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Abstract: The present contribution introduces the task-dependent comfort zone as a base placement
strategy for mobile manipulators using different manipulability measures. Four different manipulabil-
ity measures depending on end-effector velocities, forces, stiffness, and accelerations are considered.
By evaluating a discrete subspace of the manipulator workspace with these manipulability mea-
sures and using image-processing algorithms, a suitable goal position for the autonomous mobile
manipulator was defined within the comfort zone. This always ensures a certain manipulator manip-
ulablity value with a lower limit with respect to the maximum possible manipulability in the discrete
subspace. Results are shown for three different mobile manipulators using the velocity-dependent
manipulability measure in a simulation.

Keywords: mobile manipulation; autonomous mobile manipulator; manipulability measure; task-
dependent comfort zone

1. Introduction

Mobile manipulators, which combine a mobile base platform and a serial manipulator,
are becoming increasingly popular in various applications due to their flexibility and
adaptability when operating in diverse environments [1,2].

To ensure their efficient and reliable operation, it is crucial to choose movement
algorithms that take into account the unique characteristics of both the mobile platform
and the serial manipulator. While researchers work on combining base and manipulator
movement [3], the physical limitations of mobile manipulators also have to be considered.
The mobile platform movement of wheeled mobile robots is imprecise in comparison to the
movement of serial manipulators due to the friction and slip between the wheel and ground
contact [4]. Furthermore, a safety-related reduction in velocity further highlights the need
to study the division of a mobile manipulator into two subsystems. Combining their
movements can lead to inaccurate positioning and potentially hazardous situations and
much more complexity in the system. In this paper, a simplified approach, as opposed to a
holistic one, is used to find a suitable position for the mobile platform that allows for efficient
and safe manipulation while ensuring the optimal performance of the mobile platform and
the manipulator. The combination of a mobile robot platform with a manipulator often
results in a degree of freedom (DOF) greater than six and must be described as a robotic
system with kinematic redundancy [5,6] for a certain task in three-dimensional space where
a DOF of six would be sufficient. However, the inherent complexities and uncertainties in
these systems pose several challenges in realizing their full potential.

Different from conventional, stationary industrial robots, which often have a DOF
equal to six, redundant robots, as described above, can move while the position and
orientation of the end-effector (EE) are fixed. Another advantage of such kinematically
redundant systems is collision avoidance, while the EE follows a specific path [7]. Therefore,
such systems can be used for technically difficult dexterity tasks, such as grasping inside
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a tube or picking between two walls. The workspace of a stationary industrial robot is
limited not only by the arm length but also by the allowed joint torques. The placement of a
robotic manipulator base has to be done adequately for the task that should be fulfilled via
the robotic system. For mobile manipulators, this is even more challenging since the base
of the robot manipulator can be moved. This also introduces the possibility of changing
the manipulator base for each task in respect to the task constraints. A human worker
knows by nature how to operate during different tasks. They utilize their arm redundancy
to take a comfortable arm position [8]. For example, soldering on a printed circuit board
will be done with bent elbows in front of the body at a certain distance to ensure a good
view. This position allows the worker the optimal handling of tools. One could name
this the ’human work comfort zone’ for this specific task. Modern mobile robots can be
equipped with collaborative manipulators to fulfill different tasks, e.g., picking and placing
or transportation. This type of manipulator is specially designed to be used alongside
humans and cooperate with human workers. However, with some additional restrictions
to the speed, force, and torque of these mobile platforms, they can be called collaborative
mobile manipulators (see [9,10]).

The selection of a suitable path and a suitable path goal for a mobile manipulator is a
crucial aspect of its operation, as it directly affects the robot’s ability to perform tasks and
its overall manipulability. In recent years, various approaches have been proposed in the
literature to determine the optimal path for mobile manipulators.

For example, refs. [11–13] divides the problem and separates the mobile manipulator
into two independent subsystems: the mobile base and the mounted serial manipulator.
The authors of [14,15] use a different approach to combine the mobile base and the manip-
ulator into one system with a higher DOF; well-known and often-used sampling-based
planners are used in multiple variations within this approach. Sampling-based planners
like the Rapidly Exploring Random Tree (RRT) [16], the Probabilisitic Road Map (PRM) [17],
and the Expansive-Spaces Tree planner (EST) [18] or any of their variants (RRT-Connect,
RRT-GoalBias, and Informed RRT, . . . ) have been used due to their ability to handle high-
dimensional spaces. Those types of planners have been utilized for mobile manipulators in
which the entire system is treated as a single high-DOF system during the planning process.
Other types of planners minimize a certain cost function; Covariant Hamiltonian Opti-
mization for Motion Planning (CHOMP) [19] and Stochastic Trajectory Optimization for
Motion Planning (STOMP) [20] algorithms are often used in the robotics motion-planning
framework MoveIt [21]. Those planners use cost functions with various constraints like EE
position and orientation, as well as joint torques, joint limits, and distance to obstacles (for
collision avoidance).

As already mentioned by the authors before, finding an appropriate goal position
for a mobile robot that satisfies a specific task is a challenging problem in robotics. The
goal position not only has to be reachable for the robot but must also meet limitations
such as, e.g., avoiding obstacles. To find an optimal solution, multiple factors, such as
the robot’s kinematic and dynamic properties, environment, and task requirements, must
be considered. In [22], Sandakalum et al. give a comprehensive review of the current
state-of-the-art path planning of mobile manipulators, as well as determining the mobile
base goal position in general. To find a suitable goal position for the mobile base, as well
as a goal configuration for the mounted manipulator, two different approaches should be
mentioned: Firstly, the concept of a reachability map [23] uses the reachable workspace of a
mounted serial manipulator. Secondly, the so-called capability map by Zhang et al. [24,25]
uses the distribution of manipulability, based on Yoshikawa [26], in Cartesian space to
guide the base placement of manipulators [27].

