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Abstract: Trajectory planning is a key task in unmanned aerial vehicle navigation systems.
Although trajectory planning in the presence of obstacles is a well-understood problem,
unknown and dynamic environments still present significant challenges. In this paper,
we present a trajectory planning method for unknown and dynamic environments that
explicitly incorporates the uncertainty about the environment. Assuming that the position
of obstacles and their instantaneous movement are available, our method represents the
environment uncertainty as a dynamic map that indicates the probability that a region
might be occupied by an obstacle in the future. The proposed method first divides the free
space into non-overlapping tetrahedral partitions using Delaunay triangulation. Then, a
topo-graph that describes the topology of the free space and incorporates the uncertainty of
the environment is created. Using this topo-graph, an initial path and a safe flight corridor
are obtained. The initial safe flight corridor provides a sequence of control points that we
use to optimize clamped B-spline trajectories by formulating a quadratic programming
problem with safety and smoothness constraints. Using computer simulations, we show
that our algorithm can successfully find a collision-free and uncertainty-aware trajectory
in an unknown and dynamic environment. Furthermore, our method can reduce the
computational burden caused by moving obstacles during trajectory replanning.

Keywords: trajectory planning; aerial vehicles; quadratic programming; B-spline function-
based trajectory

1. Introduction
The increasing application of unmanned aerial vehicles (UAVs) in a diversity of ar-

eas such as agriculture [1] and delivery [2] has resulted in a growing interest in fully
autonomous, on-board navigation systems [3,4]. Navigation in unknown environments
remains one of the greatest challenges for UAVs, especially when dynamic obstacles with
unknown future movements are considered. Previous studies on autonomous navigation in
dynamic environments assume that the movements of obstacles are known in advance [5,6],
thus excluding uncertainty during replanning. Other studies include unknown and dy-
namic obstacles by formulating the navigation problem as a temporal sequence of static nav-
igation problems [7]. Even though this approach can be applied to unknown and dynamic
scenarios, it leads to frequent replanning, which results in a high computational burden.

In this paper, we present a framework to model autonomous navigation problems
in unknown and dynamic environments and propose a navigation method for generat-
ing collision-free trajectories. Our method is uncertainty-aware, as it explicitly assesses
the uncertainty of the estimation of the movement of dynamic obstacles. Uncertainty is
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incorporated using the concept of dynamic mapping, proposed in [8]. A dynamic map
describes the probability distribution of the future locations of the obstacles in a dynamic
environment and is constructed using the predictions provided by a trajectory prediction
algorithm, such as a Kalman filter. In designing our method, we assume that the onboard
navigation system can track and localize multiple obstacles, and we use this information to
predict their future movements.

Our flight trajectory planning method uses a description of the environment where
obstacles are embedded into axis-aligned bounding boxes (Figure 1). First, Delaunay
triangulation applied to the vertices of the object bounding boxes allows us to partition
the free space into regions that define a topo-graph. This topo-graph is defined by nodes,
which are the centers of the partitions and edges connecting the centers of inter-connected
partitions. The uncertainty information provided by the dynamic map is used to define
an edge cost that quantifies the collision risk. We then apply the Dijkstra algorithm to this
topo-graph to create an uncertainty-aware initial path and a corresponding flight corridor,
which are later used to optimize a trajectory using a B-spline representation.

Figure 1. Given a start and goal points in a 3D space that includes a random distribution of obstacles
(black cuboids), our method generates a trajectory (red line) within a safe flight corridor represented
as a sequence of tetrahedrons (purple edges and vertices).

The main contributions of this paper are as follows:

• We extend the concept of the dynamic map, initially introduced in [8], to effectively
quantify uncertainty arising from dynamic environments;

• We propose a novel flight corridor generation method utilizing Delaunay triangula-
tion and introduce a new trajectory optimization approach based on the generated
flight corridor;

• The feasibility and effectiveness of the proposed method are evaluated through com-
puter simulations, demonstrating that it can reduce the need for frequent replanning.

This paper is organized as follows. In Section 2, we review previous studies focusing
on flight corridor generation and trajectory optimization. In Section 3, we outline the
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assumptions and preliminaries of our paper that clarify the foundational concepts and
constraints of our study. In Section 4, we introduce the notion of 3D dynamic mapping
and describe how it can be used to quantify the risk of collision. In Section 5, our method
to generate a flight corridor for dynamic environments is described. Our B-spline-based
method for trajectory optimization is presented in Section 6. In Section 7, we evaluate
the proposed flight corridor generation method and the trajectory optimization method.
Finally, in Section 8, we present our conclusions and future lines of work.

