear perpendicular, but also various
design configurations where roads can intersect at any angle. Two such examples are
shown in Figure 1b.

After introducing intersection patterns, the subsequent stage involves implementing
an intelligent decision support system tailored to each intersection’s unique characteristics
and peculiarities. We propose a multi-agent reinforcement learning (MARL) framework
to facilitate smooth and secure vehicle passage through intersections and develop driving
profiles. Emphasis is placed on robust training of the generated MARL policies, ensuring
adaptability to various topological structures within the same intersection pattern. This
enables the policies to effectively accommodate alternative configurations, enhancing their
versatility and applicability in real-world scenarios. Moreover, the MARL scheme offers
active solutions in traffic management by generating adaptive driving policies that can
dynamically respond to changing traffic conditions.

Finally, we propose a zero-shot knowledge transfer process designed to facilitate
the reuse of acquired knowledge across multiple intersections within the road network.
Learned MARL policies are directly applied to similar intersections, streamlining traffic
management and minimizing the need for extensive adaptation. Figure 2 depicts the overall
structure of the proposed method for traffic flow management in urban areas with multiple
unsignalized intersections.
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(a) 3-way intersection pattern (Y-intersection, T-intersection)

(b) 4-way intersection pattern (crossroad, X-intersection)

Figure 1. Examples of different configurations covered by the 3-way and 4-way intersection patterns.

Figure 2. Overview structure of the proposed method for traffic control in road networks consisting
of three major modules.

3.2. Multi-Agent Reinforcement Learning for Traffic Management in Intersection Patterns

In our study, each road coming into the intersection pattern is treated as an individual
agent, called a road-agent. The goal of the road-agent is to temporarily guide a vehicle
along its designated road segment until it reaches the next intersection. Once a vehicle
has traversed the intersection and moved onto the outgoing road, it is no longer within
the scope of this agent and, by extension, the MARL system of the pattern to which that
intersection belongs. This is due to the assumption that the vehicle has successfully reached
its local destination. Subsequently, control of the vehicle is handed over to the multi-agent
road-agent of the next intersection (and the matching intersection pattern that may be
similar to the previous one), who drives it to the next intersection. This process repeats
until the vehicle reaches its final destination. Notably, when the vehicle traverses the last
intersection of its route, a deterministic rule is applied: maximum acceleration is used to
expedite the vehicle’s exit from the road network via the final road segment.
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3.2.1. MDP Formulation

Reinforcement learning has demonstrated significant potential in addressing chal-
lenges related to decision making and control. A fundamental issue in reinforcement
learning is the concept of the Markov Decision Process (MDP) [5,49], which defines a
mathematical framework that represents decision-making scenarios involving intelligent
agents. As the complexity of decision-making scenarios increases, containing multiple
interacting entities, the multi-agent Markov Decision Process (MA-MDP) emerges as a
pivotal framework. Specifically, it extends the MDP to accommodate scenarios where
multiple intelligent agents co-act within a shared environment, each possessing distinct
objectives and actions.

In our study, we formulate the task of intersection traffic management as an MA-MDP
that can be represented as a tuple < Ag, S, A, T, R, γ >, where:

• Ag is a society of agents i = 1 . . . N;
• S denotes the state space of the environment. Each agent, i, observes its local state, si;
• A denotes the set of possible actions of any agent. Each agent, i, takes a local action, ai;
• P(s′i|si, ai) : S × A × S → [0, 1] specifies the probability of the agent, i, to transition to

a new state, s′i;
• R(si, ai) is the reward function for a state action pair R : S × A → R;
• γ ∈ (0, 1) is the discount factor across time for future rewards.

Under the MA-MDP formulation, the agent adheres to a policy within a given envi-
ronment. A policy in RL is a strategy that determines the actions of an agent based on its
current state. Let us consider a vehicle following its corresponding road-agent, i ∈ Ag. At
each time step, this vehicle is found in a specific state, denoted as si ∈ S, and it chooses an
action, ai ∈ A, according to the policy, πi, implemented by its corresponding road-agent.
Subsequently, the vehicle transitions to a new state, s′i, and yields a reward, R(si, ai) ∈ R.
Figure 3 illustrates an example of how the proposed MARL scheme is applied to a 4-way
intersection pattern (crossroad) for modeling traffic control.

Figure 3. Traffic control in a 4-way intersection pattern using the proposed MARL scheme. Every
road-agent (RAi) is responsible for safely guiding vehicles through its designated road segment,
while cooperatively coordinating with the other agents (in our case three).