In a previous work, we defined the comfort zone as a region in the n-dimensional
discrete joint space [28]. Each point in the so-defined comfort zone represents a certain
joint configuration and fulfills multi-objective optimization, including various manipula-
bility measures (velocity, force, and stiffness dependence). Furthermore, these points are
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constrained with minimum/maximum velocities, forces, and stiffness. This was shown for
a planar mobile robot with two translational and three rotational joints, as used in Figure 1.
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Figure 1. Geometrical representation of four different manipulability measures using a planar mobile
manipulator with 5DOF.

In this paper, we propose a further method to determine a zone of possible base
positions (task-dependent comfort zone) for a mobile manipulator that can be used with
various individual manipulability measures, such as velocity, force, acceleration, and stiff-
ness. Using these manipulability measures, we are able to evaluate the specific demands of
different tasks and determine a zone of base positions (on a plane in Cartesian space) that
can accommodate these demands. The capability of staying within this task-dependent
comfort zone ensures that the mobile manipulator can perform tasks effectively and effi-
ciently while also taking into account the need for high-speed movements, large forces,
high accelerations, or high stiffness. Our results provide a comprehensive evaluation of
the robot’s ability to perform tasks and offer specific guidelines for selecting appropriate
base-placement strategies. This enables the task-dependent, autonomous positioning of
the mobile manipulator in a variety of applications. The proposed method will be shown
within an example task using different types of mobile manipulators, including different
serial manipulator configurations and DOF.

This paper is organized as follows: In Section 2, the Jacobian matrix is introduced,
and the various manipulability measures used to evaluate the robot’s performance for
different tasks are described. The measures include velocity, force, acceleration, and
stiffness-dependent measures based on different already-established approaches. Section 3
incorporates the manipulability measures into the proposed method to determine the task-
dependent comfort zone, which represents a zone of possible positions for the mobile on a
plane in Cartesian space. Section 4 describes the evaluation of the proposed method using
various mobile manipulators and arm configurations. Finally, the last section summarizes
our findings and provides suggestions for future work.
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2. Manipulability Measures

In this section, we focus on different concepts of manipulability measures. These
measures are often related to fixed-mounted industrial robots. In the literature, different
measures to characterize the movement capabilities of manipulators are discussed. Specif-
ically, here, we present an overview of manipulability measures, which are quantitative
metrics used to evaluate the robot’s ability to perform a specific task, based on velocities,
forces, stiffness, and acceleration. Those measures will later be used to define the task-
dependent comfort zone for mobile manipulators. The geometrical interpretation, so-called
manipulability ellipsoids, of those measures used on force, velocity, stiffness, and dynamic
manipulability measures can be seen in Figure 1. Here, for a two-dimensional case, a planar
mobile robot with two translational and three rotational joints is used, and it results in this
case in four manipulability ellipses.

2.1. Jacobian Matrix

The Jacobian matrix is a fundamental tool in the analysis and control of serial ma-
nipulators, serving as a representation of the relationship between the joint velocities
and the EE velocity. Furthermore, it has important properties that can be leveraged to
develop the manipulability measures used in this paper. The kinematic relation between
the joint velocities

q̇ =
dq
dt

=
[
q̇1 q̇2 . . . q̇n

]T ∈ Rn (1)

and the EE velocities
ξ̇ =

dξ

dt
=

[
ξ̇1 ξ̇2 . . . ξ̇m

]T ∈ Rm (2)

is described by the manipulator Jacobian matrix J(q) ∈ Rm×n with

ξ̇ =
∂ξ

∂q︸︷︷︸
J(q)

∂q
∂t

= J(q)q̇ (3)

and

J(q) =


∂ f1
∂q1

∂ f1
∂q2

. . . ∂ f1
∂qn

...
...

. . .
...

∂ fm
∂q1

∂ fm
∂q2

. . . ∂ fm
∂qn

 . (4)

The EE velocity ξ̇ includes linear and angular velocities, so the Jacobian matrix

J(q) =
[

JT(q)
JR(q)

]
(5)

can be separated into a translational part, JT, relating to the contribution of the joint
velocities to the EE linear velocities, and a rotational part, JR, relating to the contribution
of the joint velocities to the EE angular velocities. Moreover, the Jacobian matrix is used
to map EE forces to joint forces and torques [29]. Let τq denote the vector of joint torques
for revolute joints and forces for prismatic joints. The principle of virtual work can be
described by

δWøq = τT
q δq (6)

for the configuration space and

δWfEE = fT
EEδξ = fT

EE
∂ξ

∂q
∂q , (7)
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for the task space, with δq being the virtual displacements of the robot’s joints and δξ being
a virtual displacement of the EE. The virtual work in joint space and task space has to
be equal,

δWøq = δWfEE . (8)

Thus, Equations (6) and (7) can be reformulated to

δqT(τq − JTfEE) = 0 . (9)

Finally, the mapping between joint torques and EE forces can be written as

τq = JTfEE . (10)

2.2. Velocity Manipulability Measure

Yoshikawa [26] uses the Jacobian manipulator to calculate a manipulability measure.
This manipulability measure shows the ability of the robot’s end-effector to move with
a velocity in a certain direction. The calculation of those measurements uses the idea of
manipulability ellipsoids [30]. It also represents a distance to a singular joint configuration.
If the joint rates satisfy ||q̇|| = 1, this assumes a unit sphere in the n-dimensional joint-
velocity space. This unit joint-velocity condition can be written as

q̇Tq̇ = 1 , (11)

and with the use of Equation (3), we get

(J−1ξ̇)TJ−1ξ̇ =

ξ̇
TJ−TJ−1ξ̇ =

ξ̇
T
(JJT)−1ξ̇ = 1 . (12)

