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Abstract: People use their hands for intricate tasks like playing musical instruments, employing
myriad touch sensations to inform motor control. In contrast, current prosthetic hands lack com-
prehensive haptic feedback and exhibit rudimentary multitasking functionality. Limited research
has explored the potential of upper limb amputees to feel, perceive, and respond to multiple chan-
nels of simultaneously activated haptic feedback to concurrently control the individual fingers of
dexterous prosthetic hands. This study introduces a novel control architecture for three amputees
and nine additional subjects to concurrently control individual fingers of an artificial hand using
two channels of context-specific haptic feedback. Artificial neural networks (ANNs) recognize sub-
jects’ electromyogram (EMG) patterns governing the artificial hand controller. ANNs also classify
the directions objects slip across tactile sensors on the robotic fingertips, which are encoded via
the vibration frequency of wearable vibrotactile actuators. Subjects implement control strategies
with each finger simultaneously to prevent or permit slip as desired, achieving a 94.49% ± 8.79%
overall success rate. Although no statistically significant difference exists between amputees’ and
non-amputees’ success rates, amputees require more time to respond to simultaneous haptic feedback
signals, suggesting a higher cognitive load. Nevertheless, amputees can accurately interpret multiple
channels of nuanced haptic feedback to concurrently control individual robotic fingers, addressing
the challenge of multitasking with dexterous prosthetic hands.

Keywords: prosthetic hand; robotic hand; haptic feedback; amputee; dexterous hand; electromyogram

1. Introduction

The capacity for dexterous control of a prosthetic hand and the sensation of touch
are inherently intertwined [1]. Unfortunately, the potential for amputees to engage in
sophisticated activities like playing sports or musical instruments remains elusive because
current clinical practice with prosthetic hands affords limited control capabilities, with
minimal or no awareness of corresponding fingertip touch sensations. The mastery of
dexterous tasks requires both the capacity for simultaneous and individual finger control
along with refined touch sensations, such as awareness of the direction that fingers are
sliding [2] along the strings of a violin [3], for example (Figure 1). Although this level of
control mastery remains largely in the future for amputees, it provides an ambitious goal.

With their natural hands, people can rapidly determine which direction a force is
applied to their fingertips by the relative timing of ensembles of action potentials from
populations of mechanoreceptors [4]. This information, along with other details like the
perceived friction of the grasped object, are used to prevent grasped object slip [5] by
controlling the applied grip force in nuanced ways that can vary based on the direction
that disturbance forces are applied [6]. When slip does occur, neurons in the primary
somatosensory cortex respond with firing rates that are related to the speed of slip or the
texture of the object, and grip force compensation to prevent slip can occur reflexively or
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voluntarily [3]. Recreating this level of functionality with a dexterous prosthetic hand poses
a daunting challenge because it necessitates properly interpreting the intention of the user,
advanced tactile sensors on the prosthesis, and a sophisticated method for haptic feedback
to the user [7].
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Figure 1. Complex activities such as playing a musical instrument present a great challenge to upper
limb amputees. Tasks such as these require accurate slip control of multiple fingertips simultaneously
across different surfaces. In this paper, we explore the potential for three amputees and nine non-
amputees to simultaneously control the state of sliding contact at two fingertips simultaneously by
integrating two channels of variable frequency vibrotactile haptic feedback into their motor control
strategies. The rendering of the man in this image was licensed and modified for public display.

There have been numerous efforts to explore noninvasive methods to increase the
human-prosthesis bandwidth [8], for example, EMG pattern recognition to control a pros-
thetic wrist [9] while simultaneously operating a prosthetic hand. These efforts detailed
multi-layer perceptron [10], linear discriminant analysis [11–13], convolutional neural net-
works [14], and neuromusculoskeletal models [15] to detect hand motions while wrist
pronation/supination or flexion/extension motions were simultaneously performed.

There have also been prior efforts to investigate the ability for the simultaneous
control of multiple grips or fingers of prosthetic hands independently via noninvasive
methods [16]. One major obstacle of this goal is the substantial crosstalk that occurs
between muscle recording locations on the forearm [17]. However, there has been progress
to decode individual finger movements with different signal processing and machine-
learning algorithms. For example, one paper has classified twelve different imagined
individual finger movements from six amputees and also combined finger movements from
ten limb-intact subjects; high classification accuracies for five distinct finger movements
were obtained using six EMG electrode pairs [18]. For a review on EMG pattern-recognition
techniques for prosthetic hand control, see [19].
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Regarding the noninvasive feedback of haptic sensations, there have been myriad ap-
proaches explored in the literature, including mechanotactile [20–22], vibrotactile [20,23,24],
and electrotactile feedback methods [25–27]; see [1,28,29] for reviews. Particularly relevant
to this paper, vibrotactile haptic feedback has been explored due to the light weight and
low power requirements of these actuators, which make them conducive to use in wearable
prosthetic limbs [30]. Vibrotactile feedback can be readily integrated into artificial hand
control strategies [31] and can be used to convey haptic feedback for grasped object slip
sensations [28]. Furthermore, vibrotactile feedback has been shown to surpass both visual
and proportional force haptic feedback in grasped object slip prevention experiments with
an artificial hand [32]. The sense of object slippage is particularly important for amputees
because they are often unaware of the applied grip force, leading to inadvertently dropping
the grasped object [33].

While there have been numerous efforts to prevent the slip of grasped objects [34],
one commonly overlooked aspect of control is that it is often desirable to permit slip
to occur, such as in haptic exploration tasks [35] to manually gather information about
the environment [36] with tactile sensor arrays [37], similar to how people use myriad
mechanoreceptors in the human fingertips [38]. Fine details of the situation at hand can
dictate whether the person would desire to prevent or permit slip [3], such as when handing
an object to another person—sliding contact is likely to occur during the handoff [2].