2. Related Work
Trajectory planning is the process of creating an optimal, feasible, and collision-free

trajectory connecting two given UAV states describing the position, orientation, and dy-
namical features of the UAV under consideration. The largest accessible space for the UAV
is known as the safe flight corridor. A safe flight corridor can be formulated as a set of
safety constraints that are imposed during trajectory optimization, along with other UAV
dynamical constraints. In this section, we first discuss previous work on flight corridor
generation and review existing proposals on trajectory optimization.

Previous studies on flight corridor generation have sought to identify safe regions in
the space, i.e., regions that are not occupied by static obstacles. To identify safety regions,
the authors of [9] proposed a method consisting of growing an ellipsoidal region around
a given location on a map until an obstacle is reached. The authors of [10] extended the
strategy proposed by [9], using an initial path in the space as a sequence of segments
and growing free ellipsoidal regions around each line segment. However, expanding the
ellipsoidal regions is an iterative process, which is time-consuming and computationally
demanding. To reduce the time and computational burden of this process, the authors
of [11] proposed a method that expands each sampled location from an initial path to form
the largest accessible free space, and similarly, the authors of [12] designed a method that
inflates each sample into a spherical space.

Trajectory optimization methods can be grouped into two families, namely discrete-
time and continuous-time methods. Discrete-time methods [13–15] represent the trajectory
as a sequence of waypoints. The location of each waypoint is optimized using the gradient
of a field representing the distance to the closest obstacle, resulting in waypoints being
pushed away from the obstacles. The quality of the trajectory depends on the number of
waypoints used, which has to be set before trajectory optimization and cannot therefore be
modified during optimization.

Continuous-time methods use basis functions to define the trajectory as a function
of time. The most common basis functions include monomial, Bernstein, and B-spline
functions. References [11,16,17] formulated a quadratic programming problem with the
coefficients of the piecewise monomial functions as the decision variable. However, the so-
lution to this quadratic problem involves matrix inversion, which may cause numerical
instability. As an extension to this formulation, the authors of [18] reformulated the problem
by using endpoint derivatives as the decision variable to find an analytical solution. One of
the drawbacks of this method is that it does not include a collision cost when optimizing
the trajectory. To alleviate this, refs. [19,20] incorporated the collision cost into the penalty
function. This introduces a new challenge, as the inclusion of the collision cost results in a
non-convex problem, which can lead to failures in finding the optimal solution.

Other curves to represent trajectories have also been explored; for example, piecewise
Bezier curves [21], as well as a variety of B-splines, including quintic uniform B-splines [7],
clamped uniform B-splines [5], and non-uniform B-splines [22]. In [22], non-uniform B-
splines are used to represent the trajectory, and non-uniformly distributed knots are utilized
to optimize the time of the trajectory. Compared to the coefficients of monomial functions,
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the use of control points as decision variables makes the optimization process less prone
to numerical instabilities. In addition, both Bezier curves and B-splines are characterized
by the strong convex hull property, and consequently, the resulting trajectory is always
inside the convex region defined by the control points, which guarantees the safety of
the trajectory. Furthermore, B-splines have local support; therefore, changing the control
points only influences a section of the generated trajectory, making it adaptable to dynamic
environments. In this work, we use clamped B-splines as basis functions, since B-splines
offer the desirable properties of a convex hull and local support. Our calculated flight
corridor can be directly used as control points to construct a flight trajectory.

3. Assumptions and Preliminaries
A typical UAV navigation system consists of four main modules: sensing/perception,

mapping, planning, and controlling. The approach presented in this paper addresses
the challenges presented by unknown and dynamic environments during UAV trajectory
planning. Hence, for the purpose of this study, we assume that a map describing the
environment is available for planning. Specifically, we assume that the mapping module
provides a map of the environment that:

• Detects the shapes and orientations of the obstacles and represents them using bound-
ing boxes;

• Detects the velocities of dynamic obstacles and therefore distinguishes between static
and dynamic obstacles.

Furthermore, the embedded bounding boxes are expanded by incorporating the radius of the
UAV. This allows us to treat the UAV as a point on the map for trajectory planning purposes.

We divide the problem of trajectory planning into three key tasks:

• Dynamic map generation, which allows us to represent the uncertainty caused by
dynamic obstacles;

• Flight corridor generation, after which an initial path and the largest free space around
the path are created;

• Trajectory optimization, which provides a final trajectory guaranteeing dynamic feasi-
bility and safety.