Robotics 2024, 13, 109 8 of 22

Value functions are essential components in RL, providing estimates of the expected
cumulative rewards associated with different states and actions. Specifically, the state-value
function is defined as the expected cumulative discounted future reward at state si:

Vπi (si) = Eπi

[
R(si, ai) + γVπi (s′i)

]
. (1)

Moreover, the action-value function, or Q-function, is the expected cumulative reward
starting from state si, executing action ai and following policy πi thereafter:

Qπi (si, ai) = Eπi

[
R(si, ai) + γQπi (s′i, , a′i)

]
(2)

In actor-critic methods [5], the agent is composed of the actor and the critic components.
The actor is responsible for learning the policy, while the critic approximates the value
function. A fundamental element is the advantage function, which measures the advantage
of taking a particular action in a specific state compared with the average action value
in that state according to the policy. Advantage is defined as the difference between the
action-value and the state-value function under policy πi:

Aπi (si, ai) = Qπi (si, ai)− Vπi (si) (3)

In our study, we employed the proximal policy optimization (PPO) [50] method
to learn the policy and the value function simultaneously. PPO is a state-of-the-art on-
policy actor-critic algorithm, which operates by alternating between data sampling through
interactions with the environment and optimizing a clipped surrogate objective function,
using stochastic gradient descent. The clipped surrogate objective function enhances
training stability by constraining the magnitude of policy changes at each step. In PPO, the
clipped surrogate objective function is formulated as follows:

LCLIP(θi) = E
[
min

(
ρ(θi)Aπθi (si, ai), clip(ρ(θi), 1 − ϵ, 1 + ϵ)Aπθi (si, ai)

)]
(4)

ρ(θi) =
πθi (ai|si)

πθi (old)(ai|si)
, (5)

where πθi
(old) represents the policy before the update, πθi (ai|si) is the probability of tak-

ing action ai in state si under current policy πθi , and θi are the weights of the policy’s
neural network. The advantage function is calculated using the generalized advantage
estimator (GAE).

It is worth noting that simultaneously managing multiple instances of the same road-
agent (vehicles on the same road) provides additional flexibility to the learning process.
This has the advantage of enhancing its generalization capability, without compromising
the decision-making effectiveness of each individual agent. In what follows, we outline all
the essential elements that constitute the definition of the MDP specific to our problem.

3.2.2. State and Action Representations

Following our proposed profiling scheme, each vehicle undergoes a process in which
a particular road-agent is designated to observe its driving behavior and guide it through
the intersection. This approach ensures that each vehicle is appropriately managed and
supervised by the relevant road-agent, facilitating smooth and efficient traffic flow within
the intersection.

The proposed state space for road-agents in an intersection pattern is designed to
be both cost-efficient and easily manageable. This design facilitates efficient knowledge
transfer across diverse intersections (instances) of the same pattern. More specifically, the
state is described by the 5-dimensional vector:

s = [v, pos, f veh_v, f veh_dist, pindex] , (6)
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comprising four continuous values capturing the velocity and position of the examined
vehicle (called ego vehicle) and its front vehicle, and a priority term that takes discrete
values. Specifically, it consists of the following quantities:

• v: normalized velocity (in m/s) of the ego vehicle, where we consider a maximum
allowed velocity, vmax (in our simulation studies, we set vmax = 20 m/s);

• pos: normalized relative position (in m) of the ego vehicle on the road it traverses with
respect to the road’s length;

• f veh_v: normalized velocity of the front vehicle. We consider the front vehicle to be the
closest vehicle in front of the ego vehicle, within a visible range (in our experiments,
we consider a visible range of 100 m). If there is no vehicle within this range, this
variable is set to −1;

• f veh_dist: normalized distance from the front vehicle. It is calculated as the real
distance between two vehicles divided by the visible range. Similarly, in the absence
of a leading vehicle, this variable is set to −1;

• pindex: priority term that takes three possible values (−1, 0, and 1). This is a central-
ized feature that acts as a factor of coordination and cooperation among road-agents,
and is calculated based on the distances of incoming vehicles to the intersection’s
center. To underscore the significance and meaningful contribution of this variable,
we extended the designated area surrounding the intersection so as to guarantee the
utmost precision and reliability in identifying the exact position of each vehicle. This
enhances the agent’s ability to implement proactive measures and prevent potential
collisions. Vehicles that are currently inside the intersection area will have their pindex
values set to −1. All other vehicles will have their pindex values set to 0. The vehicle
closest to the intersection’s center will be assigned a value of pindex = −1, indicating
it has the highest priority to cross.

As already mentioned, the road-agents are responsible for controlling the acceleration
of their supported vehicles to ensure safe traversing of the intersection. Consequently,
the vehicles’ acceleration (continuous value) is used as the agent’s action, and the task of
autonomous driving involves applying a sequence of acceleration values to cross through
the intersection in an optimal manner. (Acceleration is bounded from a negative value
(break pedal) to a positive value (gas pedal).)

