robotics

Article

Imitation Learning from a Single Demonstration Leveraging
Vector Quantization for Robotic Harvesting

Antonios Porichis '?*, Myrto Inglezou
and Panagiotis Chatzakos !

check for
updates

Citation: Porichis, A.; Inglezou, M.;
Kegkeroglou, N.; Mohan, V.;
Chatzakos, P. Imitation Learning from
a Single Demonstration Leveraging
Vector Quantization for Robotic
Harvesting. Robotics 2024, 13, 98.
https:/ /doi.org/10.3390
/robotics13070098

Academic Editors:
Dimitrios Loukatos, Konstantinos
G. Arvanitis and Georgios

Papadakis

Received: 9 May 2024
Revised: 21 June 2024
Accepted: 23 June 2024
Published: 30 June 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

11, Nikolaos Kegkeroglou 3, Vishwanathan Mohan !

1 Al Innovation Centre, University of Essex, Wivenhoe Park, Colchester CO4 35Q, UK;
mi23878@essex.ac.uk (M.I.); vishwanathan.mohan@essex.ac.uk (V.M.); p.chatzakos@essex.ac.uk (P.C.)

2 National Structural Integrity Research Centre, Granta Park, Great Abington, Cambridge CB21 6AL, UK

3 TWI-Hellas, 280 Kifisias Ave., 152 32 Halandri, Greece; nikolaos.kegkeroglou@twi.gr

*  Correspondence: ap21186@essex.ac.uk

Abstract: The ability of robots to tackle complex non-repetitive tasks will be key in bringing a new
level of automation in agricultural applications still involving labor-intensive, menial, and physically
demanding activities due to high cognitive requirements. Harvesting is one such example as it
requires a combination of motions which can generally be broken down into a visual servoing and a
manipulation phase, with the latter often being straightforward to pre-program. In this work, we
focus on the task of fresh mushroom harvesting which is still conducted manually by human pickers
due to its high complexity. A key challenge is to enable harvesting with low-cost hardware and
mechanical systems, such as soft grippers which present additional challenges compared to their rigid
counterparts. We devise an Imitation Learning model pipeline utilizing Vector Quantization to learn
quantized embeddings directly from visual inputs. We test this approach in a realistic environment
designed based on recordings of human experts harvesting real mushrooms. Our models can control
a cartesian robot with a soft, pneumatically actuated gripper to successfully replicate the mushroom
outrooting sequence. We achieve 100% success in picking mushrooms among distractors with less
than 20 min of data collection comprising a single expert demonstration and auxiliary, non-expert,
trajectories. The entire model pipeline requires less than 40 min of training on a single A4000 GPU
and approx. 20 ms for inference on a standard laptop GPU.

Keywords: imitation learning; learning by demonstration; vector quantization; mushroom harvesting;

visual servoing

1. Introduction

There is a significant need for robots to intelligently behave in the face of complex,
non-repetitive tasks while minimizing the time and effort required to program a robot
for a new activity. Reinforcement Learning (RL) techniques have achieved impressive
performance in such complex tasks; however, they require the availability of enormous
volumes in terms of data samples as well as per-sample reward annotations which are not
always feasible to obtain [1].

Imitation Learning (IL), or Learning by Demonstration, has emerged as an alternative
that enables agents to learn how to solve complex tasks by observing the interactions
of an expert agent with the environment. Such methods can in principle enable new
levels of robotic automation allowing robots to carry out tasks involving high variability
with respect to critical characteristics, such as object locations, for which it would be
impossible to program a procedural routine [2]. IL, therefore, holds significant promise for
industrial applications involving menial work that is still being carried out manually. This
is particularly important for sectors where the activities carried out are tedious and of low
added value or involve significant health and safety risks.
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Fresh white button mushroom (Agaricus bisporus) harvesting is an excellent example
of such a task. Despite the tremendous uptake of robotic automation, particularly in
indoor vertical farming systems, fresh mushrooms are currently being harvested almost
exclusively by human mushroom pickers due to the task’s difficulty; mushrooms can grow
in wildly varying positions and the common paradigm is growing them vertically on
systems of wide and long shelves with very short distances between each other. This poses
significant challenges for perception. At the same time, however, mushrooms are extremely
sensitive to applied forces and can easily blemish which results in poorer quality and
revenue loss for the growers. Thus, human harvesters employ motion patterns combining
twisting the mushroom before pulling to achieve outrooting with minimal squeezing
force [3]. Large mushroom growers have made huge improvements in terms of mushroom
yields/m? of compost [4], yet they face steep labor shortages that render harvesting a crucial
bottleneck in their production pipeline [5,6]. Thus, enabling the automated harvesting of
fresh mushrooms is of paramount importance and conventional robotic approaches to this
problem require significant engineering in terms of perception, to accurately localize the
mushroom, and control, to ensure that mushroom quality is not compromised.