Grasp control challenges compound when multitasking or controlling multiple func-
tions simultaneously. Multichannel haptic feedback arrays show promise to help overcome
this difficulty by conveying a broader picture of the hand to the amputee [39] from multiple
fingertips simultaneously [40]. However, there is scant research investigating how well
amputees can integrate myriad channels of haptic feedback into their dexterous artificial
hand control strategies. The hypothesis of this paper is that amputees can integrate mul-
tiple channels of simultaneously activated haptic feedback into their concurrent control
strategies for individual fingers of an artificial hand. To test this hypothesis, we developed
a novel experimental paradigm where sliding contact occurred in two different directions
simultaneously on two fingertips of an artificial hand, somewhat like how people slide their
natural fingers in different directions simultaneously along the strings of a violin, on touch
screen devices and mouse pads, or in other tasks of daily life. The sliding sensations of
touch from the two robotic fingertips were encoded by the frequency of stimulation based
upon the direction of slip at each fingertip and mapped to corresponding wearable vibro-
tactile actuators. Three amputees and nine additional subjects were fitted with an array
of EMG electrodes, and muscle activation pattern recognition was implemented with an
ANN to enable individual and concurrent control of two fingers of the hand. Subjects were
trained to recognize the state of sliding contact at both fingertips by the context-dependent
simultaneously activated haptic feedback and to decide whether to prevent or permit the
slip of two different objects at the same time.

While there is extant research on EMG pattern recognition for the simultaneous multi-
DOF control of artificial hands and methods for conveying multiple channels of haptic
feedback to amputees, there is a dearth of research investigating amputees’ capabilities
for multichannel sensorimotor integration. We use the term sensorimotor integration
to describe the ability of people to combine sensory input and motor output signals to
internally estimate the state of the artificial hand interacting with the world [41]. The novel
contribution of this paper is a demonstration of amputees’ capabilities for multichannel
sensorimotor integration to concurrently control the individual fingers of a dexterous
artificial hand based on nuanced haptic feedback from multiple channels of simultaneously
activated vibrotactile stimulators.

2. Materials and Methods
2.1. Human Subjects

Twelve human subjects participated in these experiments (six females). Three male
subjects had an upper limb amputation or congenital deficiency. The first subject (S1) had



Robotics 2024, 13, 97 4 of 20

a bilateral amputation: transhumeral on the right side, transradial on the left side. He
frequently uses several myoelectric and body-powered prosthetic devices with his left
arm, including the Fillauer Motion Control ETD Hook with an MC wrist rotator (Fillauer,
Boulder, CO, USA). The second subject (S2) has a transverse congenital limb deficiency of
the left arm slightly beyond the elbow. He uses a body-powered TRS Grip Prehensor (Grip
3 BK) daily. He has used myoelectric prostheses several times in the past but has never
owned one because he prefers body-powered prostheses for several reasons, including
lower operational noise and cost. The third subject (S3) has a complex partial amputation
of the left hand that was caused by an explosion. He does not use a prosthesis due to the
difficulty of fitting a socket to his residual limb and has never used a myoelectric prosthesis.
The other nine subjects (S4–S12) had no amputation or congenital limb deficiencies. All
participants gave informed written consent under a protocol approved by Florida Atlantic
University’s IRB, which is in accordance with the declaration of Helsinki.

2.2. Robotic System Hardware

The robotic system includes an E3M Dexterous Shadow Hand (Shadow Robot Com-
pany, London, UK), fitted with BioTac SP tactile sensor arrays (SynTouch, CA, USA) on
both the I and L fingertips (Figure 2A–E) [42]. The Shadow Hand has 20 tendon-driven
DOFs; however, for the purpose of exploring the capacity for simultaneous slip control
in this paper, only the metacarpophalangeal joints of the I and L fingers were under the
control of the users, effectively limiting the DOFs to two. The BioTac SP fingertip tactile
arrays are deformable fluid-filled sensors that have 24 internal electrodes with impedances
that vary as external forces displace the fluid within the cavity (Figure 2A). There is also
an internal piezoresistive pressure transducer (24PC15SMT, Honeywell) to measure the
steady-state pressure (PDC) applied to the fingertip. The transducer signal is amplified with
a gain of ten and then low-pass filtered to yield a sensitivity of 21.8 mV/kPa. The dynamic
pressure (PAC) is gleaned from PDC using a band pass filter (10 Hz to 1040 Hz) and gain of
99.1 to produce a sensitivity of 2.16 mV/kPa [37].

Two independently controlled stepper motors (Autonics A2K-M243, TEquipment,
Long Branch, NJ, USA) were mounted vertically on an aluminum plate to induce slip, either
up or down on the BioTacs of the I and L fingers (Figure 2B–E). The stepper motors were
rigidly connected to flat rectangular surfaces that were 3D printed with PLA material using
an Ultimaker S5 (Ultimaker, Zaltbommel, The Netherlands). Sliding speeds were constant at
0.5 mm/s. Each slip platform was equipped with essential components, including a stepper
motor, stepper motor driver, lead screw, two linear shaft optical axes accompanied by rod
rail supports, a copper nut, four bearing pillow blocks, and a flexible motor shaft coupler.
The sequencing of trials was embedded into the stepper motors’ codebase, dictating their
movement patterns.

The two vibrotactile stimulators (PN:LS00046, OSEEP Electronics LTD) for haptic
feedback from the I and L fingertips were integrated into a stretchable haptic armband
made from Dragon Skin-30 (Smooth-On, Inc., Macungie, PA, USA) to deliver information
to the subjects about the direction of sliding contact at the fingertips via the frequency of
their actuation.