If J has a full rank, the matrix JJT is square, symmetric, and positively definite.
For any symmetric and positive definite matrix JJT , the set of vectors ξ̇ that satisfy

Equation (12) defines an ellipsoid in the m-dimensional space. Furthermore, the volume
of such an ellipsoid in the used EE task space [31] can be employed as a manipulability
measure, which can be further defined as

mv(q) =
√

det(JJT) . (13)

For the case m = n, which means J is a square matrix, this relation can be simplified to

mv(q) = ∥det(J)∥ , (14)

which will not further be considered. The velocity manipulability measure in Equation (13)
is proportional to the volume of the velocity ellipsoid [26,32], whose semi-axes correspond
to the square roots of the eigenvalues of Av = JJT and point in the direction of the
eigenvectors of Av. Near a singular configuration, the velocity ellipsoid is increasingly
compressed. In the singularity, it collapses; thereby, the distance to a singularity can
also be evaluated. For the two-dimensional example in Figure 1, it becomes a line. The
velocity ellipsoid shown gives a quantitative measure of the ability of the EE to move in
any direction. Larger values of mv represent greater freedom for the movement of the EE
in a specific configuration [7].
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2.3. Force Manipulability Measure

Similarly, the attainable forces and moments of EE can be represented by the so-called
force ellipsoid [7,30,33]. If the joint torques satisfy ||τq|| = 1, this assumes a unit sphere in
the n-dimensional joint-torque space. This unit joint-torque condition can be written as

τT
q τq = 1. (15)

With the substitution of Equation (10) in (15)

(JTfEE)
TJTfEE = 1

fT
EEJJTfEE = 1 (16)

similar results as in the calculation of Equation (13) can be obtained. With the resulting
matrix Af = (JJT)−1, the so-called force ellipsoid can be calculated. The shape of this
ellipsoid is defined according to the eigenvalues and eigenvectors of AF = (JJT)−1. The
eigenvectors point in the same direction as those of Av (the velocity ellipsoid), and the
Eigenvalues are reciprocal to those of the velocity ellipsoid. With the calculated quadratic
matrix Af, the force manipulability measure mf with

mf =
√

det(Af) =
√

det((JJT)−1) (17)

can be calculated.

2.4. Stiffness Manipulability Measure

Ajoudani et al. [34] and Chen et al. [35] discuss the Cartesian stiffness of modern
industrial manipulators, depending on their joint configuration and the normal stiffness
performance measure. Basics regarding stiffness calculations for articulated, rigid-body
systems can be found in the work of Kövecses [36]. For a discussion of joint stiffness
identification, see Dumas et al. [37]. Since stiffness (in general, K) or compliance, C = K−1,
must also be taken into account when using collaborative manipulators, the following
section uses a measure of the Cartesian stiffness, Kc, of the EE. The joint stiffness ki with
i = 1, ..., n of each joint is collected in a joint-stiffness matrix

Kq =

k1 0 0

0
. . . 0

0 0 kn

. (18)

Busson et al. [38] use joint compliance and the theory of virtual work to describe the
mapping between EE and joints. Sallsbury [39] shows how to calculate the Cartesian
stiffness by the usage of the joint stiffness matrix Kq and the manipulator Jacobian J(q)
by following a generalization of the linear spring relationship Fspring = kspring∆x with ∆x
describing a change in the length of a linear spring element. Using compliance, virtual
displacement, and the substitution of

δq = Cqτq , (19)

δξ = CxfEE (20)

in
δξ = Jδq (21)

results in

CxfEE = JCqτq. (22)
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After the substitution of Equation (10) in (22), one obtains

CxfEE = JCqJTfEE (23)

and with the elimination of forces and the usage of the relation between stiffness and
compliance, the Cartesian stiffness matrix can be calculated as

Kx = (JK−1
q JT)−1 , (24)

which can be further reformulated as

Kx = J−TKqJ−1. (25)

Here, additional terms depending on EE forces and torques will be neglected [37]. The
Cartesian stiffness described in Equation (24) can also be represented as an ellipsoid [34,40].
Eigenvalues λ of Kx correspond to the length of the semi-axes and can be used to character-
ize the stiffness of the manipulator in a particular configuration. Here, as a representation
of the manipulator stiffness, the smallest eigenvalue of the Cartesian stiffness matrix,

mst(q) = min(eig(Kx)) (26)

will be used as a stiffness measure.

2.5. Dynamic Manipulability Measure

The previously discussed manipulability measures only use system kinematics to
evaluate the manipulability of a robotic system. The dynamic manipulability measure
first defined by Yoshikawa [41] in 1985 was used by Chiacchio and Concilio [42] in 1998
to define a new dynamic manipulability ellipsoid for redundant manipulators. This new
formulation of the manipulability ellipsoid is used to evaluate manipulator capabilities
in terms of task-space acceleration and define a dynamic manipulability measure. For a
full overview, we will present the calculations for this formulation in short form in the
following section. Differentiating Equation (3) with respect to time leads to

ξ̈ = a = J(q)q̈ + J̇(q)q̇ . (27)

The manipulator dynamics can be written as

τq = B(q)q̈ + C(q, q̇)q̇ + ffric + τCOM
q + JfEE , (28)

where τq ∈ Rn is the vector of n joint torques, fEE ∈ Rm is the vector of m EE forces,
B ∈ Rn×n is the inertia matrix, C ∈ Rn×n includes the Coriolis and centrifugal terms, and
τCOM

q is the vector of gravitational force terms. For a manipulator in a given configuration
and without the EE interacting with its environment, we consider the joint speed q̇ = 0, the
friction force ffric = 0, and the external forces fEE = 0. Using the proposed simplifications,
and combining the robot dynamics with Equation (27) and solving for ξ̈, leads to