Accurate perception necessitates the use of equipment such as laser-based scanners
for highly accurate 3D reconstruction of the mushroom bed [7,8]. Such equipment can
be expensive to deploy in an industrial setting and requires thorough calibration at reg-
ular intervals. On the other hand, precise and compliant control can be very difficult to
accomplish with conventional rigid grippers. Leveraging soft, pneumatically actuated
grippers, such as the one shown in Figure 1, is an exceptionally cost-effective solution to
the manipulation challenges.

1 Expert
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Figure 1. Overview of our Imitation Learning approach for mushroom picking with a soft, pneumatic-
driven gripper.

Such gripping systems offer an array of advantages besides compliance; they can be
inherently recyclable and significantly less expensive than their rigid counterparts, allowing
for mass deployment across different harvesting applications. Scaling up the adoption of
such novel, low-cost systems would be pivotal in making automation viable for smaller
farms which are struggling amidst growing labor shortage pressures [9]. This, however,
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hinges upon streamlining the perception and control of such systems, which is significantly
more challenging due to the lack of proprioceptive sensing, i.e., the absence of measurement
of finger position and orientation, on the fingers. Another important challenge is that of
hysteresis phenomena, where after several cycles of use, the resting positions of the fingers
change over time due to the soft material distortion.

Our approach attempts to tackle the challenges of perception and control for mush-
room picking using a soft gripper through an IL technique operating on input from a
single RGB camera. An IL pipeline is trained using a single demonstration of a successful
trajectory for grasping, twisting, and pulling a mushroom among a cluster. Reaching the
mushroom is accomplished by learning a visual servoing controller based on a small set of
non-expert trajectories. The main contributions of our work are summarized below:

1. We implement a one-shot IL agent that is capable of mushroom harvesting using a
straightforward sensorial stream that is cheap to obtain. The agent operates directly
on RGB images from a single camera embedded within the palm of the gripper
with no pre-processing, other than downscaling, and the position coordinates of the
cartesian robot carrying the gripper. Our method requires no 3D information or
camera calibration. No engineering work needs to be carried out apart from collecting
~20 mins worth of data.

2. We introduce a Vector Quantization module that is shown to provide significant per-
formance improvement in terms of mushroom picking success rates. We benchmark
against [10], a one-shot IL method that was tested on toy tasks in highly controlled
conditions without distractors. Our method is sufficiently robust to achieve a 100%
success rate in mushroom picking in a realistic environment in the presence of distractors.

3. We test our approach on a real robot, featuring a soft, pneumatically actuated gripper,
shown in Figure 1, and mushrooms of varying sizes. To the best of our knowledge,
this is the first implementation of a one-shot IL pipeline on a real setup for mushroom
harvesting. This is in contrast to [11], where the IL pipeline required 80 demonstrations
and it was only tested in simulated environments.

The rest of the paper is structured as follows: In Section 2, we outline related work
with similar aspects to ours in terms of scope. Section 3 details our IL approach for solving
the mushroom harvesting task with the soft gripper under the presence of distractors, while
Section 4 presents an analysis of the results of our experiments including comparisons with
state-of-the-art models used as benchmarks. In the last section, we discuss the results of
our work and lay out possible avenues to pursue future research.

2. Background and Related Work

A common family of IL approaches is that of Inverse Reinforcement Learning (IRL) [12],
which involves a two-stage process; first, expert agent demonstrations are used to learn
a reward function that best explains the trajectories followed, and then an RL algorithm
is implemented using the learned reward. One of the first works to demonstrate an IRL
method capable of operating on pixel-based input, rather than state vectors, was [13]. This
work utilizes a guided cost learning algorithm which operates on visual features which
include pruned feature point representations and thus are task-specific. Another pixel-
based IRL has been implemented in [14], that leverages a separate neural net to detect key
points on the robot configuration. Such methods require a large number of samples to learn
during the RL stage. Optimal Transport techniques, pertaining to devising an optimal way
of transforming one probability distribution, that of the agent’s actions, to another one,
i.e., that of the expert’s actions, under a cost criterion have been leveraged to mitigate this
issue [15]. However, such methods have been demonstrated in simple manipulation tasks
that do not require grasping. A novel reward learning scheme based on time contrastive
networks is proposed in [16], with the reward computed based on the distance between
embeddings of expert and agent observations at similar time points.