2.3. ROS Network Configuration Overview

The system was controlled through a robot operating system (ROS) network comprised
of five nodes (Figure 3). The first three ROS nodes were implemented with the Teensy
3.6 (PJRC.COM, LLC. Sherwood, OR, USA). ROS node 1 was used to control the stepper
motors to initiate the slip with respect to the I and L fingers. ROS node 2 was used to
control the actuation frequency of the haptic feedback from the vibrotactile stimulators [43]
to correspond to either slip in the up or down directions at the I and L fingertips [2]. ROS
node 3 was used to sample six EMG signals from the forearms of the human subjects for
efferent control of the Shadow Hand to prevent or permit slip with each finger individually
or simultaneously. ROS node 4 was deployed in MATLAB/Simulink to implement ANNs
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to classify the efferent EMG signals and afferent BioTac SP fingertip slip sensations. ROS
node 5 controlled the Shadow Hand.
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in contact with the sliding surfaces. Both the sliding surfaces are slipping down. (C) The index (I)
finger surface is slipping down while the little (L) finger surface is slipping up. (D) Both sliding
surfaces are slipping up. (E) The I finger surface is slipping up while the L finger surface is slipping
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the different slipping scenarios.

2.4. Classifying Context-Dependent Slip Sensations from Two Fingertips Simultaneously

BioTac sensors have been used in conjunction with ANNs to detect the incipient slip
of grasped objects [44]. In this paper, we used two ANNs to classify the direction of slip
on two fingertips simultaneously. To that end, data were collected from the BioTac SP
sensors attached to the I and L fingers (Figure 2F,G). After establishing contact between
the fingertips and the sliding surfaces, ten slip trials were induced in both the up and
down directions. The two ANN classifiers for the two fingertips were designed with one
input layer, one hidden layer, and one output layer. There were 24 neurons on the input
layer corresponding to the 24 taxels in each BioTac SP (Figure 2A) and two neurons in the
output layer for the slip-up or slip-down classes. There were 100 neurons in the hidden
layer. Sigmoid and SoftMax activation functions were used for the hidden layer and the
output layer, respectively. Cross-entropy and confusion matrices were used to evaluate
the performance of the ANNs. The networks were trained with scaled conjugate gradient
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backpropagation using the nprtool in MATLAB. To train and test the ANNs, the collected
data were divided into 3 categories: training, testing, and validation. The ANNs were
trained using 70% of the data and the network was adjusted based on the error generated
from this dataset. Network generalization was measured using the 15% validation dataset,
and the training was halted when the generalization error stopped improving. The 15%
testing dataset did not affect the network error and provided a new performance measure
that was independent from the training and validation performance measure. See our
prior work for more details on the process to classify the direction of sliding contact with
ANNs [2].
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2.5. Haptic Encoding of Task-Relevant Slip Sensations from Two Fingertips Simultaneously

In the four-channel theory of touch sensation, there are four mechanoreceptors that are
divided into slowly and rapidly adapting types [45]. Slowly adapting mechanoreceptors
include the Merkel disc and Ruffini endings and are thought to convey myriad types of
information, like static pressure and skin stretch [38]. On the other hand, the rapidly adapt-
ing Meissner and Pacinian corpuscles are more responsive to the high-frequency vibrations
that can occur during sliding contact. There are some minor discrepancies in the literature
regarding the frequency ranges over which these rapidly adapting mechanoreceptors are
responsive; see [38,45] for more details.

To encode a directional sense of the sliding motion at the two robotic fingertips, each
vibrotactile stimulator was toggled on and off in different ways to convey upward or
downward slip. For upward slip, the vibrotactile actuator drive signal was a (Slow) 1 Hz
square wave with a 50% duty cycle. For downward slip, the vibrotactile actuator drive
signal was a (Fast) 200 Hz square wave with a 50% duty cycle. To objectively quantify
the haptic feedback encoding methods from the vibrotactile stimulators, the BioTac SP
sensor was utilized as a measurement tool. To that end, the vibrotactile stimulator was
connected firmly to the BioTac SP sensor on the I fingertip (Figure 4A). The Slow and Fast
vibrotactile activation signals for this test were created in Simulink using the ROS toolbox.
The steady-state pressure (PDC) and dynamic pressure signals (PAC) from the BioTac were
recorded for both the Slow (Figure 4B,D) and Fast (Figure 4F,H) vibration modes.
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Figure 4. Characterization of the two vibration modes of the vibrotactile stimulators for haptic
feedback to the human subjects from the index (I) and little (L) fingers. (A) The BioTac SP on the I
finger of the Shadow Hand was used in this experiment to measure the Slow and Fast vibration modes
of the vibrotactile stimulators that was conveyed to the human subjects. (B) Steady–state pressure
(PDC) and (C) spectrogram of the steady-state pressure (PDC) measured by the BioTac corresponding
to the Slow vibration mode. (D) The dynamic pressure signal (PAC) and the (E) corresponding
spectrogram from the Slow vibration mode. (F) Steady–state pressure (PDC) and (G) spectrogram
corresponding to the Fast vibration mode. (H) The dynamic pressure signal (PAC) and (I) the
corresponding spectrogram from the Fast vibration mode.

The time–frequency spectrogram representation for the data was calculated using a
512-point FFT with 0.08 s frame length and a Hanning window with 90% overlap. The
time–frequency power distribution data show the frequency components of PDC and PAC
for the Slow (slip up; Figure 4C,E) and Fast (slip down; Figure 4G,I) vibrotactile actuation
modes. Note that the powers of these signals are broadly distributed through 100 Hz,
which falls well within published accounts of human perceptual ranges [38,45,46]. These
produced very different activation signatures, which enabled people to clearly distinguish
between the different sensations corresponding to upward and downward sliding contact,
which will be described more in Section 2.6.3.

