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Abstract: The demand for flexible automation in manufacturing has increased, incorpo-
rating vision-guided systems for object grasping. However, a key challenge is in-hand
error, where discrepancies between the actual and estimated positions of an object in the
robot’s gripper impact not only the grasp but also subsequent assembly stages. Correc-
tive strategies used to compensate for misalignment can increase cycle times or rely on
pre-labeled datasets, offline training, and validation processes, delaying deployment and
limiting adaptability in dynamic industrial environments. Our main contribution is an
online self-supervised learning method that automates data collection, training, and evalu-
ation in real time, eliminating the need for offline processes. Building on this, our system
collects real-time data during each assembly cycle, using corrective strategies to adjust the
data and autonomously labeling them via a self-supervised approach. It then builds and
evaluates multiple regression models through an auto machine learning implementation.
The system selects the best-performing model to correct the misalignment and dynami-
cally chooses between corrective strategies and the learned model, optimizing the cycle
times and improving the performance during the cycle, without halting the production
process. Our experiments show a significant reduction in the cycle time while maintaining
the performance.

Keywords: self-supervised learning; online learning; vision-guided systems; pick-and-place;
in-hand error; peg-in-hole; cycle time optimization

1. Introduction
In recent years, the demand for automation in manufacturing and assembly pro-

cesses has surged, driven by the need for increased efficiency, accuracy, and flexibility.
Vision-guided pick-and-assembly systems allow robots to identify, grasp, and assemble
components with minimal human intervention. However, despite advancements in robotics
and computer vision, challenges remain, particularly concerning the grasping accuracy [1].

Grasping inaccuracies, defined as a discrepancy between the expected and actual
positions of an object within a robot’s gripper, are often referred to in the literature as
in-hand errors. This error may arise from various sources, including the vision system,
camera calibration, or slippage during grasping. These inaccuracies not only impact the
immediate success of the grasp but can also hinder subsequent assembly operation. To
achieve accurate assemblies in the presence of in-hand errors, corrective strategies are
normally involved. These strategies can be categorized into two types: picking refinement
strategies and flexible assembly strategies.
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Picking refinement strategies focus on enhancing the picking process to ensure grasp-
ing while mitigating primary sources of error. One such approach involves segmenting
the picking process into multiple stages [2,3]. However, for accuracy-demanding tasks
such as peg-in-hole assemblies, relying solely on picking strategies may be insufficient,
as residual in-hand errors may still occur. Thus, the implementation of flexible assembly
strategies capable of absorbing this error is necessary. A possible strategy involves moving
the robot along a spiral path after the peg makes contact with the hole surface, guiding it to
successful insertion [4,5].

Some corrective strategies involve additional steps that lengthen the production cycles,
while others employ machine or deep learning to optimize the process. However, the
latter often require significant time and resources for dataset labeling, offline training,
and validation, which delays deployment and limits adaptability in dynamic industrial
environments. To overcome these challenges, our main contribution is a pipeline that
automates data collection, training, and evaluation processes without human supervision,
leveraging online implementation, self-supervised data labeling, and AutoML. Designed
for pick-and-place assembly tasks with an eye-in-hand configuration, this method aims to
reduce cycle times and streamline the training process.

This paper is structured as follows: Section 2 reviews relevant research, Section 3
describes our proposed method, Section 4 presents the experimental findings, and Section
5 discusses the broader implications.

2. State of the Art
The vision-guided pick-and-assembly operation consist of identifying and grasping a

component and accurately inserting it into a hole. The assembly stage is known as peg-in-a-
hole problem, and this topic has been studied in the literature [4–13]. This process relies on
the accuracy of the grasp during the pick stage. Any error in the grasp compromises the en-
tire operation, which becomes even more critical in high-accuracy tasks such as assembling
tightly fitting components, where smaller tolerances further increase the complexity.