Adversarial Imitation Learning (AIL), introduced in [17], is an alternative class of
methods that fuse IRL and Generative Adversarial Networks (GANSs) [18]. In this regime,
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after being trained to differentiate between samples obtained from agent and expert tra-
jectories, the discriminator network of a GAN is employed as a reward function in an RL
process. Using the Weisserstein distance, a crucial component of GANSs, in its primal formu-
lation, techniques like Primal Weisserstein Imitation Learning [19] have proved successful
in robotic manipulation straight from pixel-level input on a simulated door opening task.
However, this strategy needs about a million steps of interactions to achieve satisfactory
performance, which is several orders of magnitude more than our methodology.

A key limitation of IRL and AIL lies in their dependence on an appropriately tuned
RL process to train the agent that acts as the final robot controller. This training requires the
robot to interact with the environment while still not acting in an optimal and/or safe way.
Behavioral Cloning (BC), originally presented in [20], sidesteps this constraint by directly
casting IL as a straightforward supervised learning problem, i.e., predicting an action
a = f(0), where o is an observation returned by the environment and f is any machine
learning model regressing a on 0. A notorious issue with BC is that of distributional shift;
supervised learning requires that the samples of the training set are independent and iden-
tically distributed (i.i.d.), and this is far from the case in BC since past observation—action
pairs directly influence the present and future ones. This means that potential discrepancies
in the learned policy from the expert one lead the agent to increasingly more foreign states
compared to those encountered during training and thus there is a compounding error
effect. Nevertheless, BC has been shown to perform remarkably well in practice. An end-
to-end visual-based approach that can solve five different manipulation tasks using BC is
implemented in [21]. However, this requires a carefully tuned combination of four different
neural networks and it relies on >900 demonstrations for certain tasks. A pivotal work in
the area of BC is [22], which proposed Implicit Behavioral Cloning (IBC), where actions are
predicted by minimizing an energy function defined over pairs of actions and observations.
IBC shows significant performance improvements in tasks where optimal trajectories can
have multi-modal distributions; however, pixel-based agents have only been tested on a
block sorting task with a reduced, 2D action space. The Trajectory Transformer [23], the
Behavior Transformer [24], and the Action Chunking Transformer [25] capitalize on the
strengths shown by transformer models in capturing relationships over long distances
within sequences. Such approaches treat BC as a sequence modeling problem of predicting
actions conditioned on observations. Finally, the Perceiver—Actor architecture [26] success-
fully completes manipulation tasks based on language conditioning but it requires a set of
registered RGB-D cameras, and it operates on a 3D voxel-based version of the scene which
is computationally heavy to construct. Several recent approaches to BC leverage Denois-
ing Diffusion Probabilistic Models [27], drawing inspiration from their recent successes
in modeling high-dimensional data including images and videos. These are generative
models that map Gaussian noise to some target distributions, usually conditioned on some
context-specific embeddings. Such an approach is presented in [28], implementing a BC
pipeline by using a diffusion-based generative model that is conditioned on the current
observation embedding and maps Gaussian noise to the next action. The approach has
only been tested in simulated environments and video games. A seminal IL approach is
Diffusion Policy, introduced in [29], a complex pipeline combining Feature-wise Linear
Modulation [30] with a diffusion model, where instead of predicting actions directly, it
predicts the gradient field of action energy scores that is then used to obtain a series of
actions. This results in a powerful model which, however, comes at a great computational
cost, involving over 250 M parameters and requiring days to train on state-of-the art GPUs
while requiring a dual-camera setup. Due to the iterative nature of diffusion models, these
approaches are much slower and require a lot of empirical tweaks for them to be deployed
on real systems.

A common limitation of BC is the requirement of a significant number of expert
demonstrations, usually in the order of tens or hundreds of trajectories, to learn sufficiently
reliable policies. This can be impractical in cases where kinesthetic teaching, i.e., teaching
the robotic manipulator by physically guiding it through the desired motions or tasks, is
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not feasible as in our case. Our work builds on the findings of [10], which attempt to derive
an IL approach that imitates the visual servoing part which is essential in almost all IL
methods pertaining to robotic manipulation, with the object handling part of the trajectory
following a scripted policy, i.e., by replaying the original expert demonstration’s velocities
from the grasping point onwards. Indeed, a vast class of tasks can be broken down in a
similar manner and harvesting tasks are no exception. An extension of this work attempts
to directly learn to estimate the pose of the target object by providing strong inductive
biases to the learning approach leveraging geometrical transformations [31]. This approach,
like [10], makes a strong assumption about the structure of the scene, namely that the target
object to be manipulated is singular and no distractors exist in the camera’s field of view.
Another approach that loosens this assumption, allowing for the presence of distractors,
is that of [32], which employs a sophisticated pipeline that first segments the image to
determine the presence of the target object and then processes the image to determine the
pose of the target object guiding the visual servoing sequence by trying to match the scale
of the detected object with that of the reference trajectory. Although this accomplishes
one-shot learning without the use of auxiliary data, it is not practical in our application as
we are dealing with scenes where distractors are almost the same as the target object and
the target object can vary in scale.