2.6. Overview of Situationally Aware Multichannel Sensorimotor Integration Experiments for
Simultaneous Slip Control

Subjects were trained over the course of approximately two hours to integrate two
channels of vibrotactile haptic feedback into their simultaneous control strategies for the I
and L fingers. When an object slides along a fingertip, this can be desirable or undesirable
depending upon the context. For example, an object sliding upward could be caused when
handing an item to another person whereas an object sliding downward could be due to
inadvertently dropping an object onto the floor. In the former case, permitting slip would be
desirable to hand an object to the other person. In the latter situation, it would be desirable
to prevent slip by increasing the grip force. We simulated these scenarios and encoded the
vibrotactile actuation frequency from the I and L fingertips to be either Slow (Figure 4B–E)
or Fast (Figure 4F–I) to correspond to the slip up or slip down cases, respectively. In the slip
up case, subjects were trained to permit slip while in the slip down situation subjects were
trained to increase the grip force of the corresponding finger. This necessitated training the
subjects to simultaneously interpret the two channels of context-dependent haptic feedback
to make the corresponding control actions with both fingers concurrently. To achieve this
feat of multichannel sensorimotor integration, an ANN for efferent control was developed
for EMG pattern recognition with each subject. Next, subjects were trained to interpret the
haptic feedback sensations from each fingertip, first individually, and then simultaneously.
Finally, the multichannel sensorimotor integration experiments with the entire robotic
system were performed.
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2.6.1. Training for Simultaneous EMG Slip Control

Six EMG signals were recorded from the forearms of each human subject (four elec-
trodes are 13E200 AC, Otto Bock, and two electrodes are from Myolab II (Motion Control,
Inc., Salt Lake City, UT, USA)). These electrodes had internal electronics to amplify, filter,
and rectify the raw EMG. The six electrodes were arranged circumferentially around the
forearm roughly 7 cm below the elbow, with an approximately equal distance between
each electrode (Figure 5C). The EMG recording sites for subject S3 were underneath the
purple armband shown in Figure 5C. The locations of EMG recording sites for subject S1
were underneath the black armband on his residual limb, shown in Figure 6. Care was
taken to place three EMG electrodes atop muscles in the anterior compartment and three
electrodes over muscles in the posterior compartment of the forearm to target both the
extensor and flexor muscles of the little and index fingers. The subjects were asked to
flex muscles in their forearms to ensure that all signals responded well and to fine-tune
electrode locations and gains. At this stage, we also verified that EMG signal amplitudes
responded differently to the real and imagined I/L finger movements of the non-amputee
and amputee subjects, respectively.
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Figure 5. Training subjects for efferent control. (A) The amplified, filtered, and rectified EMG signals
from six electrodes were normalized. (B) ANN classifier outputs for the Sim, I, L, and NM classes
corresponding to the six EMG signals. (C) Subject S3 performing the EMG classifier training. The red
and blue circles indicate where the vibrotactile stimulators for the index (I) and little (L) fingers were
respectively placed for subject S3. The subject (S3) gave permission for the use of his image.

Next, ANN classifiers were trained for each subject, with six EMG inputs and four
output classes. The outputs from the ANN classifier were No Motion (NM), Index (I) finger
flex, Little (L) finger flex, and Simultaneous (Sim) finger flexion of both the index and
little fingers (Figure 5A,B). For each class, 10 trials were collected in which the human
subjects were asked to follow a 0.1 Hz square wave with 50% duty cycle generated in
Simulink that was displayed on the monitor in front of them (Figure 5C). The amplified,
filtered, and rectified EMG time domain data were used to train the subject-specific ANN
classifiers for EMG pattern recognition. EMG data were separated into four different
matrices corresponding to each class and were labeled to train the ANN classifier offline
using the same methods previously described for the tactile slip sensation classification
problem described in Section 2.4; however, in this case, there were six neurons on the input
layer corresponding to the six EMG signals and four neurons in the output layer for the
four classes. After the ANN was trained for each subject, the high functionality of the
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classifier was quickly verified in real time in Simulink by asking every subject to produce
each EMG class several times before the robotic experiments took place (Figure 5C).
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Figure 6. Control system for multichannel sensorimotor integration. Six EMG signals were classified
by subject-specific ANNs to specify which finger(s) the subjects wanted to control. The EMG signals
were also used to specify the desired forces for the index (I) and little (L) fingers that were realized
by hybrid force–velocity controllers. ANNs were used with the BioTac SPs on the I and L fingers to
classify the 24 taxels at each fingertip into sensations of sliding contact, either up or down. These
sensations of touch from each fingertip were encoded via the frequency of vibration and fed back
to the subjects with the haptic armband. The red and blue circles indicate where the vibrotactile
stimulators for the index (I) and little (L) fingers were respectively placed for subject S1. EMG
electrodes were located under the black armband. The subject (S1) gave permission for the use of
his image.

2.6.2. EMG Control Algorithms for Simultaneous Slip Prevention

EMG signal processing to control slip simultaneously or individually with two fingers
independently or concurrently was accomplished first by normalizing the EMG signals from
each electrode. Next, the desired force (FD,∅) for the index (I) or little (L) finger (∅ ϵ I, L)
was specified as:

FD,∅ = β∅σ∅E∅. (1)

β∅ was the desired force gain for finger ∅. The σ∅ term was specified by a look-up table
that was based on the EMG class (Table 1) to determine which finger(s) the subject desired
to control. E∅ was the mean of the normalized voltages from the six EMG electrodes.

Table 1. Correlation between EMG class from the efferent ANN and the desired force (FD,∅) for each
finger ∅ ϵ I, L.

EMG Class Index Finger (σI) Little Finger (σL)

NM 0 0

Sim 1 1

L 0 1

I 1 0

The two desired forces (FD,∅) were inputs to two hybrid force–velocity controllers [47]
that were implemented in MATLAB/Simulink to control the I and L fingers (Figure 6). The
two different controllers for each finger had an outer force feedback loop and an inner
velocity feedback control loop. The two hybrid force–velocity controllers for the I and L
fingers were designed as described in our prior work [40]. Summarizing, the outer force
feedback loop for each fingertip used the corresponding BioTac PDC value to control the
applied fingertip force and the measured joint angles (X∅) to control the velocity.
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2.6.3. Learning Context-Dependent Multi-Digit Haptic Feedback

Training the subjects to interpret the context-dependent haptic feedback from the
vibrotactile stimulators was the next step. For the congenitally limb-absent subject S2 and
the nine non-amputee subjects S4–S12, the vibrotactile stimulators were placed on the
upper arm over the biceps and triceps for haptic feedback corresponding to the I and L
fingers, respectively. However, the amputee subjects S1 and S3 had poor sensitivity in
several locations on their upper arms due to scar tissue and requested different haptic
feedback locations. After a brief searching process, suitable haptic feedback sites were
identified nearer the deltoid and elbow.