3.2.3. Reward Function

The reward function plays a crucial role in shaping the behavior of vehicles as they
pass through the intersection. It is designed and finely tuned to promote correct and
safe actions, while providing an evaluation of their effectiveness based on the current
vehicle’s state.

To calculate the reward function, after executing the agent’s action, we initially ex-
amine whether or not the vehicle reached a terminal state, i.e., either successfully left the
intersection or collided with other vehicles. In this case, the agent receives a positive reward
relative to the current vehicle’s velocity (to promote higher values), or a constant negative
reward, respectively. This is shown in the following equation:

R(s, a) =


v, if successfully leaves intersection
−L, if collides
r(s, a), otherwise

, (7)

where vmax indicates the maximum allowed velocity, and the threshold value, L, is set to
L = 5 (experiments did not show strong sensitivity to its choice).

In case of no terminal states, the reward function, r(s, a), is shaped accordingly, mainly
to the vehicle’s priority indicator (pindex) value. There are three possible cases:

• The vehicle is currently found inside the intersection sector (pindex = −1). Then,
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– if its previous state was of similar (pindex(old) = −1) or highest priority
(pindex(old) = 1), then a positive reward would have been received to encourage
the maintenance of its priority status:

r(s, a) = 1 + v (8)

– if it forcefully finds itself inside the intersection (pindex(old) = 0), a penalty will
be given as a deterrent against “stealing” priority:

r(s, a) = −(1 + v) (9)

• The vehicle currently takes maximum priority (pindex = 1) and prepares to cross
the intersection. Then, it is positively rewarded in a manner proportional to its
normalized velocity:

r(s, a) = v (10)

• The vehicle currently does not have any priority (pindex = 0). The reward depends
on the distance to the vehicle in front ( f veh_dist), and whether it exceeds a safety
threshold value (sa f e_dist):

r(s, a) =

{
v, if f veh_dist > sa f e_dist
− sa f e_dist

min( f veh_dist,sa f e_dist) ∗ v, otherwise
(11)

Overall, the proposed reward function facilitates the development of efficient and safe
policies for the agents. However, its ultimate purpose is to promote priority for the closest
vehicles by automatically determining the appropriate priority rules for the vehicles to
cross the intersection.

3.2.4. Training

The proposed multi-agent methodology establishes an efficient collaborative frame-
work that focuses on two key features:

• The road-agents that enable the simultaneous control of multiple vehicles in the same
road in order to construct optimal intersection traversing driving policies.

• The priority term that promotes coordination among vehicles from different road-
agents, aiming to prevent collisions inside the intersection.

The overall training process is conducted independently for each road-agent within
the dedicated multi-agent system of the intersection patterns and is based on the PPO
algorithm. At the beginning, the road-agents initialize their policy and value networks, and
their memory buffers to store the generated vehicles’ trajectories. According to the traffic
scenario, the vehicles sequentially enter into the road network (intersection pattern) from
the “entrance lanes”, where they are placed at a random position in order to safely traverse
the intersection. We initially assign to them a random velocity, and the corresponding
road-agent controls their acceleration until they cross the intersection. At each time step, the
road-agent takes an action (acceleration) based on its current policy, and then a low-level
controller is activated that handles the transition from the current to the desired velocity. At
the end of this procedure, the neural networks’ parameters are updated using the clipped
objective function of PPO.

A noteworthy aspect to highlight is that the training process employs a dynamic
approach, wherein the traffic scenario is modified at each episode of the training cycle. This
dynamic scenario adaptation plays a pivotal role in enhancing the system’s adaptability
and generalization capabilities. Indeed, by subjecting the multi-agent system to a diverse
range of scenarios during each training episode, we expose it to a rich variety of traffic
situations and challenges. This exposure allows the system to learn robust and flexible
driving strategies, ensuring that it can effectively handle a wide array of unknown scenarios
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that may vary in complexity, uncertainty, and novelty. Algorithm 1 summarizes the overall
training scheme.

Algorithm 1 Multi-agent PPO for traffic control in an intersection pattern.