To increase our method’s success rate, we make use of Vector Quantization (VQ).
Leveraging VQ on observations, rather than actions, has been explored in a limited number
of works. VQ is used in [33] to obtain object-centric representations, but the result is
processed on a semantic level and the approach focuses on 2D video game playing and
self-driving simulation. Another notable work is [34], where VQ is used in a hierarchical IL
approach, by quantizing subgoals again in 2D game playing. To the best of our knowledge,
our work is the first to utilize VQ directly for visual observation quantization in a robotic
manipulation context.

3. Materials and Methods

Our IL implementations follow three core principles that are essentially mandated by
the constraints of operating within an agricultural robotics context: (i) that learning should
be accomplished without an extensive number of demonstrations as these are cumbersome
and often expensive to collect, (ii) that the sensorial streams enabling IL are easy and cheap
to collect and process, and (iii) that the computational load of training and inference should
be as low as possible so that the learned policy can be deployed at the edge on hardware
with moderate capacity. The latter principle entails a preference towards IL methods that
are affordable to train and require limited computational infrastructure to be deployed for
real systems control.

3.1. Imitation Learning Architecture

Our IL pipeline comprises four stages; an Image Encoder module that allows for the
high-dimensional RGB images input to be cast into a low-dimensional embedding; a Vector
Quantization module akin to [35] that quantizes the embedding based on a learnable vector
codebook, i.e., a set of a pre-determined number of distinct vectors that is the basis of
quantization as described next; a Target Position Decoder that takes as input the quantized
embedding, z¢, which is concatenated with the encoder measurement of the z-coordinate of
the gripper sy, yielding h, and predicts the next target position for the gripper ;t 11 = 8(h);
and an Image Decoder that reconstructs the image input. The quantized embedding
is produced as a 2D concatenation of selected vectors of the codebook which is in turn
learned by minimizing an appropriate loss as explained in the next paragraphs. The overall
architecture is shown in Figure 2 below.
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Figure 2. Schematic of Imitation Learning-driven visual servoing approach. The architecture inte-
grates an Image Encoder for processing RGB images, an Image Decoder for frame reconstruction, a
Vector Quantization (VQ) module for embedding quantization based on a codebook that is updated
using Exponential Moving Average (EMA), and a Target Position Decoder for predicting the Target
Position. The system is trained in a self-supervised manner, using a combined loss function that
includes reconstruction loss (Lir), VQ loss (Lyg), and the Target Position loss (Ltp), facilitating
accurate end-effector positioning based on visual and encoder inputs. Dashed lines denote gradient
copying to account for the fact that the quantization operation is not differentiable per se.

To train the IL models, we use a dataset, D = {T; ... Ty}, containing M trajectories.
Each trajectory in the dataset, T; = {(ox, px), k =1...K;}, is a sequence of observation—
action pairs as in the canonical IL setting. In our case, each observation o comprises two
elements, namely an RGB image I and the z coordinate of the robot end-effector as obtained
by the cartesian robot motor encoders, which is treated as a 1-dimensional vector s;. Each
RGB image I is normalized, with pixel intensities mapped to [0, 1], captured by a camera
mounted in the palm of the robot gripper. Thus, we are adopting an eye-in-hand approach.

The Image Encoder module f, parametrized by 6y, applies a sequence of convolutional
residual blocks which downsample each image sample I; and then flattens the result into
an embedding e; = f(I;). The embedding e; is passed through the Vector Quantization
module g which yields a quantized embedding z; = g(e¢). This quantization process uses
a learnable codebook of vectors C = {b;, i = 1... N} producing z; as a concatenation of
vectors from C in the following manner. Each block of length B of e; is matched with
its nearest neighbor within C in the Euclidean distance sense, leaving a residual ;. The
residuals are used to update the codebook using an Exponential Moving Average (EMA)
scheme:

bf =b] " xy+ri(1-1), )

where v is an update coefficient between 0.9 and 1. To encourage the Image Encoder to
produce embeddings with blocks that are close to the codebook vectors, we implement a
commitment loss:

Lyq(et, zt) = (er —sg[z))?, @

where sg[-] denotes stopping the gradient flow to account for the fact that the operation
of finding the near neighbor is not differentiable per se. In practice, this means that in
computing the gradient of Ly, z; is considered independent of the 6 parameters. The Ly g
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loss forces the e; embedding produced by the Image Encoder to be closer to the quantized
embedding produced by the VQ module.
The Target Position Decoder module comprises a lean Long-Short Term Memory

(LSTM) Recurrent Neural Network [36] that predicts the target position ; This model is
trained to minimize the Mean Squared Error loss:

Lrp (Ptr ;t> = (Pt - ;t) 2/ (©)

The Image Decoder module is a series of deconvolution layers that outputs a recon-

struction I of the input image.