Each task is described in detail in the subsequent sections.

4. Dynamics Modeling and Collision Checking
Dynamic environments consist of both static and dynamic obstacles, i.e., obstacles

whose states remain the same and obstacles whose states change over time. To include
the uncertainty caused by the movements of dynamic obstacles, we extend our previous
work [8] and develop a three-dimensional dynamic map to quantify the risk of future
collisions between the UAV and the static/moving obstacles.

4.1. Dynamic Map Representation

We use the notion of a dynamic map proposed in [8] to represent a dynamic environ-
ment. A dynamic map is created by expanding the space occupied by obstacles according to
their current state and their predicted future movements, which is estimated using Kalman
filter approaches.

The state si of the i-th obstacle is defined as follows:

si(k) = [pi(k), vi(k)]T , (1)
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where k denotes time, pi = [px,i, py,i, pz,i]
T is the center of the i-th obstacle, and

vi = [vx,i, vy,i, vz,i]
T is its velocity. Using si(k), we can produce an a priori prediction

of the state of the obstacle after h time steps, which we denote as follows:

ŝi(k + h|k) = [p̂i(k + h|k), v̂i(k + h|k)]T , (2)

where p̂i(k + h|k) and v̂i(k + h|k) are the estimations of the center and velocity of the
obstacle at time h + k based on the known state si(k).

The dynamic map di(p|k, h) corresponds to the probability that the center of the i-th
obstacle will reach position p after h time steps, given perfect knowledge of the current
state si(k) [8]. To build a dynamic map, the predicted position p̂i(k + h|k) together with an
estimation of its uncertainty are needed. Both values are supplied by a prediction algorithm,
e.g., the state covariance matrix in Kalman approaches.

Using the dynamic map, a potential collision region can be obtained as the convolution
of the bounding box representing the obstacle and the region where the dynamic map
di(p|k, h) is greater than a predefined threshold ϵ, di(p|k, h) > ϵ (see Figure 2). We then
define the expanded obstacle Di(k, h) at time instant k + h as the smallest bounding box
covering the potential collision region associated with obstacle i. In the case of static obsta-
cles, Di(k, h) coincides with the obstacle itself. Our collision detection method described
in Section 4.2 will check the collisions between the current trajectory and each extended
obstacle Di(k, h) for each horizon value h.

Figure 2. Expanded obstacle Di(k, h) (yellow region). The solid square represents an obstacle i at time
instant k. Its center is represented as a solid dot. The arrow represents the estimation of movement
of the obstacle, as given by, e.g., a Kalman filter approach. The orange ellipse corresponds to the
locations where di(p, k + h) > ϵ. Dashed squares represent the obstacle after h time instants in
potential locations indicated by empty dots. Convolving the region where di(p, k + h) > ϵ and the
bounding box describing the obstacle, a potential collision region is obtained. The expanded obstacle
Di(k, h) is obtained as the smallest bounding box covering the potential collision region.

4.2. Collision Detection

Our collision detection method is based on the Möller–Trumbore intersection algo-
rithm [23], which finds the intersection point between a ray and a plane. Given a segment
of a trajectory and an axis-aligned bounding box representing an obstacle, our method
proceeds by first extending the segment into a ray and each face of the bounding box into
a plane. Then, it looks for the points where the ray intersects each plane. This method
establishes that there is a collision if any intersection point belongs to the original segment
and obstacle faces.

Let V1, V2, V3, and V4 be four vertices defining one of the faces of the bounding
box representing a given obstacle, let n be the normal vector of the plane containing this
face, and let OA be a trajectory segment defined by points O and A (Figure 3). A ray P(t)
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starting from point O and going through A can be represented as the following parametric
equation:

P(t) = O+ tU, (3)

where t is the parameter of the ray and U = A−O defines the direction of the ray. Note that
the starting point of the segment can be obtained as P(0) = O, the end point is P(1) = A,
and any point within the original segment can be formulated as P(t), where t ∈ [0, 1].

Figure 3. An illustration of the implementation of the Möller–Trumbore ray-triangle intersection
algorithm for collision detection. The ray, shown as a blue arrow line, intersects with the face V1-V2-
V3-V4 at point F and the face V5-V6-V7-V8 at point F′. Since points F and F′’s intersection times
are not within the interval [0, 1], the segment OA does not collide with the bounding box.