Initialize policy πθi (a|s) and value Vϕi (s) networks with parameters θi and ϕi for each
road-agent
Initialize empty replay buffer Di for each road-agent
for k = 1 . . . max episodes do

Create random traffic scenario with variable vehicles’ arrival rate
Match incoming vehicles to road-agents i
Generate trajectories using road-agents’ policies πθi (ai|si) and store them to the corre-

sponding buffers Di
Update θi and ϕi using mini batches of trajectories sampled from buffers Di using PPO

end for
Store the learned agents’ policies to a driving profile for this intersection pattern

It must be noted that, after experimentation, we chose PPO for the control of multiple
vehicles at intersections over other actor-critic algorithms like Deep Deterministic Policy
Gradient (DDPG), Lillicrap et al. [51]; Soft Actor-Critic (SAC), Haarnoja et al. [52,53]; and
Twin Delayed Deep Deterministic Policy Gradient (TD3), Fujimoto et al. [54]. We opted for
that algorithm due to its performance and stability in complex and dynamic environments,
where the state and action spaces are continuous. PPO prevents the policy from making
large updates, which can lead to unstable driving behaviors, and furthermore it is easier to
tune compared with the others, which are sensitive to hyperparameters and require careful
balancing. Finally, PPO’s on-policy nature ensures that the policy is consistently updated in
a direction that improves performance according to the most recent data, which is crucial
when expert data are not involved in training.

3.3. Zero-Shot Transfer of Learned MARL Policies for Automated Traffic Control

After training the MARL intersection patterns and constructing their driving policies,
we can then transfer them to road networks in order to achieve their traffic control man-
agement. Our primary objective is to directly apply the acquired knowledge via policies
without the need for any further fine-tuning or adjustments, specific to the configurations
of the network’s intersections. This procedure not only saves time and computational
resources, but also ensures a smooth integration of the trained road-agents into the existing
road network.

A significant step in the knowledge transfer process is addressing the challenge of
aligning arbitrary intersections in the road network with the default intersection patterns
used during the learning phase. This alignment is crucial to ensure seamless integration
and compatibility between existing intersections and the learned patterns. In our case,
the matching process is considerably simplified and focuses on the correct assignment of
roads. Each intersection then fully adopts the learned MARL policy of the corresponding
intersection pattern without any further adaptation, ensuring smooth integration of the
learned patterns into the existing traffic network. It is important to note that other factors,
such as the road length, geometry, and the traffic volume or flow, are not considered, as
they do not influence the learned policy.

Figure 4 illustrates an example of how a road network, consisting of four “4-way
intersections” and two “3-way intersections”, inherits the driving policies of two default
intersection patterns. The procedure followed by each vehicle to complete a route (e.g.,
light-colored thin strip in the road network of Figure 4) within the road network is as
follows. At the beginning of its navigation, the MARL policy associated with the first
visited intersection (a 4-way pattern) is activated to guide the vehicle through smoothly
and securely. Upon exiting the intersection, the vehicle transitions to the outgoing lanes
and continues its journey towards its destination, passing through a sequence of five inter-
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sections. As the vehicle enters the field of view of another intersection, it comes under the
control of a new multi-agent system, which governs its path through this intersection. The
new policy may resemble those applied in previous interactions, with similar characteristics
that the vehicle has encountered (e.g., the first two intersections of the route in Figure 4).

Figure 4. Matching the network’s intersections with two default intersection patterns. The road
network contains four and two copies of the default “4-way” and “3-way” intersection patterns,
respectively. The light-colored thin strip corresponds to a route that a vehicle may follow within
this network.

This handover process, from one multi-agent system to another, ensures a smooth and
continuous traffic flow, allowing vehicles to smoothly navigate through various intersec-
tions until they reach their final destinations. Also, it facilitates scalability, since the learned
policies can be efficiently transferred to any other traffic network, fostering in such a way
their consistency across multiple occasions. Thus, the proposed transfer process optimizes
traffic management while accommodating the dynamic nature of vehicle movement within
a network of interconnected unsignalized intersections. By allowing intersections to employ
policies that align with their specific characteristics and traffic demands, we can enhance
the efficiency and safety of autonomous driving systems in urban environments.

4. Experimental Results

Our experimental study is guided by three primary objectives:

• Efficiently solving individual intersection patterns: the proposed multi-agent rein-
forcement learning platform aims to demonstrate its capability in effectively resolving
congested situations in different intersection patterns.

• Optimizing the learning strategy for intersection patterns’ traffic management: we
seek to develop an efficient learning strategy that enables the developed multi-agent
systems to acquire a diverse set of generalized capabilities. These capabilities should
allow the use of their learned driving policies directly and effectively across various
scenarios and traffic network configurations.

• Ensuring efficient knowledge transfer: one of our key goals is to establish a robust
and scalable knowledge transfer process that enables its application to complex road
network structures and traffic scenarios satisfactorily.