Lir <1, 7) = IlogI + (1—1I)log (1 -~ 7), )

The training of the entire model proceeds in an end-to-end fashion where all modules
are trained jointly by minimizing the aggregate loss:

L = Zi,t Ltp + ﬁLVQ + ALR, (5)

where B is a coefficient modulating the relative weight of the vector quantization loss,
also termed commitment loss, and A is the weight of the Image Reconstruction loss. The
summation is performed across all timesteps of all the trajectories.

The gradients from the Ltp loss flow back through the Target Position Decoder and
the Image Encoder while those of Ly are only flowing through the latter. The Ltp and Lr
gradients are side-stepping the discontinuity induced by the quantization module by being
copied directly from the Target Position Decoder and the Image Decoder, respectively, to
the Image Encoder.

The Target Position Decoder estimates the target position relative to the robot’s po-
sition in cartesian coordinates. Each such prediction is used to derive a simple velocity
controller with a proportional gain K;,. The choice of the controller was driven by simplic-
ity and practicality; we experimentally found that adding integral or derivative terms to
the controller offered little benefit in terms of speed in reaching the target position and
introduced risks of oscillation around the optimal position. Since the g(h;) estimation is
bound to be noisy, we ignore small potential steady-state errors by considering the visual
servoing finished when the distance between the current position of the gripper and the
target position estimate is less than a threshold J. The controller equation is thus given as
follows:

— {Kp~g<ht>, e — g(he)| = 6
b1 = (©)
0, me —g(he)| <6

In contrast to [11], this end-to-end training approach, illustrated in Figure 2, does not
require separate training of the Representation Learning modules. The representational
power of the embeddings is allocated in capturing the necessary information to predict the
correct target position as well as in reconstructing the original image to keep the embedding
manifold as smooth as possible following the lessons of [37].

The model architecture and parameters of the proposed approach are presented in
Table 1 below.

Table 1. The proposed model parameters.

Model Component

Type Layers/Parameters

Image Encoder

Conv layer 1: 20 channels, 5 x 5, stride 2

Convolutional Neural Network Conv layer 2: 10 channels, 3 x 3, stride 2
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Table 1. Cont.

Model Component Type Layers/Parameters
Embedding Vocabulary size: 1024
Vector Quantizer EMA-based Quantizer Embedding dimension: 10

Embedding width/height: 14 x 21

Target Position Decoder

Sequence length: 5
Recurrent Neural Network Hidden layer 1: 1024
Hidden layer 2: 1024

Image Decoder

Deconv layer 1: 20 channels, 3 x 3, stride 2

Convolutional Neural Network Deconv layer 2: 3 channels, 5 x 5, stride 2

3.2. Experiments
3.2.1. Mushroom Picking Environment

The environment used to test our IL approach was designed to be representative of
the actual mushroom harvesting process while staying practical in terms of the equipment
and consumables required. The characteristics of the real environment were measured
through successive human expert mushroom picking sessions in actual mushroom farms
where expert pickers performed harvesting experiments with gloves fitted with pressure
and force sensors as seen in Figure 3. Figure 4 shows the two principal steps of outrooting,
namely grasping and twisting, as recorded in human expert demonstrations, while Figure 5
shows the pressures and forces measured during a mushroom harvesting demonstration
by a human expert.

(b)

Figure 3. Sensorized gloves for gathering pressure and force data during mushroom picking from

human experts. (a) Pressure mapping sensors, (b) force sensors.

We collected the force and pressure measurements of 30 different picking sequences
and manually segmented these into four distinct phases, namely reaching, grasping, out-
rooting, and lifting. We extracted the maximum force values across the outrooting phases
to obtain an estimate of the force limit. In order to synchronize the force and pressure
measurements with the camera streams, we recorded the timestamps for each measure-
ment and frame, and we then matched each frame with the closest measurement in time.
All sensors and camera frames were captured with the same device to ensure common
timestamp baselines.
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-

(b)

Figure 4. Demonstrations of mushroom harvesting with force sensors mounted on the harvester’s

gloves: (a) grasping the mushroom, (b) pulling the mushroom upwards after having twisted it around
its principal axis.
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Figure 5. Pressure and force measurements during mushroom harvesting by human experts.