The haptic feedback training process started by demonstrating the Slow and Fast vibro-
tactile stimulator activation modes through Simulink in real time. These two frequencies of
activation produced different vibratory sensations (Figure 4). For example, the amplitude
of the steady-state pressure (PDC) at the Fast frequency (Figure 4F) was approximately half
that of the Slow activation frequency (Figure 4B). The power spectral distribution of each
vibration mode was quite different for both PDC (Figure 4C,G) and PAC (Figure 4E,I), which
also helped produce distinguishable haptic signatures for each vibration mode.

Next, the subjects were told the correlation between the Fast/Slow vibration modes
and the direction of slip at the fingertips. Specifically, the Slow vibration mode indicated
upward slip, while the Fast vibration mode indicated downward slip. After describing
this mapping to the human subjects, their haptic perception was systematically tested.
A pseudo-random sequence of 25 trials was generated using the MATLAB randperm
command to test their ability to simultaneously detect the directions of slip from both
vibrotactile stimulators at the same time. There were five repetitions of each of the five
possible combinations of simultaneous vibration activation modes (Table 2). All subjects
were able to correctly interpret the simultaneous vibrotactile activation modes with 100%
accuracy due to the significantly different sensations produced by the Slow and Fast
frequencies of actuation (Figure 4).

Table 2. Sensation and action scenarios during the simultaneous slip experiments that required
multichannel sensorimotor integration with the index (I) and little (L) fingers.

Haptic Feedback Slip Sensation Actions
Correct EMG Class

I L I L I L

Slow Slow ↑ ↑ x x NM

Fast Fast ↓ ↓
√ √

Sim

Slow Fast ↑ ↓ x
√

L

Fast Slow ↓ ↑
√

x I

Off Off None None x x NM

2.6.4. Multichannel Sensorimotor Integration

Next, the four different combinations of simultaneous slip up/down with the I/L
fingers were demonstrated several times for the subjects with the robotic system that was
under EMG control. Subjects were allowed approximately five minutes to gain familiarity
with multichannel sensorimotor integration using the robotic system to learn how the EMG
control signals would stop slip of the two objects individually or simultaneously when
desired. After this initial training phase, an opaque blockade was placed between the
Shadow Hand and the subjects to prevent them from seeing the robotic system, forcing
them to rely purely on haptic feedback. The human subjects were also asked to wear
noise-cancelling headphones (Figure 6).

During the experiments, the different combinations of simultaneous slip modes were
tested with a pseudo-random sequence of 50 trials (10 repetitions for each of the five options
listed in Table 2, including the option where haptic feedback was disabled). All the human
subjects went through the same pseudo-random sequence that was generated with the
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MATLAB randperm command. The subjects controlled the pace of the experiments by
pressing the Enter key on the keyboard in front of them to initiate each trial. Every trial
was designed to be 15 s long, during which subjects were asked to perceive the nuanced
multichannel haptic feedback and appropriately respond to the sensations with the correct
EMG control classes. They were trained to permit upward slip at the finger(s) where they
perceived upward slip and conversely to prevent slip at the finger(s) where they sensed
downward slip (Table 2). Subjects progressed through these 50 trials in approximately
45–60 min, with short rest breaks whenever requested.

The metric to quantify how successful the subjects were with this feat of multichannel
sensorimotor integration was calculated as the percentage of time that the subjects main-
tained the correct EMG class during each 15 s trial after they responded to the simultaneous
slip haptic feedback stimuli. The 15 s time window allowed sufficient time for each subject
to perceive and respond to the haptic sensations and provided an appropriate challenge for
subjects to maintain the correct class. Additionally, the response time (RT) was computed
for each subject and class as the amount of time each person required to interpret the
haptic feedback and respond, in other words, the time difference between the onset of
haptic feedback and activation of an EMG class (Figure 7H,J). The human reaction time to
haptic stimuli has often been used as a metric of the cognitive load to operate a prosthetic
hand [48,49].

Robotics 2024, 13, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 7. Sample data illustrating robotic system operation for the four cases of simultaneous slip 
at the index (I) and little (L) fingers. Simultaneous haptic feedback had two different vibration fre-
quencies depending upon the direction of sliding contact. Upward slip was encoded with Slow vi-
bration, while the downward slip produced Fast vibration. Subjects were trained to permit upward 
slip but prevent downward slip using their six EMG signals to produce four different classes (Sim, 
I, L, NM) with the efferent ANN. (A) Simultaneous downward slip at each fingertip was created by 
(B) both stepper motors driving downward slip. (C) This caused both vibrotactile actuators to be 
activated in the Fast mode. (D) The subject perceived the simultaneously activated channels of hap-
tic feedback and increased his EMG signals (E) to produce the Sim class with the efferent ANN. 
(F,G) Slip down at the I finger with slip up at the L finger caused the (H) vibrotactile stimulators to 
be actuated with the Fast and Slow modes, respectively. (I) The subject responded to this multichan-
nel haptic feedback to increase his EMG signals and (J) produced the I class. (K,L) Simultaneous 
upward slip at each fingertip (M) caused both vibrotactile stimulators to be actuated with the Slow 
mode. (N) The subject did not increase his EMG signals since he desired slip to occur at both finger-
tips in this case (O), producing the NM class. (P,Q) Slip up at the I finger but slip down at the L 
finger (R) produced the Slow and Fast vibrational frequencies for the I and L haptic feedback, re-
spectively. (S) The subject responded to this haptic feedback by increasing his EMG signals (T) to 
produce the L class. The response time (RT) is calculated as the time difference between the onset of 
haptic feedback and when the subject produced an EMG class (H,J). 