ξ̈ = JB−1τ− JB−1τCOM
q . (29)

Using a scaling matrix, Tmax, with the maximum joint torques
Tmax = diag(τmax

1 , . . . , τmax
n ) and the inertia matrix B, the matrix

Q = (T−1
maxB)TT−1

maxB (30)
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can be introduced. Combining the results and using a pseudo-inverse, the weighted
Jacobian matrix is

J+Q = Q−1JT(JQ−1JT)−1 (31)

and the dynamic manipulability ellipsoid can be defined as

(ξ̈+ JB−1τCOM
q )T(J+Q)

TQJ+Q(ξ̈+ JB−1τCOM
q ) ≤ 1. (32)

By using the core of Equation (32), this results in the definition of the dynamic accelera-
tion matrix

N = (J+Q)
TQJ+Q . (33)

When calculating the eigenvalues of the matrix N, a dynamic manipulability measure can
be defined as

ma(q) = min(eig(N)) , (34)

which represents the minimal eigenvalue of the dynamic acceleration matrix in a certain
joint configuration.

In the next section, we use the manipulability measures (mv, mf, mst, and ma) based
on force, velocity, stiffness, and acceleration, discussed here and summarized in Table 1 to
develop a method for defining the task-dependent comfort zone for a mobile manipulator,
taking into account different task requirements. The resulting task-dependent comfort zone
will provide more specific guidelines for selecting appropriate base-placement strategies,
ultimately improving the robot’s ability to perform tasks. Later, we define the term manip-
ulability measure, mx(q), with x ∈ {v, f, st, a} in general for any measure that can evaluate
a particular manipulator joint configuration using a scalar value.

Table 1. Summary of manipulability measures used.

Symbol Formula Description

mv Equation (13) Proportional to the volume of the EE velocity ellipsoid, which represents
the ability to move the EE with a certain velocity in all directions.

mf Equation (17) Proportional to the volume of the EE force ellipsoid, which represents the
ability to act with a certain force in all directions.

ma Equation (26) Represents the minimum eigenvalue of the Cartesian stiffness matrix,
which characterizes the smallest stiffness in a certain configuration.

ma Equation (34) Represents the minimum eigenvalue of the weighted dynamic manip-
ulability matrix, which characterizes the smallest acceleration in a cer-
tain direction.

3. Task-Dependent Comfort Zone

In our previous work, the comfort zone was defined by combining the manipulability
measures with the help of a multi-objective optimization [28]. In this approach, with
multi-objective optimization, the problem arises in which the used measures are related,
and in some cases, they are inversely proportional. Here, a different approach is considered
to increase the variable usability of the proposed algorithm by choosing one measure at a
time. However, care was taken to retain the possibility of performing a combination of the
used measures.

3.1. Task Classification

In modern industrial environments, the number of instances of and the need for
human–robot interaction, and thereby collaborative tasks, continue to increase. Thus,
tasks can be classified according to requirements for a robotic system [43]. As humans,
we can classify tasks according to forces on our bodies arising from interactions with
the environment. This can be done due to our great and fast sensory capabilities and by
learning how to interact with the environment [44]. To classify a robotic task, many different
approaches are possible. For example, the motion constraints and the total force/torque
acting on the system could be used [45]. In Table 2, we show a selection of tasks and try to



Robotics 2024, 13, 122 9 of 25

classify them according to their velocity, force, stiffness, and acceleration requirements so
as to then choose the suitable manipulability measure for a certain task. Of course, these
are just general examples, and the specific requirements for each task will depend on the
details of the task. It shows that our concept of a task-dependent comfort zone can be
extended by using a different manipulability measure. Depending on the task, a directional
manipulability measure [46] may be preferable, as opposed to the more general approach
discussed in Section 2.2.

Table 2. Possible classification of robotic tasks.

Task Type Velocity Force Stiffness Acceleration

Pick and Place High Moderate Low High
Assembly Moderate High High Moderate
Painting Moderate Low Low Low
Milling Low High High Low

3.2. Motivation

For any mobile manipulator, which is a combination of a mobile robot platform and a
serial manipulator, the p + m joint variables can be separated as

q = [qP, qM]T = [qP1, qP2, . . . , qPp, qM1, qM2, . . . , qMm]
T , (35)

where p is the number of joints of the mobile platform, and m is the number of joints of the
serial manipulator. Any pose of a mobile robot platform on a plane can be described with a
three-dimensional vector:

p = (xP, yP, θP) ∈ R×R× [0, 2π) , (36)

xP and yP are the coordinates, and θP is the rotation around the local z-axis of the mobile
robot. The pose of the EE of a robot manipulator can be described using

ξEE = [xEE, ϕEE]
T = [xEE, yEE, zEE, ϕx,EE, ϕy,EE, ϕz,EE]

T , (37)

with ϕEE standing for the description of the orientation. We use Euler angles with rotation
around the (x, y, z)-axis, and xEE is the position of the EE. This can also be expressed
using the homogeneous transformation matrix TEE. The problem is now to find feasible
placements for the mobile base P = (p1, . . . , pnp) with pi = (xP, yP, θP) ∈ R × R ×
[0, 2π)∀i ∈

{
1, 2, 3, . . . , np

}
, where the EE can achieve the desired pose described by the

homogeneous transformation matrix Tdes. The manipulation of an object located on a desk
is used to motivate the employed algorithm. The task focuses on the fast velocity of the
EE. Thus, in this description, only the velocity-dependent manipulability measure will be
taken into account. This task can be seen in a lot of standard industrial applications, as well
as in the rules of the RoboCup@Work competition [47]. The schematic drawing shown in
Figure 2a depicts the principle of the task setup.