By addressing these questions, we aim to establish the effectiveness and practicality
of our proposed platform in solving intersection-related challenges across various traffic
network scenarios.
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4.1. Simulation Environment

We chose SUMO (Simulation of Urban MObility) [55] as the simulation package to
generate a range of artificial scenarios and carry out our experimental analysis. SUMO
is an open-source package designed for microscopic urban traffic simulation, with the
ability to manage extensive road networks featuring multiple intersections and vehicles.
Traffic scenarios in SUMO can be configured by defining the road network, along with
several parameters that govern traffic conditions, such as the number of intersections, roads,
road length, maximum velocity, arrival rates, and traffic density. In our experiments, we
employed vehicles with common characteristics regarding the maximum velocity and the
vehicle length. However, we introduced variability in the arrival rate to simulate real traffic
conditions with different level of stochasticity.

The Krauss model [56] serves as the default car-following model within SUMO and
was adopted as a baseline in our comparative study. This model introduces a microscopic
traffic flow framework that depicts how vehicles engage with one another while navigating
through a traffic flow. It operates on the principle that drivers adjust their velocity and
maintain a specific distance from the vehicle ahead, taking into account the disparities
between their desired velocity and the velocity of the leading vehicle.

4.2. Experimental Design and Implementation Issues

The proposed approach was applied on two intersection patterns representing the
fundamental structure of 4-way and 3-way intersections (see left side of Figure 4). All
roads connected to these intersections were of the same length (200 m) and comprised a
single lane in each direction. For each intersection pattern, we trained five distinct MARL
policies through independent runs of the proposed multi-agent PPO algorithmic scheme
(Algorithm 1), maintaining the same structure of the intersections across all runs.

The generation of traffic scenarios followed the next setting. All vehicles enter sequen-
tially onto one of the “entrance lanes”, assuming a random arrival rate spanning from 1 to
6 s. Initially they are located at a random position within a range of [0, 20] m from the start
of the lane. We set the maximum allowed velocity as vmax = 20 m/s, while all engaged
vehicles started navigating with a random initial velocity of [10, 20] m/s. The continuous
range of action values (acceleration or deceleration) was [−5, 3] m/s2. Lastly, a time step of
1 s was applied in all cases.

For the learning process of the multi-agent RL system, we followed the next configu-
ration. The actor and critic networks of each road-agent were both deep neural networks
consisting of two (2) hidden layers of size 256× 128 with ReLU neurons. We used the Adam
optimizer for the adjustment of their weights (parameters). In each simulated run, training
consisted of a cycle of 2500 epochs. The duration of each (randomly generated) scenario
within every epoch was approximately 900 time steps (15 min), where the total number
of served vehicles approached 280. Furthermore, the learning rate was set to 10−5, and a
weight decay regularizer was applied with a coefficient of 10−8. Additionally, the discount
factor, γ, was set to 0.99, and the clip factor of PPO was set to 0.1. Finally, a mini batch size
of 250 was utilized, and a standard deviation of 0.3, which was gradually reduced, was
incorporated to control the degree of output variability in the policy’s continuous actions.

The effectiveness of the proposed method was evaluated based on its capacity to
efficiently manage traffic within the intersection, ensuring the safe and optimal navigation
of all incoming vehicles within the scenario. Three evaluation metrics were considered (we
decided not using the traffic throughput as an evaluation criterion since it can be easily
derived by the number of collisions):

• Average velocity (V) (in m/s) of all vehicles across their routes;
• Average duration (T) (in s) of completion of the vehicle routes;
• Number of collisions during the execution of the scenario.

Finally, all reported results are the mean values of the above quantities.
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4.3. Results
4.3.1. Performance of Multi-Agent RL for Traffic Control on Intersection Patterns

At first, we examined the performance of the proposed multi-agent RL framework
for the traffic control management of a single intersection. Figure 5 illustrates the learning
curves received during the training process for two intersection patterns in terms of three (3)
evaluation criteria. As it can be observed, initially the average velocity constantly decreases,
reaching a lower value in the range of [9, 10] m/s. This corresponds to an almost safe
policy (approximately zero collisions). However, as the training progresses, the method
stabilizes to higher values in the range of [14, 15] m/s for the 3-way intersection pattern
and [16, 17] m/s for the 4-way intersection pattern. This discovered policy covers both
safeness and efficiency in traffic management. Similar observations concern the metric of
average duration (see Figure 5).

(a) 3-way intersection pattern (b) 4-way intersection pattern

Figure 5. Learning curves of the 3-way and 4-way intersection patterns in terms of the average
velocity, duration, and collisions per epoch, created by using a rolling window of fifty (50) episodes.

The reason why we do not observe solid convergence in the learning curves is found
in the learning process. Specifically, as it was mentioned previously, in each training epoch
the model is fed with a new randomly generated scenario of the vehicle traffic flow, through
a stochastic generator. As it was expected, this strategy slows down the learning process
and convergence, but on the other hand it significantly expands the space of situations and
enriches the model with great generalization capabilities.