If an intersection point F between the plane defined by V1, V2, V3, and V4 and the
ray P(t) exists, then the following equations are satisfied:

F = O+ tintU,

nT · (F−V1) = 0,
(4)

Solving for tint, we obtain the following:

tint =
nT · (V1 −O)

nT ·U , (5)

Note that whenever nT ·U = 0, the ray is parallel to the plane. Once the value tint is found,
we will decide that the segment intersects the face if

• tint ∈ [0, 1], i.e., the intersection point lies within the original segment,
• the intersection point F lies inside the face defined by vertices V1-V2-V3-V4.

To check the second condition, we solve two sub-problems, namely whether the point F
lies inside triangle V1-V2-V3 or triangle V1-V4-V3. Consider the problem of determining
whether F belongs to triangle V1-V2-V3. By extending one of the edges of triangle V1-V2-
V3 (for instance, V1V2), we can split the plane defined by the triangle into two semi-planes,
such that the remaining vertex (V3) lies on one of the semi-planes. We can then check if
F belongs to the same semi-plane as the remaining vertex. Intersection point F is inside
the triangle if and only if it lies on the same semi-plane as the remaining vertex for the
three splits defined by V1V2, V1V3, and V2V3. This condition is true if the following
inequalities hold:

(
−−−→
V2V1 ×

−−−→
V2V3)T · (

−−→
V2F×

−−−→
V2V3) > 0

(
−−−→
V1V3 ×

−−−→
V1V2)T · (

−−→
V1F×

−−−→
V1V2) > 0

(
−−−→
V3V2 ×

−−−→
V3V1)T · (

−−→
V3F×

−−−→
V3V1) > 0.

(6)

If an intersection point is identified, the method will establish that there is a collision and
will trigger the replanning method.
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5. Uncertainty-Aware Flight Corridor Generation
As described in Section 4, we represent dynamic environments using a dynamic

map, where static and dynamic collision regions are modeled as bounding boxes. In this
section, we describe how a dynamic map can be used to generate a flight corridor in
dynamic environments.

Our flight corridor generation method is inspired by [24], where collision-free seg-
ments connecting vertices of obstacles are created, and [25], where Delaunay triangulation
is used to divide the space into non-overlapping partitions, i.e., triangles in 2D and tetrahe-
drons in 3D. Using the space partitioning obtained via Delaunay triangulation, the proposed
method constructs a topo-graph G = (U, E), where node U represents the center of each
collision-free partition and edge E represents the segment connecting the centers of neigh-
boring free partitions. This topo-graph is a topological description of the free space and
the basis for finding a path {Ui} that defines a flight corridor as the union of the partitions
corresponding to each one of the nodes that make up the path (Figure 4).

(a)

(b)

Figure 4. An example of the generated flight corridor in 2D. In Panel (a), the blue polygons are the
obstacles, the blue dots are the obstacle vertices, and the red dots are the virtual vertices, which
are sampled from the boundary of the detection range described in Section 5.1. The constructed
topo-graph nodes are marked as red stars, and edges are black solid lines. In Panel (b), the triangles
containing the start and goal are located, and by applying Dijkstra method to the constructed topo-
graph, the initial path is obtained (red stars and black dashed lines). The triangles that the path goes
through constitute the flight corridor (shaded in orange).
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5.1. Space Partition

The space is partitioned into non-overlapping regions using Delaunay triangulation
on the vertices defining the obstacles and the detection boundary. The latter are referred to
as virtual vertices. Virtual vertices allow us to explore the free space adequately and deal
with scenarios where there are few obstacles.

5.2. Graph Construction

The centers of all the partitions obtained using Delaunay triangulation are calculated
and stored as nodes U of the topo-graph G. The edges E are obtained as the segments
linking neighboring partitions.

5.3. Edge Cost

A cost is assigned to each edge in the graph. This cost accounts for the length of the
edge, i.e., the euclidean distance between adjacent graph nodes, and a collision cost, which
is a constant value added to the edge cost whenever an extended obstacle Di(k, h) overlaps
one of the partitions that the edge goes through.

5.4. Initial Path and Flight Corridor

An initial path linking the starting and destination points is created by applying the
Dijkstra algorithm to the graph G using the edge cost previously defined. This path consists
of a sequence of graph nodes {Ui} and implicitly defines a flight corridor as the union of
the partitions whose centers are the nodes defining the path.

6. Uniform Clamped B-SPLINE Trajectory Optimization with
Time Allocation

In this section, we describe our method to generate trajectories using B-splines. Thanks
to the properties of local support and a convex hull, using a B-spline representation guaran-
tees the safety of the generated trajectories. In addition, B-splines are fast to compute and
adaptable to dynamic environments where trajectory modifications might be needed.