Through these experiments, we established that the expert mushroom pickers keep
the forces applied to the mushroom within a range of 2-3 N. Through sperate observations
of the twisting motion, in collaboration with the expert picker, we also established that the
twisting angle is at least 60°, a finding that is in line with the literature [3]. These findings
were used to program the manipulation sequence. This comprises grasping the mushroom
by actuating the gripper with 1 bar of pressure, which corresponds to 2.5 N as explained in
the next paragraph, then twisting the mushroom by actuating the gripper’s yaw degree

of freedom to rotate, and, finally, moving the gripper upwards along the z-axis to lift the
mushroom.
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3.2.2. Robotic System

The robotic prototype used for the evaluation of the approach is an actuated cartesian
robot that has been designed to be compatible with existing mushroom farms. The robot
encompasses three actuators, M1, M2, and M3, enabling it to move along a mushroom
shelf (x direction) using wheels (M1) and traverse the shelf from side to side (y direction)
via a linear slide (M2). An additional linear slide (M3) ensures the ability to lower the
robot’s end-effector towards the mushroom bed (z-direction). The overall system is shown
in Figure 6. A detailed presentation of the robot’s configuration and actuation principles is
provided in [8].

Figure 6. The actuated cartesian robotic system used for mushroom picking trials. The gantry-like
robot moves along the x-axis with actuated wheels (M1), and along the y-axis and the z-axis with
linear slides (M2 and M3, respectively) [8]. M1 and M3 are shown in inset pictures.

The end-effector of the robot is a soft gripper that has been designed and implemented
to replicate the grasping forces recorded during expert demonstration trials. The gripper
can deliver a grasping force of max. 2.5 N when 1 bar of pneumatic pressure is applied to
inflate the fingers. The gripper’s design and operational characteristics are detailed in [38].
The design also allows for integrating an in-hand camera in a straightforward fashion.
Figure 7 illustrates the gripper.

The gripper features three actuators, M4, M5, and Mé6. The first two are used to
configure the gripper’s angle towards the mushroom bed while the last one is used to
deliver the twisting motion. Of the six actuators of the cartesian robot and the gripper, in
our experiments, only M1, M2, M3, and M6 were used during the agent trajectory; M4 and
M5’s angles stayed the same throughout the picking experiments.

For the purposes of visual servoing, within the scope of our work, the gripper motion
is controlled with a velocity controller as described in Equation (6). Motion planning is left
entirely to the learned agent which calculates the next target position based on visual input
from the current image frame.
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Figure 7. The in-hand camera position as well as the motors (M4, M5, and M6) controlling the motion
of the gripper [38].

3.2.3. Data Collection

We follow a simple yet practical approach to collecting the necessary data for learning
the visual servoing controller. The procedure can be described as follows:

1.  The target mushroom is randomly placed on the soil and a number of other mush-
rooms are randomly placed around it. All mushrooms are 30-50 mm in cap diameter.

2. The gripper is manually moved in a position that allows for firm grasping, i.e., with
the fingers around the target mushroom.

3. The gripper is then moved upwards in a conical spiral with its position and the
corresponding image from the in-hand camera recorded at regular intervals. Each
observation—relative target position (o;, p;) is stored. The radius and the slope of the
conical spiral are randomized in each data collection.

We collected a total of 17 such trajectories, each with a different mushroom configu-
ration. The total data collection duration was ~20 min and the dataset comprised 16,680
observation—target position pairs. Figure 8 illustrates this process. We also used extensive
data augmentation on the images. This involved several key transformations applied to
the input images. Firstly, we adjusted the brightness and contrast levels, which aids in
simulating varying lighting conditions and improving model generalization. Additionally,
we introduce Gaussian noise to emulate real-world sensor noise and enhance the model’s
ability to handle noisy inputs. Examples of trajectories for data collection are shown in
Supplementary Video S1.
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Figure 8. (a) Four screenshots of the eye-in-hand camera during a spiral trajectory, (b) 3D plot of the
trajectory of the gripper in the 3D space.

3.2.4. Benchmarks

Our approach for which we use the identifier, vg-rec, is evaluated against the following
three benchmarks:

1. A convolutional model following the coarse-to-fine approach of [10] from which our
own approach draws inspiration. We refer to this approach as cnn-c2f.

2. Asimpler variant of our approach where the Image Decoder and the respective loss
have been removed to establish the merit of using the Vector Quantization module.
This approach is termed vg-norec.