The pose of the object is described by the desired pose vector ξEE,des = [xEE,des, ϕEE,des]
T,

and it will, further on, be used as the starting point to calculate the task-dependent comfort
zone for a suitable mobile base placement. Note that the calculation of the manipulability
measures does not include the joints of the mobile platform because excluding the platform
joints allows for the reservation of this degree of freedom for navigation within the des-
ignated comfort zone, and the orientation of the platform is often influenced by external
factors, such as spatial constraints.
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Figure 2. Schematic overview for a pick-and-place task: (a) mobile platform (light gray), manipulator
(links in blue and joints in red), and object (dark gray). (b) Feasible discrete mobile base positions for
a desired EE goal.

3.3. Recommended Workspace

While using a serial link-structured robotic manipulator with rotational joints, the
values for the minimal and maximal EE (x, y)-coordinates, xEE,min/max and yEE,min/max, are
dependent of the desired z position. A subspace of the manipulators’ workspace where
all positions and all orientations of the EE can be achieved is called a recommended or
dexterous workspace. To achieve all orientations ϕEE,des of the EE, the desired position
PEE,des = [xEE,des, yEE,des, zEE,des]

T should be inside the recommended workspace of the
robotic manipulator.

The workspace boundaries and workspace characterization of serial manipulators
have been extensively researched [7,48–50]. Here, for simplification, the outer limits of
the recommended workspace for serial link manipulators are described using a triaxial
ellipsoid as an approximation,

(x − xM,Base)
2

a2 +
(y − yM,Base)

2

b2 +
(z − zM,Base)

2

c2 = 1 , (38)

with parameters a,b,c beeing the length of the three half-axes, which are specific to the
serial manipulator used, and the origin of the serial robot manipulator base frame is

PM,Base = [xM,Base, yM,Base, zM,Base]
T . (39)

Unreachable points within this simplified workspace are excluded while the proposed
comfort zone is calculated.

By varying the (x, y)-positions of the mobile platform while holding the desired
position of the EE fixed in the world frame, the configuration of the robotic manipulator
can be changed. This set of configurations will be searched to find the comfort zone for
the mobile manipulator. To find the inequality constraint equation for a point inside the
recommended workspace, a plane is used to cut the recommended workspace ellipsoid
per Equation (38) at point Pdes with varying (x, y)-coordinates and a fixed z-coordinate.
Therefore, this plane, in its normal form, is

x · n0 = PEE,des · n0 (40)
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with n0 = [0, 0, 1]T said to be parallel to the (x, y)-plane, resulting in

z = zEE,des. (41)

When combining Equations (38) and (41), an ellipse parallel to the (x, y)-plane with its
center at the point PM,Base:

EEE(x, y) :=
x2

a2(1 − z2
EE,des

c2 )
+

y2

b2(1 − z2
EE,des

c2 )
= 1 (42)

and the axes lengths

â =

√
a2(1 −

z2
EE,des

c2 ) (43)

b̂ =

√
b2(1 −

z2
EE,des

c2 ) (44)

can be found. Using the boundary condition

x2

â
+

y2

b̂
≤ 1 (45)

defined by the ellipse in Equation (42), a set of points, PEE ∈ R2, can be calculated. This
set includes all points that can be reached via the EE while the mobile base is placed at the
point PM,Base, and it can be defined as

PEE =

{
PEE(x, y) ∈ R2 | x2

â
+

y2

b̂
≤ 1

}
. (46)

Using the desired EE position PEE,des and all points PEE ∈ PEE, a new set

PBase =
{

PBase ∈ R2 | PBase(x, y) = PEE(x, y) + PEE,des ∀ PEE(x, y)
}

(47)

of feasible base positions can be found. Assuming a planar movement in the (x, y)-plane of
the mobile base, and due to Equation (41), zBase is set to zero, and it will further be neglected.
Each element in the new set PBase represents a suitable position of the mobile base to
ensure the desired EE position, Pdes, using different manipulator-joint configurations. By
evaluation of the continuous set PBase with discrete values for x = x̂ and y = ŷ with

x̂ = [xmin, xmin + ∆x, . . . , xmax − ∆x, xmax] (48)

and
ŷ = [ymin, ymin + ∆x, . . . , ymax − ∆x, ymax] (49)

the discrete set
P̂Base =

{
P̂Base,i(x̂, ŷ) ∈ PBase

}
(50)

with nBase points can be found. Figure 2b shows an exemplary set of nBase = 460 fea-
sible positions for a mobile base with a mounted serial manipulator. The discrete set
of points P̂Base is used to find a subset, defined as a task-dependent comfort zone (see
Equation (54)) for mobile manipulator placement. Thereby, different manipulability mea-
sures, mv(q), mf(q), mst(q), ma(q), as described in the previous sections, are used to
evaluate the corresponding joint configuration for each point in the discrete set.
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3.4. Manipulability Measure Norm, Combination, and Constraints

In order to obtain an equal weighting of the different measures and set suitable bound-
ary conditions, the measures are normed with the help of the minimum and maximum
values out of a set of possible points, P̂Base. The used manipulability measure mx can be
normalized into a range, 0 ≤ m̂x ≤ 1, using fNorm( mx) = m̂x with

fNorm(mx,i) =
mx,i − mx,min

mx,max − mx,min
, (51)

mx,max is the maximum, and mx,min is the minimum value out of the given set of manipula-
bility measures. This is shown through an example in Figure 3a. Furthermore, the measures
can be combined using a weighted sum with

m̂c,i = kvm̂v,i + kfm̂f,i + kstm̂st,i + kam̂a,i , ∀i ∈ {0, 1, . . . , nBase} , (52)

where 0 ≤ kx ≤ 1 is used with x ∈ {v, f, st, a} and kv + kf + kst + ka = 1 to maintain
normalization.
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Figure 3. Discrete point-plot representation of feasible base position points for the Stanford Robotics
Platform. The quality of the points is described by the manipulability measure mv; the red points
have high manipulability. The manipulability measure is dependent on the angular velocity of the EE
for a desired EE pose, ξEE,des = [−0.05, 0.45, 0.65, π

4 , 0, −π
4 ]T . (a) Normalized values of mv from 0

to 1; (b) comfort zone Azone for a desired EE point, represented using red dots with a minimum of
85% manipulability.