Additional experiments were conducted by evaluating the performance and the
scalability of the proposed method to larger- scale scenarios. In particular, we created
ten (10) independent traffic scenarios for both intersection patterns of 30 min (1800 s) du-
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ration that consisted of approximately 500 vehicles. We used the same arrival rate of the
trainable scenarios. In Table 1, we present the evaluation results (average velocity and
duration) of all learned driving policies in these scenarios (total of 5 × 10 = 50 independent
simulation runs for every one of two available intersection patterns). It is interesting to
observe that the performance of the learned policies in these evaluation cases did not
significantly decline from their corresponding performance during training, despite the
variation in the duration of the scenarios that caused more intense congestion conditions.

Table 1. Mean performance of the five learned 3-way and 4-way intersection patterns’ driving profiles
to 10 test simulated half-hour scenarios. The best performance found is also shown.

Environment Average Velocity (m/s) Average Duration (s)

3-way intersection 13.0 ± 0.5 33.1 ± 1.6
(best) (13.6) (32.0)

4-way intersection 15.4 ± 0.3 27.1 ± 0.8
(best) (15.9) (26.3)

Furthermore, in Figure 6, we depict the unfolding stages of a (representative) execution
sequence within a test scenario. Specifically, we present the dynamic progression of both the
average velocity within the subset of vehicles currently under the multi-agent’s control, and
the real-time count of vehicles effectively served, each measured per second. As expected,
the velocity of the vehicles decreases as the scenario unfolds, and multiple vehicles gather
around the intersection to traverse it. Inevitably, the number of served vehicles is increasing.
Comparing the 3-way to the 4-way intersection (with identical arrival rates and road length),
the former exhibits a higher susceptibility to congestion. This is normal due to the intricate
nature of the 3-way setup, which tends to amplify congestion-related challenges compared
with the relatively more balanced traffic distribution in a 4-way configuration.

3-way intersection

4-way intersection

Figure 6. Dynamic evolution of both the average velocity and the frequency of vehicles being served
per second, obtained from the implementation of learned multi-agent policies on intersection patterns
within a designated test scenario. Traffic state colored zones are also shown.
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The same observations can be obtained by adopting the speed performance index (SPI)
used to evaluate urban road traffic conditions [57]. This measure quantifies the congestion
level (ranging from 0 to 100) and can be defined by the ratio between vehicles’ velocity (v)
and the maximum permissible velocity (vmax), SPI = ( v

vmax
)× 100. According to this index,

the traffic state level can be classified into four zones with three threshold values (25, 50, and
75): heavy ([0, 25]), mild ([25, 50]), smooth ([50, 75]), and very smooth ([75, 100]) congestion
levels. Since in our study we have considered vmax = 20 m/s, then the congestion zones
are divided into value intervals of length 5. The depicted velocity diagrams in Figure 6
show this division into (colored) zones in both intersections. In summary, the congestion
level never reached a heavy degree throughout the execution of the scenarios. The most
common traffic state in the 4-way intersection was the smooth, while halfway through the
scenario of the 3-way intersection the status was found to be mild congestion, due to its
structure and its inability to offer a balanced distribution of traffic.

4.3.2. Performance of Zero-Shot Transfer Knowledge to Large Road Networks

Additional experiments were performed in order to measure the proposed knowl-
edge transfer process and study its capability to successfully reuse the learned policies
of intersection patterns in large-scale (unknown) traffic networks. For this reason, we
constructed multiple simulated environments where we considered only two constraints:
(a) all intersections are either 3-way or 4-way, and (b) all roads have variable length falling
within a specified range, [200, 400] m. No other structural constraints were assumed during
the generation process.

Figure 7 illustrates four such artificial road networks that were created, while in
Table 2 we present some of their particular characteristics, such as the number of roads
and the number of 3-way and 4-way intersections. It is important to emphasize that the
learned driving policies of both intersection patterns were directly applied to all available
intersections of any road network.

(a) road network RN1 (b) road network RN2

(c) road network RN3 (d) road network RN4

Figure 7. Four artificial road networks of increasing complexity that were generated for evaluating
the knowledge transfer process. Every intersection is a noisy copy of either the default 3-way or
4-way intersection pattern.
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Table 2. Specifications of the four artificial road networks used in our experimental study.