6.1. Trajectory Representation

A B-spline function is defined by N + 1 control points pn, where n ∈ {0, 1, · · · , N},
and M + 1 knots tm, m ∈ {0, 1, · · · , M} such that M = N + Q + 1, where Q is the order of
the B-spline. According to the property of local support, each trajectory segment is defined
by Q + 1 control points. In our case, as free space is partitioned into tetrahedrons, segments
are defined by four control points and hence the order of the function is set to Q = 3. In this
paper, we implement a uniform clamped B-spline function, where the first and last knots
have multiplicity of Q + 1 to ensure the B-spline function goes through the start and goal
points, and knots are uniformly distributed within the range of [0, 1].

Our B-spline function ξ(t) = [ξx(t), ξy(t), ξz(t)] is defined as follows:

ξσ(t) =
N

∑
i=0

Bi,Q(t)pσ,i, (7)

where σ ∈ {x, y, z}, Bi,Q(t) is the B-spline function, calculated using the Cox–de Boor
recursion formula given the order Q and the set of knots, and pσ,i is the σ coordinate of the
ith control point.

The velocity along the generated curve is the first derivative of ξ(t), denoted by ξ ′(t).
Accordingly, it can be regarded as a B-spline curve of order Q − 1 on a new knot vector.
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The first and last knots have a multiplicity of Q with a new set of control points vn, where
the new control points are obtained as follows:

vn =
Q

tn+Q+1 − tn+1
(pn+1 − pn) (8)

By setting Pσ = [pσ,0, pσ,1, · · · , pσ,N ]
T , Equation (8) can also be written in matrix form

Vσ = Mv · Pσ, where

Mv =



− Q
tQ+1−t1

Q
tQ+1−t1

· · · 0

0 − Q
tQ+2−t2

· · · 0

0 0 · · · 0
...

. . .
0 · · · − Q

tQ+N−tN

Q
tQ+N−tN


, (9)

and
Vσ = [v0,σ, v1,σ, · · · , vN−1,σ]

T (10)

Similarly, the acceleration ξ ′′(t) is a B-spline curve of order Q − 2 with a set of control
points an, n ∈ {0, 1, · · · , N − 2}, where

an =
Q − 1

tn+Q+1 − tn+2
(vn+1 − vn) (11)

and Aσ = Ma · Vσ, where

Ma =



− Q−1
tQ+1−t2

Q−1
tQ+1−t2

· · · 0

0 − Q−1
tQ+2−t3

· · · 0

0 0 · · · 0
...

. . .
0 · · · − Q−1

tQ+N−1−tN

Q−1
tQ+N−tN


, (12)

and
Aσ = [a0,σ, a1,σ, · · · , aN−2,σ]

T (13)

The same approach could be used to define other quantities such as the jerk, snap, and
higher orders of derivatives of the generated trajectory.

6.2. Control Point Initialization

Figure 5b shows an 2D example of how the control points are found from the flight
corridor, where the order of the B-spline function is 3. Similarly, the initial control points in
3D are the vertices of the tetrahedrons in the flight corridor. They are re-ordered to make
sure that each segment of the trajectory is restrained within the partitions. The details about
how to derive the control points are described in Algorithm 1.
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Algorithm 1 Find the control points for trajectory optimization CP

Require: Flight corridor {Vi}
1: CP = [start]
2: The corresponding tetrahedron of V0 is marked as δ0
3: The overlapping plane Φ0 = δ0 ∩ δ1
4: and Φ1 = δ1 ∩ δ2
5: CP = CP ∪ (Φ0 \ (Φ0 ∩ Φ1)) ∪ (Φ0 ∩ Φ1)
6: for i=1:end do
7: Φi = δi ∩ δi+1
8: while len(CP[−2 :] ∩ Φi) ̸= 2 do
9: CP = CP ∪ (δi \ CP[−3 :])

10: end while
11: CP = CP ∪ (Φi \ CP[−2 :])
12: end for

(a)

(b)

Figure 5. The overall process of finding a flight corridor is summarized in (a) Flowchart of the
proposed trajectory planning method described in Sections 5 and 6. An example of the generated
flight corridor is shown in (b) Example of a generated flight corridor and the corresponding control
points used during trajectory optimization. Numbers represent the indices of the vertices. The first
trajectory segment is computed using vertices 1, 2, 3, the second segment using 2, 3, 4, and so forth.
Our flight corridor generation method consists of four steps that are subsequently described.