3. Results 
Sample data show the four possible cases of simultaneous slip at the I and L fingers 

(Figure 7). When both stepper motors drove the slip platforms downward (Figure 7A,B), 
the afferent ANNs correctly classified the sensations and the vibrotactile actuators corre-
sponding to the I and L fingers were both activated in the Fast frequency (Figure 7C). This 
prompted the subject to increase his EMG signals (Figure 7D) to produce the Sim class 
(Figure 7E) using the efferent ANN, which caused both the slip (Figure 7B) and haptic 
feedback to cease (Figure 7C). When the sliding contact at the I finger was downward 
while slip at the L finger was concurrently upward (Figure 7F,G), the vibrotactile actuator 
corresponding to the I finger was actuated in the Fast mode while the corresponding hap-
tic feedback from the L finger was actuated simultaneously in the Slow mode (Figure 7H). 
This caused the subject to increase his EMG signals (Figure 7I) to produce the I class using 
the EMG ANN (Figure 7J), which halted slip at the I finger (Figure 7G) and the corre-
sponding haptic feedback from the I finger; the haptic feedback from the L finger re-
mained on in the Slow mode since the user desired to permit slip at the L finger only 

Figure 7. Sample data illustrating robotic system operation for the four cases of simultaneous slip
at the index (I) and little (L) fingers. Simultaneous haptic feedback had two different vibration
frequencies depending upon the direction of sliding contact. Upward slip was encoded with Slow
vibration, while the downward slip produced Fast vibration. Subjects were trained to permit upward
slip but prevent downward slip using their six EMG signals to produce four different classes (Sim,
I, L, NM) with the efferent ANN. (A) Simultaneous downward slip at each fingertip was created
by (B) both stepper motors driving downward slip. (C) This caused both vibrotactile actuators to
be activated in the Fast mode. (D) The subject perceived the simultaneously activated channels of
haptic feedback and increased his EMG signals (E) to produce the Sim class with the efferent ANN.
(F,G) Slip down at the I finger with slip up at the L finger caused the (H) vibrotactile stimulators to be
actuated with the Fast and Slow modes, respectively. (I) The subject responded to this multichannel
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haptic feedback to increase his EMG signals and (J) produced the I class. (K,L) Simultaneous upward
slip at each fingertip (M) caused both vibrotactile stimulators to be actuated with the Slow mode.
(N) The subject did not increase his EMG signals since he desired slip to occur at both fingertips
in this case (O), producing the NM class. (P,Q) Slip up at the I finger but slip down at the L finger
(R) produced the Slow and Fast vibrational frequencies for the I and L haptic feedback, respectively.
(S) The subject responded to this haptic feedback by increasing his EMG signals (T) to produce the L
class. The response time (RT) is calculated as the time difference between the onset of haptic feedback
and when the subject produced an EMG class (H,J).

For both dependent variables (multichannel sensorimotor integration success rate,
RT), two-factor ANOVA was performed in MATLAB with human subject and EMG class
as the two independent variables. Interaction between the human subjects and EMG class
was also tested for statistically significant impact upon the multichannel sensorimotor
integration success rate and RT. An unbalanced ANOVA was also performed to determine
if there was a statistically significant difference between amputee and non-amputee subjects
for both dependent variables.

3. Results

Sample data show the four possible cases of simultaneous slip at the I and L fingers
(Figure 7). When both stepper motors drove the slip platforms downward (Figure 7A,B),
the afferent ANNs correctly classified the sensations and the vibrotactile actuators corre-
sponding to the I and L fingers were both activated in the Fast frequency (Figure 7C). This
prompted the subject to increase his EMG signals (Figure 7D) to produce the Sim class (Fig-
ure 7E) using the efferent ANN, which caused both the slip (Figure 7B) and haptic feedback
to cease (Figure 7C). When the sliding contact at the I finger was downward while slip at
the L finger was concurrently upward (Figure 7F,G), the vibrotactile actuator corresponding
to the I finger was actuated in the Fast mode while the corresponding haptic feedback
from the L finger was actuated simultaneously in the Slow mode (Figure 7H). This caused
the subject to increase his EMG signals (Figure 7I) to produce the I class using the EMG
ANN (Figure 7J), which halted slip at the I finger (Figure 7G) and the corresponding haptic
feedback from the I finger; the haptic feedback from the L finger remained on in the Slow
mode since the user desired to permit slip at the L finger only (Figure 7H). When slip at
both fingertips was upward (Figure 7K,L), both vibrotactile stimulators were actuated in the
Slow mode (Figure 7M) and the subject chose to take no action (Figure 7N), which produced
the NM class (Figure 7O) to permit slip at both fingers in this situation (Figure 7K,L). When
slip at the I finger was upward, while slip at the L finger was simultaneously downward
(Figure 7P,Q), the afferent ANNs classified this correctly and triggered the corresponding
vibrotactile stimulators to be actuated in the Slow and Fast modes to supply haptic feedback
from the I and L fingers, respectively (Figure 7R). This prompted the subject to increase his
EMG signals (Figure 7S) to produce the L class (Figure 7T), which halted slip at the L finger
only (Figure 7Q,R).

3.1. Multichannel Sensorimotor Integration Success Rate

All participants achieved high success rates of multichannel sensorimotor integration,
with an overall mean of 94.49% ± 8.79% (Figure 8). The subject with the highest success
rate was S2, with an average of 98.18% ± 3.14%, while the subject with the lowest success
rate was S1, with a mean of 89.27% ± 15.96%. Averaged across all 12 subjects, the highest
success rate within an EMG class was the NM class with 100% mean, while the success rates
for the I, L, and Sim classes were 94.93% ± 11.95%, 91.72% ± 13.26%, and 91.30% ± 9.94%,
respectively (Table S1).