Road Network # Roads
# Intersections

3-Way 4-Way

RN1 32 2 4

RN2 54 9 4

RN3 230 35 21

RN4 334 43 35

Subsequently, we created several noisy traffic scenarios on these networks, each
lasting approximately two (2) hours (7200 timesteps). These scenarios exhibited varying
levels of randomness in the arrival rate of vehicles. While the uniform rate of [1, 6] s
remained consistent with the scenarios used during training, we additionally considered
three other arrival rates with lower upper limits (5, 4, and 3), introducing in such a way
further diversity to the continuous rate of vehicles’ arrival and thus scenarios of increased
complexity. Overall we considered the following scenario cases (of 2 h traffic control):

• SC6: uniform arrival rate on interval [1, 6]—total of around 2100 vehicles (about
18 vehicles per minute);

• SC5: uniform arrival rate on interval [1, 5]—total of around 2400 vehicles (about
20 vehicles per minute);

• SC4: uniform arrival rate on interval [1, 4]—total of around 2900 vehicles (about
24 vehicles per minute);

• SC3: uniform arrival rate on interval [1, 3]—total of around 3600 vehicles (about
30 vehicles per minute).

This experimental setup offers a dual advantage. Firstly, it enables us to measure the
effectiveness of the learned policies in efficiently managing larger networks and handling
massive scenarios with multiple vehicles, in contrast to the trained ones. Secondly, it
allows us to assess their ability to generalize satisfactory and remain robust in complex
environments, which may involve unseen, or partially seen, cases.

For the evaluation study, we relied on the following procedure. For each one of the
four (4) types of scenario (SCk, k = {6, 5, 4, 3}), we generated ten (10) different traffic
scenarios on each road network. We used five (5) different pairs of the trained 3-way
and 4-way intersection policies randomly selected from those generated during template
training, called P1, P2, P3, P4, and P5, correspondingly (each one of the 5 + 5 = 10 available
policies was selected only once).

In addition, we examined the performance of an hlensemble MARL policy, denoted as
P, which was derived from the joint application of the five (5) available policies. Specif-
ically, the ensemble strategy was located on the action selection mechanism, where the
continuous-valued action of the ensemble multi-agent was calculated as the average of
all five (5) available trained policies for each intersection pattern. Thus, we performed
240 (6 × 10 × 4) simulation runs on every road network, for the six (6) policy combinations,
the ten (10) noisy scenarios, and the four (4) scenario cases. Finally, a comparison was also
conducted using the Krauss default model of SUMO.

Tables 3–6 show the obtained comparative results in terms of two (2) evaluation
criteria: mean velocity, V (m/s), and mean duration, T (s), of all vehicles in the four (4) road
networks, RN1–RN4, respectively. It is important to note that, in all cases, the proposed
method manages to successfully resolve all tasks without any collisions. Again, it is evident
that this performance aligns with the results obtained during the training of MARL policies,
even in the cases SC4 and SC3, which represent scenarios with heavy traffic conditions.
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Table 3. Comparative results of the five independent learned policies, the average policy, and the
Krauss model in the case of traffic network RN1.

Policy
Scenario SC6 Scenario SC5 Scenario SC4 Scenario SC3

V (m/s) T (s) V (m/s) T (s) V (m/s) T (s) V (m/s) T (s)

P1 17.0 49.1 16.5 50.7 15.4 54.5 11.9 70.4
P2 18.0 46.1 17.5 47.6 16.5 51.0 12.6 67.1
P3 17.4 47.9 16.9 49.5 15.8 53.3 12.0 70.2
P4 17.9 46.5 17.4 47.8 16.4 51.2 12.5 67.9
P5 17.9 46.5 17.4 47.9 16.4 51.2 12.5 67.7

P 18.0 46.3 17.5 47.7 16.4 51.2 12.5 68.1

Krauss 13.8 58.7 13.7 59.1 13.6 59.8 13.4 60.4
(collisions) (17) (29) (34) (51)

Table 4. Comparative results of the five independent learned policies, the average policy, and the
Krauss model in the case of traffic network RN2.

Policy
Scenario SC6 Scenario SC5 Scenario SC4 Scenario SC3

V (m/s) T (s) V (m/s) T (s) V (m/s) T (s) V (m/s) T (s)

P1 17.8 78.2 17.6 79.3 17.1 81.4 15.5 88.9
P2 18.5 75.1 18.3 76.2 17.8 78.1 16.5 84.9
P3 18.1 77.1 17.8 78.3 17.0 80.9 15.7 88.1
P4 18.2 76.6 17.9 77.7 17.5 79.6 16.3 86.1
P5 18.1 77.0 17.8 78.1 17.4 79.9 16.2 86.4

P 18.6 74.9 18.3 75.9 17.9 77.8 16.5 84.7

Krauss 14.3 96.2 14.2 96.7 14.1 97.1 14.0 98.0
(collisions) (17) (17) (28) (40)

In all cases, we took the best results using the ensemble policy, P, showing a remarkable
stability and tolerance in environments with variable noise levels. It is interesting to note
that there were cases where its performance was slightly improved in comparison with
the optimal combined policy (Pi) found, revealing its inherent qualities and its capacity to
provide traffic solutions that are remarkably robust and adaptable.