6.3. Trajectory Optimization

In this part, we formulate the optimization problem as a quadratic programming
problem where the decision variables are the positions of the control points. The objective
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function and constraints defining the optimization problem are provided. Using vector
notation, we can re-write Equation (7) as follows:

ξσ(t) =
[

B0,Q(t), B1,Q(t), · · · , BN,Q(t)
]


pσ,0

pσ,1
...

pσ,N


= B(t) · Pσ,

(14)

where subscript Q in B(t) is omitted for brevity. The B-spline functions for the velocity and
acceleration Bv(t) and Ba(t) are defined in an analogous manner.

The first and second derivative of the trajectory can be expressed as follows:

ξσ(t)
′
=

N

∑
i=0

Bv
i,Q(t)Vσ,i

= Bv(t) · Vσ

= Bv(t) · MvPσ

(15)

and

ξσ(t)
′′
=

N

∑
i=0

Ba
i,Q(t)Aσ,i

= Ba(t) · Aσ

= Ba(t) · MaMvPσ.

(16)

In this paper, the objective J includes two penalties, J = J1 + λ · J2, where J1 is used to
minimize the accelerations along the replanned trajectory. It can be obtained as follows:

J1 = Σσ∈{x,y,z}

∫ 1

0
[ξ

′′
σ(t)]

2dt

= Σσ∈{x,y,z}

∫ 1

0
PT

σ MT
v MT

a [B
a(t)]TBa(t)MaMvPσdt

= Σσ∈{x,y,z}PT
σ

∫ 1

0
MT

v MT
a [B

a(t)]TBa(t)MaMvdt︸ ︷︷ ︸
W1

Pσ

= Σσ∈{x,y,z}PT
σ Σt∈TMT

v MT
a [B

a(t)]TBa(t)MaMv︸ ︷︷ ︸
W1

Pσ

= Σσ∈{x,y,z}PT
σ W1Pσ

= PT

W1 0 0
0 W1 0
0 0 W1

P

= PTΨP,

(17)

where T ∈ {T0, T1, · · · , TR} and P = [Px; Py; Pz] is set as the decision variable.
Furthermore, the start and goal of the optimized trajectory are expected to be as close

to the endpoints of the original trajectory as possible so that the current state connects
to the replanned trajectory smoothly. Thus, we add another penalty J2 into the objective,
defined as follows:

J2 = (SP − g)TW2(SP − g)

= PTSTW2SP − 2gTW2SP + gTW2g,
(18)
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where g is a vector that includes the positions of the original start and goal, and S is the
permutation matrix, defined as follows:

P = S−1 ·


p0

p1
...

pN−1

pN

, (19)

The construction of W2 is omitted for brevity. The weight for the second part of the objective
J2 is λ = 107 to balance the numerical difference between J1 and J2.

Additional constraints must be applied in order to ensure the smoothness between the
current state and the replanned trajectory, and to ensure that the optimized control points
are within the flight corridor.

6.3.1. Endpoint Constraints

The equality constraints on the velocity of the start and end of the trajectory are
expressed as follows:

ξσ(T0)
′ = vσ,0,

ξσ(TR)
′ = vσ,N .

(20)

Currently, we assume that the velocities of the start and goal are [0, 0, 0]T . The reason
we do not impose inequality constraints on the other velocities along the trajectory is
that parameter t for B-spline function ξ(t) is within [0, 1], and every time a trajectory
is optimized, we re-allocate the time for each sample on the trajectory, as explained in
Section 6.4, to make sure that the constraint on the maximum velocity is satisfied.

6.3.2. Safety Constraints

As discussed in Section 6.2, each trajectory segment is calculated using four adja-
cent control points corresponding to a tetrahedron that represents the largest free space.
To ensure the safety of each segment, the optimized control points must remain within the
corresponding tetrahedron, guaranteeing that the entire segment lies entirely within the
free space.

Suppose that the four tetrahedron’s vertices are A, B, C, and D. A random point K
lies on the same side of plane ABC as the opposite vertex D of the tetrahedron when the
following constraint is satisfied:

(−→n1
T ·

−→
AD) · (−→n1

T ·
−→
AK) > 0, (21)

where −→n1 is the normal vectors of plane ABC. We can reformulate (21) as follows:

−−→n1
T ·

−→
AD · −→n1

T · pK < −−→n1
T ·

−→
AD · −→n1

T · pA, (22)

where pA and pK are the coordinates of points A and K, respectively.