3. Anon-IL based approach where visual servoing is accomplished leveraging YOLOv5 [39],
a well-trusted object detector to detect the mushrooms on the scene, and a controller
is programmed to move the gripper to minimize the error between the center of the
image and the center of the bounding box of the mushroom closer to the center of the
image. This approach is detailed in [8] and we refer to it as yolo-vs.

The IL-based approaches, namely cnn-c2f, vg-norec, and vg-rec, are all trained based on
the same dataset, collected as described above, and they use a visual servoing controller
that moves the gripper to the appropriate position for the grasping, twisting, and lifting
motion combination to take place. The latter is replicated directly from a single expert
demonstration, similarly to [10]. Separating the visual servoing and the manipulation
sequence can be accomplished by simply cutting the trajectory at the point where the yaw
angle of the gripper starts changing. This is similar to extracting keyframes like in [26]. The
expert demonstration is accomplished by a controller with full knowledge of the optimal
position for grasping the mushroom.

The yolo-vs controller requires learning just for mushroom detection. This is accom-
plished by collecting and annotating 200 images of various mushroom configurations.

4. Results

The resulting models were evaluated over 50 trials, each with a cluster comprising
between two and five mushrooms freely placed at different positions similar to the data
collection process. The learning-based techniques, namely vg-rec, vg-norec, and cnn-c2f,
were all trained on the same dataset and the transition from the visual servoing to the
scripted twist and lift policy was performed when the prediction of the target position was
less than 1 mm, i.e., we choose § = 1 in Equation (6). Success or failure was determined
in a straightforward manner; whenever the gripper still held the mushroom after the lift
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motion, the episode was deemed successful. The success rate of each of the approaches
described above is summarized in Table 2.

Table 2. Success rates in mushroom grasping and lifting of different approaches.

Approach Vector Quantization Recol:;:lflection Success Rate
yolo-vs [8] N/A N/A 78%
cnn-c2f [10] No No 84%
vg-norec Yes No 90%
vq-rec Yes Yes 100%

As seen in the table above, the proposed approach achieves a remarkable 100% success
rate, i.e., it successfully grasped the target mushroom in all instances of the task. Figure 9
illustrates a sequence of frames of a successful episode while further episodes with freely
placed mushrooms are provided in Supplementary Video S1. For the rest of the approaches,
almost all of the missed cases were mainly due to poor positioning in the z-axis. Indeed,
due to the compliant nature of the gripper, a suboptimal alignment in the x-y plane is
usually less of a problem as small discrepancies are passively corrected. However, even a
few millimeters of deviation from the proper z-position can lead to poor grasping leading to
the mushroom slipping off the fingers. The yolo-vs approach was shown to be significantly
prone to this error mode. We attribute this to the fact that the mushroom scale is not taken
into account in such an approach; a larger mushroom seen from a certain height might look
very similar to a smaller mushroom observed by a lower height. The IL-based approaches,
however, are inherently taking scale into account through the LSTM-based decoder that
operates on a sequence of five frames along with the respective z-position of the gripper.

.
.
1
-
(b)

@)

Figure 9. (a) Front view and (b) eye-in-hand view of a sequence of a successful episode rollout by the

trained agent on real mushrooms. (1) The gripper starts at a random position; (2) moves above the
mushroom; (3) reaches down; (4) grasps; (5) twists; and (6) pulls the mushroom upwards.
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It is worth noting that the introduction of the Vector Quantization module leads
to an increase in performance compared to the Convolutional Neural Network model
proposed by cnn-c2f. Combining Vector Quantization with image reconstruction is shown
to significantly improve the accuracy of the predictions. Figure 10 illustrates the predictions
produced by the different IL-based agents, based on the observations collected by the expert
agent, i.e., a totally scripted agent that has full access to the location of the mushroom to be
picked.

cnn-c2f vg-norec vq-rec expert

10

x (mm)
R\\u—.

0 \
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—
|
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th
\

z (mm)
|

-30 "
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Figure 10. Predictions of different IL pipelines on the expert demonstration. Predictions are produced
offline, based on the observations obtained during the expert trajectory.

As seen in Figure 10, the proposed approach combining Vector Quantization and
image reconstruction predicts the target position closer to the actual one compared to the
rest of the benchmarks, particularly for the time steps closer to the end of the episode.
Figure 11 illustrates the trajectories followed by the expert agent and the agent trained
with the proposed approach. In contrast to Figure 10, where predictions are produced
offline, based on the observations collected by the expert agent, Figure 11 illustrates a full
rollout by the learned agent on the same conditions with those of the expert episode, i.e.,
the same mushroom cluster configuration and the same starting position of the gripper.
The proposed agent is able to reach almost precisely the final position of the expert agent,
albeit with a delay of ~4 s and with some jittering along the trajectory.