Table 5. Comparative results of the five independent learned policies, the average policy, and the
Krauss model in the case of traffic network RN3.

Policy
Scenario SC6 Scenario SC5 Scenario SC4 Scenario SC3

V (m/s) T (s) V (m/s) T (s) V (m/s) T (s) V (m/s) T (s)

P1 18.5 169.3 18.4 170.0 18.3 171.4 18.1 172.9
P2 19.4 161.3 19.3 161.9 19.2 163.1 19.1 164.3
P3 18.4 170.0 18.3 170.7 18.1 172.0 17.9 174.0
P4 18.9 165.2 18.9 165.8 18.8 167.0 18.6 168.2
P5 18.8 166.7 18.7 167.2 18.6 168.5 18.5 169.6

P 19.5 160.7 19.4 161.3 19.3 162.5 19.2 163.7
Krauss 14.6 213.8 14.6 214.0 14.5 215.5 14.4 215.5

(collisions) (9) (11) (14) (20)
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Table 6. Comparative results of the five independent learned policies, the average policy, and the
Krauss model in the case of traffic network RN4.

Policy
Scenario SC6 Scenario SC5 Scenario SC4 Scenario SC3

V (m/s) T (s) V (m/s) T (s) V (m/s) T (s) V (m/s) T (s)

P1 18.5 183.5 18.4 183.6 18.3 184.9 18.2 185.4
P2 19.4 174.6 19.4 174.5 19.3 175.7 19.2 176.0
P3 18.7 180.9 18.7 181.0 18.6 182.4 18.4 183.1
P4 19.0 178.5 18.9 178.3 18.9 179.5 18.8 179.8
P5 18.8 180.1 18.8 179.9 18.7 181.2 18.6 181.5

P 19.5 174.0 19.4 173.9 19.3 175.1 19.2 175.4

Krauss 14.6 231.2 14.6 231.0 14.5 231.9 14.5 231.3
(collisions) (11) (10) (17) (23)

Based on the illustrated driving profiles in the learning diagrams, it is apparent that
the average duration for traversing individual intersections, whether they are 3-way or
4-way, stands at roughly 16 s. Upon implementation within the experimental road networks
and integration with their corresponding intersections, the observed outcomes, shown in
Tables 3–6, reveal not only a high degree of resemblance to their learned behavior, but
also an ability to extrapolate and accommodate diverse traffic scenarios and instances of
congestion. It can be easily observed, for example, that the average duration for passing
through any intersection in the network RN1 (Table 3) ranges from around 12 (case SC6)
to 20 s (case SC3), depending on the level of the vehicles’ arrival rate. This proves that
the multi-agent policies are designed in such a way that they exhibit both resilience and
adaptability, thereby guaranteeing an optimal level of control on traffic management
across a spectrum of scenarios and varying intersection layouts within road networks.
The proposed knowledge transfer process enhances the scalability and the consistency of
these policies.

On the other hand, the Krauss method seemed to reveal weak performance in all
cases, since it consistently struggled to navigate scenarios without encountering collisions.
In addition, its policy resulted in inducing a traffic state of mild congestion in all road
networks and scenarios that persisted for a notably extended duration, showing its limited
applicability in achieving smooth traffic flow across diverse scenarios.

The simulation results for several test scenarios can be found in the Supplementary
Materials with download links.

5. Conclusions and Future Work

In this study, we proposed an active method for traffic management in large-scale
urban networks with unsignalized intersections. Introducing the notion of intersection pat-
terns and road-agents, we established efficient multi-agent reinforcement learning schemes
for traffic control at intersections, and learning strategies that construct economical, robust,
and scalable modeling structures. The generated multi-agent policies are then reused in
large traffic networks, which are compositions of intersection patterns, thereby offering
compact and secure traffic regulation solutions. Several experiments were conducted with
increased levels of stochasticity that enhanced the robustness of the traffic profiles and
measured the performance of our zero-shot knowledge transfer approach on unknown
larger networks and traffic scenarios.

It is essential to acknowledge the limitations inherent in our study. While our exper-
iments were limited to single-lane road networks, the implications of our findings can
encompass multi-lane road setups. Additionally, although our primary emphasis focused
on specific interconnecting intersection patterns (3-way and 4-way junctions), it is worth
noting the potential for broader applicability to encompass a diverse range of network
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configurations, spanning from roundabouts to staggered intersections and other designs.
Moreover, investigating techniques for transferring the learned policies across different
urban environments or cities and under different traffic conditions constitutes an interesting
issue for research study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/robotics13070109/s1.
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