Robotics 2025, 14, 3 13 of 18

Point K is inside the tetrahedron if it satisfies the same-side condition for the other
three planes, ABD, BCD, and ACD. We can formulate the other three constraints using an
expression analogous to (22) and combine them in matrix form as follows:

−−→n1
T ·

−→
AD · −→n1

T

−−→n2
T ·

−→
BA · −→n2

T

−−→n3
T ·

−→
CB · −→n3

T

−−→n4
T ·

−→
DC · −→n4

T

 · pK <


−−→n1

T ·
−→
AD · −→n1

T · pA

−−→n2
T ·

−→
BA · −→n2

T · pB

−−→n3
T ·

−→
CB · −→n3

T · pC

−−→n4
T ·

−→
DC · −→n4

T · pD

, (23)

where −→n2 , −→n3 , and −→n4 are the normal vectors of planes BCD, ACD, and ABD. Thus,
the safety of the optimized trajectory is ensured by constraining each control point in the
corresponding tetrahedron by formulating the constraint as (23).

6.4. Time Allocation

Suppose that the maximum velocity and acceleration are vmax and amax, respectively,
and the largest acceleration and the largest velocity along the trajectory are v′max and a′max.
Then, the total time can be calculated as follows in Equation (24) and Figure 6:

t = max
(

vmax

v′max
,

amax

a′max

)
. (24)

(a)

(b)
Figure 6. The performance of an generated trajectory from the start [9.5, 9.5, 9.5]T to the goal position
[1, 1, 1]T with fixed velocity [0, 0, 0]T : the maximum velocity and acceleration for each axis is 3 m/s
and 2 m/s2.
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6.5. Intermediate/Local Goal Selection

When a replanned trajectory is needed, the start point of the local map will be the
current position, and the goal will be selected from the future global trajectory. We will
search the unfulfilled global trajectory to find a collision-free point according to the current
local map and set it as the local goal.

7. Experiments
In this section, we show the validations of the two proposed algorithms, namely the

flight corridor generation algorithm in Section 5 and the trajectory optimization algorithm
in Section 6.

7.1. Simulation Implementation Details

The simulations for the flight corridor generation and trajectory optimization are
implemented in Python, and the quadratic programming problem in Equation (17) is
solved using the software package CVXOPT [26].

To simulate a scenario that is as real as possible, we construct a 3D space of
11 m × 11 m × 12 m using the 10m maximum detection range of Intel®RealSenseTM

D435 [27] as a reference. The obstacles are cuboids of size 1 m × 1 m × 1 m, and they can
be static or dynamic, with a speed randomly picked from six possible velocities, including
[1, 0, 0], [−1, 0, 0], [0, 1, 0], [0,−1, 0], [0, 0, 1], and [0, 0,−1]. The initial trajectory for the UAV
is a straight line from the start position [1, 1, 1] to the goal position [10, 10, 11], and when the
proposed method is tested in dynamic environments, the moving obstacles are intentionally
designed to collide with the initial trajectory.

For the trajectory generation, we set the order Q of the B-spline function as 3 so that
the generated trajectory stays inside the region enclosed by any four consecutive control
points. The maximum velocity is set to 3 m/s, and the maximum acceleration is 2 m/s2.

7.2. System Evaluation

In Section 4, we introduced the concept of a dynamic map to quantify the uncertainty
caused by dynamic environments. We evaluate its effectiveness based on the number of
replanning events triggered by obstacles moving in the environment. The flight corridor
generation method in Section 5 is evaluated by measuring the processing time required
to create a safe flight corridor under varying obstacle densities. The performance of the
trajectory optimization method in Section 6 is assessed in terms of processing time and the
quality of the optimized trajectory, focusing on two key aspects: time optimality and safety.
Time optimality is assessed using the total trajectory duration and length, while safety is
measured based on the minimum distance between the trajectory and the surrounding
obstacles. These properties are compared across a range of scenarios involving different
obstacle densities and a mix of static and dynamic obstacles.

7.3. Results

Figure 7b shows the relationship between processing time and obstacle density, which
is calculated as the number of obstacles divided by the maximum number of obstacles this
space can accommodate. As shown in Figure 7b, the flight corridor generation method takes
several seconds, while the trajectory optimization method only needs a few milliseconds.
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(a)

(b)

Figure 7. (a) Constructed flight corridor. The blue dots are the added virtual vertices. The red dots
together with the black solid lines represent the obstacles. The partitions of the free space using
Delaunay triangulation are shown with purple solid lines. (b) Comparison between the processing
time of the flight corridor generation method (in grey) and trajectory optimization method (in yellow)
under different obstacle densities.