3.5. Comfort Zone Definition

The discrete set of points PBase can be constrained into a feasible zone by using
constraints for the manipulability measure

m̂x,low ≤ m̂x,i ≤ m̂x,up , (53)

where m̂x,low and m̂x,up are the lower and upper constraints for each individual measure,
(m̂v, m̂f, m̂st, m̂a, m̂c). Using these constraints, a zone of possible base positions can be
defined. The defined task-dependent comfort zone Azone for mobile manipulators with

Azone = {Pzone(x, y) ∈ R2 | Pzone,i(x, y) ⊂ P̂Base
∧(m̂x,low ≤ m̂x,i ≤ m̂x,up)∀i = [1, . . . , nBase]}

(54)
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includes all points Pzone, such that the corresponding joint configuration and its manipula-
bility measure fulfills the set constraints, as shown in Figure 3b.

3.6. Comfort Zone Mesh Representation and Target Points

With the use of the discrete points defined by the comfort zone Equation (54), a square
mesh, as shown in Figure 4a, is built. For simplification, and to avoid further computational
effort with more precise discretization, the mean value out of four corner points for each
square is used to interpolate the manipulability measure inside one square. We assume that,
in this square, around each point, no unfeasible solution in the manipulator configuration
will arise. The whole region is now used as a feasible goal for the mobile base. Nevertheless,
a defined point to aim for is needed, and therefore, we use the mesh representation and
transform it into pixel coordinates where each square (center point) will be represented
using an individual pixel. The resulting image, shown in Figure 4b, will then be used for
further investigations with image-processing algorithms from scikit-image (https://scikit-
image.org/, accessed on 3 August 2024), an image-processing algorithm collection in
Python [51], and OpenCV (https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html, accessed
on 3 August 2024), a library of Python bindings designed to solve computer vision problems.
The following algorithms are used in three steps to determine a possible goal position
inside the comfort zone: Firstly, the identification of possible disconnected areas uses the
scikit-image function label [52]. Secondly, the comparison of the resulting areas uses
the scikit-image function regionprops [53] and, lastly, we use the OpenCV functions
distanceTransform [54] and minMaxLoc to find the centerpoint and radius of the largest
possible inscribed circle; see Figure 5.
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Figure 4. Comfort zone example for the Stanford mobile manipulator, transformation to pixel
representation. Each red/green square in (a) is transformed to a white pixel in (b). Purple x shows
the maximum value of the used manipulability mv. Area boarders are represented by green squares.

Figure 5 also shows that only the largest area found will be considered in the further
investigation. Therefore, other points that fulfill the manipulability constraints will be
neglected even when the highest manipulability can be found outside the proposed comfort
zone. Using the center of the largest possible inscribed circle in the comfort zone increases
the robustness and enables moving around within this zone without a substantial loss
of manipulability.

https://scikit-image.org/
https://scikit-image.org/
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
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Figure 5. Comfort zone square mesh representation. The green circle represents the largest possible
inscribed circle in the comfort zone with its center point marked in green. The maximum value of
the used manipulability mv is marked in purple. Each red square represents a suitable mobile base
position for the desired EE goal at zEE,des with at least 85% of the maximum manipulability.

4. Comfort Zone Simulation Examples

We want to show the usage of the comfort zone for a given pick task and also reveal
that the approach can be applied to different types of mobile manipulators. All of the
mobile manipulators used (Stanford Robotics Platform, LeoBot, and Kairos) are equipped
with a holonomic mobile base to achieve omnidirectional movement. Each of these bases
supports different types of serial manipulators. The results of this evaluation will provide
insight into the practical usefulness of the proposed approach and its ability to offer specific
guidelines for selecting appropriate base placements for different mobile manipulators.
For the simulations, a discrete workspace with a discretization of ∆x = ∆y = 0.05 m
and ∆z = 0.01 m is used. The region of interest is a subdomain of the manipulators’
workspace. Therefore, a cuboid with 1.6 × 1.6 × 0.4 m, as shown in Figure 6, is used.
The simulation examples use either a desired EE pose, ξEE,des = [xEE,des, ϕEE,des]

T , or a
desired EE position, xEE,des = [xEE,des, yEE,des, zEE,des]

T , where the orientation of the EE
is not considered in the inverse kinematics calculation. For serial manipulators with a
defined number of inverse kinematics solutions (UR5 and PUMA), all feasible solutions
(in terms of self-collision between the manipulator and the base) can be checked; for
Panda, a numerical calculation of the inverse kinematics is used, so only one solution
is checked. Also, within the results shown, only either translational or rotational parts



Robotics 2024, 13, 122 15 of 25

of the Jacobian matrix are considered while the manipulability measures are calculated.
Using the full Jacobian matrix would lead to problems, as discussed in [55]. Thereby, the
usage of the full Jacobian matrix has been shown to have no physical consistency due to
the fact that the rotational and translational parts have different physical units. All the
simulations and calculations are done using Python and the flexible multibody systems
framework Exudyn [56] (https://github.com/jgerstmayr/exudyn, accessed on 3 August
2024). In the simulation examples, the inverse kinematics algorithm ikine_LMS according
to Levenberg–Marquadt with Sugihara’s tweak [57] from Peter Corke’s robotics toolbox [58]
(https://github.com/petercorke/robotics-toolbox-python, accessed on 3 August 2024),
was used.