The ANOVA showed that there was no significant difference between the subjects’
success rates or the different classes (p > 0.05). However, the interaction between subjects
and classes was significant (p < 0.05). An example of this interaction can be seen with
subject S8, who had a lower success rate with the Sim class, while subject S10 had lower
success rate with the L class.
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Figure 8. (A) Multichannel sensorimotor integration success rates for all subjects with each class
demonstrated high proficiency for sensorimotor integration. (B) Box plots showing multichannel
sensorimotor integration success rates for each trial with all the subjects.

The mean multichannel sensorimotor integration success rate for amputees was
94.90% ± 7.43%, while the average for the non-amputees was 94.36% ± 9.24%. The
unbalanced ANOVA showed that the amputees’ average success rate was not significantly
different from the non-amputees (p > 0.05).

3.2. Response Time to Multichannel Haptic Feedback

The mean RT of the three amputees was 3.46 s ± 0.82 s, while the mean RT for non-
amputee subjects was 2.42 s ± 0.63 s (Figure 9). The average RT across all 12 subjects was
2.68 s ± 0.68 s. Subject S4 had the fastest mean RT of 1.50 s ± 0.45 s, while subject S1 had
the slowest RT of 3.83 s ± 1.13 s. The three amputee subjects (S1–S3) had the three slowest
average RTs within the cohort (Table S2).

The ANOVA on the RT across all subjects showed a statistically significantly difference
(p < 0.01). The RT for each class was also statistically significant (p < 0.01). However, the
interaction between the subject’s performance and the classes was not statistically signifi-
cant (p > 0.05). The unbalanced ANOVA showed that the amputee RT was significantly
different than the non-amputee RT (p < 0.01).
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4. Discussion

EMG pattern recognition research for amputees’ control signals has led to several com-
mercially available products from Otto Bock [50] and Coapt [51] for the control of multiple
DOFs of a prosthetic arm. However, haptic feedback for amputees in clinical practice is
largely unrealized, with few exceptions, for example, the Psyonic Ability hand [52] and the
Vincent evolution hand [53], which both offer some rudimentary capacity for vibrotactile
sensations. The explanation for this dearth of sensation is multifaceted [1], but since several
prosthetic hands already have vibrotactile feedback capabilities, the technical barriers to
clinically implement the haptic feedback system described in this paper largely stem from
the lack of appropriate sensors on prosthetic fingertips. Unfortunately, most prosthetic
hands still do not have tactile sensors [54,55]. At present, there are no practical commercial
tactile sensors available for prosthetic hands that can detect sophisticated sensations like
the direction of sliding contact. Another consideration to implement multichannel haptic
feedback is that prosthetists would need to work with their patients to identify appropriate
feedback locations and be equipped with the tools for customizing prosthetic sockets to
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accommodate individualized haptic feedback arrays. Nevertheless, enhancement of ar-
tificial hand sensation and haptic feedback will be impactful to improve prosthetic arm
embodiment [56] and reduce the prevalence of artificial limb rejection [57], which remains
high because of poor dexterity and lack of sensory feedback, among other reasons [58].

Dexterous prosthetic hands of the future will also require more sensory feedback to
improve their functionality, but this must be balanced against excessively increasing their
cognitive operational burden. The amount of time people require to respond to haptic
stimuli has been used as a metric indicative of the cognitive load to operate a prosthetic
hand [48,49]. Haptic feedback from a single channel can help reduce the cognitive load
to perform a single task. For example, it has been shown that amplitude modulation
from a single vibrotactile stimulator can help reduce reaction time and cognitive load
compared to spatially encoding the feedback via multiple stimulators [59]. However, the
cognitive load will increase when scaling up the number of feedback channels [29]. In
our paper, we used two channels of haptic feedback that were simultaneously activated
with frequencies dependent upon the direction of sliding contact. The ANOVA showed a
statistically significant impact of the simultaneous vibration mode upon the RT (p < 0.05;
Figure 9). In particular, the Sim class had the slowest RT averaged across all subjects,
and this is the situation where both vibrotactile stimulators were activated with the same
Fast frequency. The other situations requiring an action from the subjects (I, L classes in
Figure 9) had both the Slow and Fast frequencies of vibration simultaneously from the
two stimulators, and so could have been easier for most subjects to discern more rapidly.
In those situations, one stimulator was activated during downward slip (Figure 4F,H),
while the other was toggled on and off every 500 ms to indicate upward slip (Figure 4B,D).
Subjects S6 and S12 were the only two people who had the fastest mean RTs with the Sim
class; the other ten subjects responded more quickly on average in situations where the
frequencies of vibration from the two stimulators were different (I,L classes).