To further investigate the beneficial effects of Vector Quantization and image recon-
struction, we conducted an analysis of the embeddings passed as inputs to the Action
Decoder across the three different IL-based approaches. To visualize the embeddings, we
use the well-trusted t-SNE [40] method to map the high-dimensional vectors onto the 2D
plane. Figure 12 illustrates a visualization of the embeddings of each of the models for a
single episode of 305 steps. To accentuate the differences between the approaches, we use a
relatively low perplexity value of p = 5 in line with the low number of samples.
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Figure 11. Expert and trained agent (vg-rec) trajectories on rollouts with the same environment
conditions. Trained agent predictions are produced online by rolling out a new episode.
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Figure 12. t-SNE mapping of embeddings produced by the three IL approaches considered. Color
shade indicates the episode step index.

As seen in Figure 12, there are significant differences regarding the smoothness of the
embedding manifold; the embeddings produced by the model without Vector Quantization
or image reconstruction are significantly fragmented, i.e., there are exceptional gaps leading
to observations that are close to each other temporally to be mapped far away from
each other. The introduction of Vector Quantization significantly improves this mapping,
reducing the gaps between episode steps while image reconstruction further enhances this
aspect. We theorize that this smoothing effect is the main reason behind the improvement
in the model performance.

It is worth noting that even though the actuation of the gripper is not learned by the
proposed approach, as the manipulation sequence is just a replication of the expert agent
demonstration, accurately positioning the gripper presents challenges that are not normally
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observed in rigid grippers. An example is illustrated in Figure 13, where two screenshots
belonging to two different episode rollouts are shown. The rectangular annotations are
placed at the exact same pixel coordinates in both images to highlight that, in contrast to a
rigid gripper, whose fingers are expected to show at the exact same location during visual
servoing, this is not the case for the soft fingers. The latter are prone to displacements due
to hysteresis or because of collisions with other objects. Given the fact that our approach
is learning the visual servoing function in an end-to-end fashion, i.e., directly from pixels,
such discrepancies present an additional challenge.

(a) (b)

Figure 13. Annotated screenshots during trained agent (vg-rec) episode rollouts: (a) the bottom
right finger is significantly displaced due to collision with a nearby mushroom, (b) the top finger is
moderately displaced due to hysteresis. The rectangular red annotations are placed at exactly the
same pixel coordinates to highlight these discrepancies.

5. Discussion

We have presented a pixel-based, one-shot IL approach, leveraging Vector Quantiza-
tion, for learning to solve the mushroom harvesting task. The approach was tested on a
lab-scale mushroom picking environment involving a cartesian robot and a soft, pneumati-
cally actuated gripper. The trials were designed based on observations from real mushroom
harvesting experiments. We demonstrated the benefit of using Vector Quantization and
showed that the proposed model architecture can learn the desired behavior with minimal
input, namely a simple RGB camera and the z-position encoder measurement of the robot.
Our approach operates directly on raw observations with no pre-processing other than
downscaling. By casting the problem as a primarily visual servoing task, our approach can
learn the controller for reaching the optimal position for grasping the mushroom based
on less than 20 min of data collection. The approach is shown to solve the task in 100% of
the cases, even though mushrooms are picked from a cluster of very similar distractors.
It is also computationally lean, with the entire pipeline consisting of <800 k parameters,
allowing for inference of ~20 ms on a moderate laptop GPU (GTX 1650 Ti). The low compu-
tational requirements coupled with the low cost of the sensorial streams required for our
pipeline make for a practical method and system for IL in an industrial setting.

A crucial aspect of our approach is that it gracefully handles the lack of proprioception
information about the finger position. It is also shown to be exceptionally robust to the
challenges presented by the soft fingers’ displacements due to hysteresis or collisions,
paving the way for a straightforward learning of harvesting tasks with soft grippers.

In the future, we plan to evaluate the effectiveness of our approach on large-scale
mushroom growing facilities. Within this context, we aim to integrate further inputs into
the system such as tactile sensing. A significant step forward would also be to consider
cases where the mushrooms are more tightly clustered together or the cap orientation
significantly deviates from the common case of vertical pose. Speeding up the visual
servoing process and deploying multiple grippers will also be of paramount importance to
match human picking performance.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/robotics13070098 /s1, Video S1: Imitation Learning from a Single
Demonstration Leveraging Vector Quantization for Robotic Harvesting.
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