7.3.1. Flight Corridor Generation

Figure 7a illustrates the process of constructing a flight corridor where the free space
is partitioned into tetrahedrons using Delaunay triangulation. Figure 7b, shows that the
time used to calculate the flight corridor increases exponentially as the number of vertices
grows, which would be realistic for a real-world scenario.

7.3.2. Trajectory Optimization

In Table 1, a comparison between the trajectory generated by the optimized control
points and the initial control points is illustrated. It shows that the optimized trajectory has
a higher average velocity with a smaller length and shorter time. Furthermore, the velocities
and accelerations along a generated trajectory from [9.5, 9.5, 9.5]T to [1, 1, 1]T with given
velocity [0, 0, 0]T (the simulated UAV is initially still) are illustrated in Figure 6a,b. It can be
observed that the velocity and acceleration are constrained within their maximum values
[−3, 3] m/s and [−2, 2] m/s2 and change smoothly.
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Table 1. A simple comparison between the original trajectory, calculated based on the initial control
points and the optimized trajectory.

Trajectory Length (m) Total Time (s) Calculating Time

Original trajectory 21.25 36.99 -
Optimized trajectory 18.18 9.09 0.0155

In Table 2, we evaluate the performance of the proposed method in static environments
under different obstacle densities and in dynamic environments when there are static and
moving obstacles simultaneously. We also implement our proposed method without
utilizing the uncertainty information when optimizing the trajectories and compare with
the cases when we consider the uncertainty.

Table 2. The evaluation of the optimized trajectory using the proposed method. The “Uncertainty-
unaware dynamic” section demonstrates the performance of our proposed method when applied in
a dynamic environment, excluding considerations for the motion of dynamic obstacles.

Obstacle Density Time Optimization Safety Replan

Static Obstacle Dynamic
Obstacle Total Time (s) Trajectory

Length (m) Min Dist (m)

Static
environment

0.16 - 14.16 18.02 0.64 -
0.47 - 26.80 17.90 0.25 -
0.78 - 30.37 22.68 0.272 -
0.94 - 84.23 22.5 0.28 -

Dynamic
environment

0.16 1 43.15 21.85 0.47 1
0.16 2 16.58 16.87 0.29 1

Uncertainty-
unaware dynamic

0.16 1 37 19.4 1.11 4
0.16 2 18.23 16.43 0.28 4

Static environments: In Table 2, under the first entries ‘Prop.static’, there is a steep
drop in the performances of the replanned trajectory due to the increasing number of
obstacles. With more obstacles, the gaps between obstacles become narrower, resulting in
the windings of the trajectories, slowing down the UAV.

Dynamic environments: By comparing the second entry ‘Prop.dynamic’ and ‘with-
out dyn.dyn’, we can easily observe that introducing the uncertainty caused by moving
obstacles can help to reduce the times of replanning, which proves the feasibility of our
proposed method in a dynamic environment.

8. Conclusions and Future Work
In this paper, we propose a different strategy to model dynamic environments and op-

timize the trajectories using an uncertainty-aware fashion. First, we implement a Delaunay
triangulation-based space partition method to construct the safe flight corridor and find
the corresponding topological description of the environments, the topo-graph. Then, we
introduce the uncertainty information into the topo-graph using the notion of the dynamic
map, as proposed in our previous work [8]. Finally, a B-spline-based trajectory is generated
from the path found in the topo-graph and using the safe flight corridor as a constraint.

Our simulations indicate that this strategy accomplishes the above tasks and suc-
cessfully reduces the times of replanning by introducing uncertainty information caused
by moving obstacles into trajectory optimization. The proposed approach can be further
improved in different ways. First of all, the complexity associated with constructing a
safe flight corridor in 3D space is O(n2), and the simulation results show that it can take
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up to several seconds to process, which would be a limiting feature in real-world scenar-
ios. Secondly, we implement the Dijkstra algorithm to find the path, which is considered
time-consuming. In the future, we plan to use other heuristic graph search algorithms
for comparisons and efficiency improvements. Apart from that, when optimizing, as-
signing more time to a specific time span, which violates the constraints of maximum
velocity/acceleration, instead of assigning more time to the whole trajectory, also helps
to improve efficiency. To overcome this bottleneck, a promising avenue is to find an in-
cremental way to update the newly found obstacles in the constructed space partition
and allocate time to the segments of the whole trajectory separately according to their
corresponding violations of velocity/acceleration. Finally, to further validate our method,
we plan to integrate our trajectory planning approach with a mapping module that satisfies
our assumptions, forming a coupled system. This integration will enable more comparisons
with state-of-the-art methods and validations in real-world scenarios.
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