Shah et al. described a relevant finding in their study involving people’s capacity
for discriminating between simultaneously and sequentially activated vibrotactile stim-
ulators [60]. Specifically, their subjects were on average less sensitive to differences in
stimulation frequency between the two actuators when they were simultaneously driven in
comparison to when they were sequentially activated with a 750 ms interstimulus interval.
One possible explanation for the similar results in [60] and our data could be caused by
dual task interference described by the so-called psychological refractory period [61], which
is a slowing that occurs when people try to do two tasks simultaneously [62]. The human
capacity for attention is a limited resource—when attention is distributed across multiple
stimuli simultaneously, the capability for perception of each individual stimulus is dimin-
ished [62]. In our paper, the I and L classes each involved both the Fast and Slow patterns of
vibrotactile stimulation (the Slow pattern was toggled on and off as shown in Figure 4B–E).
During the time intervals in which the Slow stimulator was off, the subjects would have
potentially been able to fully allocate their attention to the other active vibrotactile actuator,
decide about its actuation mode, and then refocus their attention back to the opposite
vibrotactile actuator when it was subsequently reactivated. In contrast, the SIM mode had
both actuators constantly vibrating at the same Fast frequency, potentially leading to a
central bottleneck of information processing [61] that could have slowed most subjects’
responses relative to the other asymmetric classes (I, L). Another perceptual model on this
topic compared information processing within the central nervous system to a queuing
network system wherein information pertaining to each individual stimulus must pass
serially through the ‘server’. In this model, one of the simultaneously activated stimuli
would be stored temporarily, while each stimulus is transmitted individually, increasing
the RT during the queue time. In contrast, sequentially activated stimuli can be transmitted
with less delay so long as a minimum interstimulus threshold of time is not exceeded [63].
The RT in this scenario is inversely related to the time difference between the initiation of
the two stimuli, which is referred to as stimulus onset asynchrony—in general, the shorter
the stimulus onset asynchrony, the longer the RT will be to the second stimulus. However,
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understanding the cognitive processes involved in multitasking experiments remains an
active area of research [64]. In the future, a detailed study systematically investigating
the RT to multiple channels of haptic feedback relative to the stimulus onset asynchrony
would be helpful considering the important ramifications this could have upon dexterous
artificial hand control. Furthermore, there are numerous other factors that significantly
affect the RT to vibrotactile feedback, including the size and type of actuator that is used,
the locations where they are placed, vibration frequency and amplitude [65], the cognitive
load during use, and the age of the subject [66]. Other factors that could impact the RT
to haptic feedback include the modality of haptic feedback [20,67], whether to encode
tactile events spatially or temporally [59], and the number of independent haptic feedback
channels [29].

Additionally, it would be valuable to consider experiments in unstructured situations
where slip could occur in any direction and to evaluate how haptic feedback would impact
subjects’ performances when they are able to see the hand. It is likely that visual feedback
would have improved the RT of the subjects in this study; however, our focus in this paper
was to discover if subjects could interpret two channels of simultaneously activated haptic
feedback while concurrently controlling two fingers in the absence of visual feedback. This
commonly occurs at night, when performing complex tasks like sports, playing musical
instruments, or during bimanual tasks in which both hands cannot be simultaneously
monitored visually.

On the efferent side, EMG pattern-recognition approaches can reduce the cognitive
load required to operate myoelectric hands [68], but there are some differing reports
regarding the utility of this approach for amputees relative to non-amputees. For example,
a comparison between two amputees and 12 non-amputees showed that amputees had a
lower success rate and required more time to complete a pick and place task with different
objects using a regularized discriminant analysis grip classification algorithm and a hybrid
EMG-inertial measurement unit sensor suite [69]. In contrast, another study used a KNN
algorithm for EMG pattern recognition in which no statistically significant difference was
found between non-amputees and amputees for the time needed to select a desired motion
of myoelectric prostheses [70]. The data in our paper support the idea that amputees
may have a higher cognitive load required in sensorimotor integration tasks involving the
pattern recognition of multiple channels of efferent and afferent information relative to
non-amputees. This is suggested by the fact that the three amputees in our study had a
significantly slower RT to perform the multitasking experiments in comparison to the nine
non-amputees (Figure 9; p < 0.01); the amputees’ EMG classification accuracies were not
significantly different from the non-amputees (Figure 8; p > 0.05). However, additional
experiments should be carried out with a larger sample size to explore the impact of
congenital or traumatic hand amputation upon the cognitive load required to operate
dexterous prostheses.

A traumatic upper limb amputation drives a large-scale cortical reorganization, ex-
tending well beyond the sensorimotor cortex [71], which could have affected the RT of the
amputee subjects S1 and S3, who both suffered amputations as adults. One confounding
factor is the possibility that the different vibrotactile feedback sites requested by subjects S1
and S3 could have affected their RTs. This is because people have demonstrated different
levels of sensitivity to vibrotactile feedback applied to different locations of the arm, likely
due to variable distribution of Pacinian corpuscles [38] in different dermatomes of the
arm [60]. However, subject S2, who has a congenital limb deficiency, also had a significantly
slower RT, and he used the same vibrotactile feedback locations as the non-amputee sub-
jects S4–S12. During development, children with congenital limb deficiencies are deprived
of afferent peripheral sensations that would normally shape the function of the assumed
hand territory of the brain. Instead, compensatory movements involving the feet, lips, and
forearm may provide afferent inputs to this region of the brain during maturation [72]. It
therefore stands to reason that providing haptic feedback to children who are born without
a hand could be beneficial to their future potential as adults.
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5. Conclusions

We have developed a novel artificial hand control system demonstrating that am-
putees can interpret multiple channels of context-dependent haptic feedback from two
different vibrotactile stimulators simultaneously to concurrently control individual fingers
of a dexterous artificial hand (Figure 8). We explored the potential of three amputees and
nine non-amputees to perform this complex feat of multichannel sensorimotor integration
in the context of deciding whether to permit or prevent sliding contact at two fingertips
of an artificial hand simultaneously. This kind of situational awareness underpins the
refined manual dexterity inherently required to perform sophisticated tasks such as play-
ing sports or a musical instrument, like a violin (Figure 1). Our results showed that the
subjects were able to correctly interpret the vibrotactile feedback from both haptic feedback
channels simultaneously to concurrently control two fingers of the artificial hand with
a 94.49% ± 8.79% success rate averaged across all 12 subjects. There was no statistically
significant difference in the multichannel sensorimotor integration success rates between
the amputees and non-amputees; however, the amputees did require significantly more
time to respond to the haptic stimuli in comparison to the non-amputees. This suggests
that the amputees might have experienced a higher cognitive load to perform the same sen-
sorimotor integration task that required interpretation of two channels of haptic feedback
simultaneously. These results provide a small step towards the grand challenge of enabling
amputees to dexterously control prosthetic hands.
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