Figure 6. Discrete subdomain of the Puma560 manipulator workspace shown as a gray cuboid.
Evaluation of all discrete points regarding their manipulability mv (not normalized; ∆z = 0.05).

4.1. Stanford Robotics Platform

The Stanford Robotics Platformis a mobile manipulator with a Puma560 serial ma-
nipulator (build by Unimation in Danbury, Connecticut, USA) mounted on a base using
four so-called powered caster modules [59]. In Figure 7b, we show a 3D-CAD drawing, as

https://github.com/jgerstmayr/exudyn
https://github.com/petercorke/robotics-toolbox-python
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well as the kinematic chain. The Stanford Robotics Platformwas developed and built by the
Stanford University Computer Science Department in the year 2000 [60], and it combines a
Unimate Puma560 manipulator with six rotational joints and a Euler wrist configuration
mounted on a Nomadic XR4000 holonomic mobile base. The Puma560 manipulator is
widely used in research as an example of a classic six-DOF serial manipulator. The kine-
matic chain and its parameter are well described in the literature [31,61,62]. The resulting
system with 9 DOF is shown in Figure 7a, including the mobile platform joints P1, P2, and
P3 and the manipulator joints M1 to M6.

(a) (b)

Figure 7. Serial manipulator with six rotational joints mounted on a Nomadic XR4000 holonomic
mobile base. (a) Kinematic chain of the Stanford Robotics Platform; (b) Stanford Robotics Platform
built by Stanford University.

In Figure 8, multiple possible placements for the mobile manipulator are shown. Both
figures show the same results for the pose and position while using manipulability mv
for which only linear velocities are considered. Figure 9 shows the results for mv based on
only angular velocities whereby, especially in Figure 9a, the main purpose of the proposed
comfort zone can be seen. Here, the maximum value of the manipulability is outside the
proposed comfort zone; therefore, using this position leads to a lack of manipulability
during operation for even a small movement of the mobile base. Using one of the proposed
points (green), which are the centers of the maximum inscribed circles (light green), always
leads to a manipulability of at least 65% of the maximum value.
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Figure 8. Comfort zone for the Stanford Robotics Platform using the linear velocity v-dependent
manipulability measure mv with a minimum of 65% manipulability for the EE pose (a) (ξEE,des =

[0.05, 0.40, 1.55, π
4 , 0, −π

4 ]T) and EE position (b) (ξEE,des = [0.05, 0.40, 1.55]T).
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Figure 9. Comfort zone for the Stanford Robotics Platform using the angular velocity ω-dependent
manipulability measure mv with a minimum of 65% manipulability for the EE pose (a) (ξEE,des =

[0.05, 0.40, 1.55, π
4 , 0, −π

4 ]T) and EE position (b) (ξEE,des = [0.05, 0.40, 1.55]T).

4.2. Mobile Manipulator LeoBot

The mobile manipulator LeoBot [63], shown in Figure 10, uses Mecanum wheels
for base motion with a mounted Franka Emika Panda seven-DOF serial manipulator.
Figure 10a shows the kinematic chain of LeoBot which achieves a total of 10 DOF, including
the mobile platform joints P1, P2, and P3 and the manipulator joints M1 to M7. The Franka
Emika Panda is widely used in research and development, and its parameters, including
link masses, inertias, and center of mass, were recently investigated by researchers [64].
Figure 11 shows the results using mv based on linear velocities. Figure 11a shows that a
mobile base placement at the proposed point (the center of the maximal possible inscribed
circle) offers the advantage of staying within a zone with a minimum 30% manipulability
even when the platform is moved. Also, here, the maximal manipulability is outside the
comfort zone, and a small movement there would lead to a great loss in manipulability.
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The center points of all the inscribed circles found would be feasible mobile-platform goal
positions with higher flexibility in base movement and ensure a solution for the inverse
kinematics. A selection between them could be made via a comparison of the individual
manipulability of each point, but for all points here, the manipulability is at least higher
than or equal to 30% of the maximum value.

(a) (b)

Figure 10. LeoBot mobile manipulator developed and built by the Department of Mechatronics at the
University of Innsbruck in the year 2020. The mobile manipulator combines a Franka–Emika–Panda
manipulator with seven rotational joints mounted on a holonomic mobile base using Mecanum
wheels. (a) Kinematic chain of the mobile manipulator LeoBot; (b) mobile manipulator LeoBot.
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Figure 11. Comfort zone for the mobile manipulator LeoBot using the linear velocity v-dependent
manipulability measure mv with a minimum of 30% manipulability for the EE pose (a) (ξEE,des =

[−0.05, −0.05, 0.65, π
4 , 0, −π

4 ]T) and EE position (b) (ξEE,des = [−0.2, −0.35, 0.65]T).

Figure 12 shows the results using mv based on angular velocities. The mobile base
placement at the proposed point (the center of the maximal possible inscribed circle)
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achieves a large zone with a minimum 30% manipulability. The maximum value of
manipulability is located outside of the comfort zone. So, using that as a base goal position
would quickly lead to a lack of manipulability.
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Figure 12. Comfort zone for the mobile manipulator LeoBot using the angular velocity ω-dependent
manipulability measure mv with a minimum of 30% manipulability for the EE pose (a) (ξEE,des =

[−0.05, −0.05, 0.65, π
4 , 0, −π

4 ]T) and EE position (b) (ξEE,des = [−0.2, −0.35, 0.65]T).

4.3. Mobile Manipulator Kairos

The mobile manipulator Kairos from the company Robotnik (Valencia, Spain) (https:
//robotnik.eu/, accessed on 3 August 2024), combines a mobile base using Mecanum
wheels with a mounted Universal Robot UR5 serial manipulator, as shown in Figure 13.
Figure 13a shows the kinematic chain of Kairos, which achieves in total of nine DOF,
including the mobile platform joints P1, P2, and P3 and the manipulator joints M1 to M6.
The Universal Robot UR5 manipulator is often used in medium-sized companies, as well as
in research and development. Its parameters, including link inertias, can be found in [65,66].
Figure 14 shows the results using mv based on linear velocities. Figure 14a shows that a
mobile base placement at the proposed point (the center of the maximal possible inscribed
circle) offers the advantage of staying within a zone of minimum 30% manipulability, even
when the platform is moved. The maximum value of the manipulability is located outside
the comfort zone. Hence, using this position, already, a small movement of the mobile
platform would lead to a manipulability lower than 30% of the maximal value, and the
same is also valid for Figure 14b.

Figure 15 shows the results using mv based on angular velocities. The mobile base
placement at the proposed point (the center of the maximal possible inscribed circle)
achieves a large zone of minimum 30% manipulability. In Figure 15b, the maximum value
of manipulability is located near the middle of the comfort zone. Here, a small area is
excluded from the comfort zone, so a base movement into this area could lead to a failure
of the task—as the inverse kinematics could not find a solution for this example. The
center points of all inscribed circles would be feasible mobile-platform goal positions with
higher flexibility in base movement and ensure a solution for the inverse kinematics. A
selection between them could be made via a comparison of the individual manipulability
of each point, but for all points here, the manipulability is at least higher than or equal
to 30% of the maximum value. Figure 16 shows the mobile manipulator Kairos within a
Python simulation. There, Exudyn (a C++ based Python framework for flexible, multibody
systems’ simulation) was used to simulate the mobile platform, as well as the manipulator.
The mobile platform and the manipulator links are represented as rigid bodies, and the

https://robotnik.eu/
https://robotnik.eu/
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Mecanum wheels are modeled with a contact-friction model based on the rolling disk, as
described in [4]. In Figure 16a, the task starts, and the comfort zone (possible mobile-base
goal placements) is drawn using red boxes. The height of each box corresponds to the
manipulability measure used, mv. Figure 16b shows the mobile manipulator within the
pick task when the mobile base is already in its goal position.

M1

M2

M3

M5M6

M4

P1

P2

P3

(a) (b)

Figure 13. Mobile manipulator Kairos developed and built by the company Robotnik. The mobile
manipulator combines a Universal Robot UR5 manipulator with six rotational joints mounted on
a holonomic mobile base using Mecanum wheels. (a) Kinematic chain of the mobile manipulator
Kairos; (b) mobile manipulator Kairos.
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Figure 14. Comfort zone for the mobile manipulator Kairos using the linear velocity v-dependent
manipulability measure mv with a minimum of 30% manipulability for the EE pose (a) (ξEE,des =

[0.05, 0.35, 1.1, π
4 , 0, −π

4 ]) and EE position (b) (ξEE,des = [0.05, −0.35, 1.1]).
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Figure 15. Comfort zone for the mobile manipulator Kairos using the angular velocity ω-dependent
manipulability measure mv with a minimum of 30% manipulability for the EE pose (a)(ξEE,des =

[0.05, 0.35, 1.1, π
4 , 0, −π

4 ] ) and EE position (b) (ξEE,des = [0.05, −0.35, 1.1] ).

(a) (b)

Figure 16. Mobile manipulator Kairos approaching a target object using the task-dependent comfort
zone (red boxes) for mobile manipulator base placement. Values as shown in Figure 14a: (a) mobile
manipulator Kairos in the start position; (b) mobile manipulator Kairos in the pick-object position.

5. Conclusions

In this work, we have presented a method to determine a zone of possible base
positions, the so-called task-dependent comfort zone, for mobile manipulators based on
different manipulability measures. Our method takes into account the specific demands of
different tasks, such as the need for high-speed movements, large forces, high accelerations,
or heightened stiffness. To find a suitable goal position for a mobile manipulator, we used
the discretization of the manipulator workspace and different image-processing methods.

We evaluated our method using Python computation with different holonomic mobile
manipulators. First, we used the Stanford Robotics Platform with a mounted Puma560
(6DOF, spherical wrist). Secondly, we used the mobile manipulator LeoBot with a mounted
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Franka Emika Panda (7DOF), and lastly, we used the mobile manipulator Kairos with a
mounted Universal Robot UR5 (6DOF).

Our results show that manipulability measures could be used to develop a task-
dependent comfort zone for mobile manipulators, providing more specific guidelines for
selecting appropriate mobile-manipulator base placement strategies. In path-planning al-
gorithms, a fixed goal position for the mobile base is usually given, although in many cases,
the exact positioning of the platform is not as important as the goal of the manipulators’
end-effector.

Once the task-dependent comfort zone is calculated, it can help find feasible mobile-
manipulator base positions in dynamically changing environments. Our study high-
lights the importance of considering manipulability measures when determining mobile-
manipulator base positions, and it shows the potential of our proposed method for use in
practical applications. Future work could explore the use of our method within real-world
scenarios to further evaluate its effectiveness. Therefore, combining the concept of the
task-dependent comfort zone with a path planning algorithm to use it within the robot
framework ROS should be considered, especially a combination with the costmap2D algo-
rithm [67] used in the ROS-Navigation stack. With the help of this algorithm, the proposed
task-dependent comfort zone could be included as an additional cost map layer in the
ROS-Navigation stack [68].
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