Focusing on the initial stage of detection and grasping, cameras are the most common
sensors used to provide information about the location and orientation of objects. A
camera can either be fixed in a specific position (eye-to-hand configuration) or mounted
on the robot’s end-effector (eye-in-hand configuration), capturing images from the tool’s
perspective. These configurations are shown in Figure 1.

(a) (b)
Figure 1. Representation of common camera configurations: (a) eye-in-hand configuration; (b) fixed
eye–hand configuration [14].

Regardless of the camera’s configuration, the location of the target object is initially
obtained within the camera’s coordinate system. It is necessary to represent the information
within the robot’s coordinate system. This process, known as hand–eye calibration, requires
the estimation of the relationship between the two coordinate systems. The accurate
estimation of such a transformation matrix for robotic arms is a challenging task [15,16].
Hand–eye calibration methods are classified into separate and simultaneous approaches.
Separate methods, such as those presented by Tsai et al. [17], Chou et al. [18], and
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Park et al. [19], estimate the rotation and translation parameters independently, which can
lead to error propagation. In contrast, simultaneous methods, such as those described
by Daniilidis et al. [20], Lu et al. [21], and Li et al. [22], estimate both parameters at the
same time, making them more robust to rotation noise. The study by Enebuse et al. [15]
evaluates the effectiveness of these six hand–eye calibration algorithms, showing that
the accuracy of each method varies based on the number of robot movements during
calibration and the level of noise present. Additionally, the performance of separate
methods tends to be affected by rotation noise, while simultaneous methods exhibit noise
transfer between rotation and translation. This analysis underscores the importance of
selecting the appropriate method based on the emphasis placed on either orientation or
translation accuracy.

Camera calibration establishes the foundation for accuracy in vision-guided pick sys-
tems. However, its effectiveness is also contingent upon the grasping methods employed.
For unknown objects, a highly researched area in robotics, the most common techniques
in the literature involve using object recognition and the extraction of specific features
to estimate grasp poses [23,24]. In the case of known objects, the grasping task simpli-
fies to estimating the object’s pose, identifying a grasp point, and determining the pose
transformation during the grasping process. This task can also be improved through other
strategies. One such approach involves segmenting the grasping process into multiple
stages [2,3]. All strategies that ensure successful grasping while mitigating primary sources
of error are referred to as picking refinement strategies. Nevertheless, inherent errors in
these methods, along with calibration inaccuracies, can lead to discrepancies between the
expected and actual positions of the object in the robot’s gripper, which directly affects the
success of high-accuracy assembly tasks.

Traditionally, assembly systems in the industry relied on classical offline programming
where robot poses are limited to a set of predefined poses, which are manually taught
by an skilled operator. This approach is effective when the component is always picked
in the same manner. However, it becomes inadequate in flexible production lines, where
the grasping pose is not constant and must be calculated at each cycle, complicating the
assembly process.

To address these challenges, several flexible assembly strategies have been proposed,
including methods such as spiral search or Lissajous curves, which employ simple heuristics
and force feedback to guide the insertion process. For instance, Park et al. [4,5] use a
spiral trajectory to search for the hole, while Jokesch et al. [6] apply a Lissajous curve.
These approaches rely on predefined paths and iterative adjustments to the insertion force,
enabling the robot to compensate for misalignments during assembly. However, they
introduce additional steps that increase the cycle times.

To overcome the limitations of these heuristic methods, recent research has focused
on deep learning (DL) and reinforcement learning (RL). These methods often combine
visual information with force feedback to train models capable of reducing the cycle times
while improving the accuracy and flexibility. For example, Triyonoputro et al. [8] employ
a multi-view deep learning approach to guide peg insertion into the hole, demonstrat-
ing the potential of vision-based strategies. Similarly, Abdullah et al. [9] integrate DL
with hybrid vision/force control to achieve precise pick-and-assembly operations, while
Almaghout et al. [11] utilize a vision-based DL framework to minimize misalignment errors
during assembly. On the other hand, reinforcement learning (RL) has shown significant
potential in tackling complex sequential tasks. For instance, Schoettler et al. [12] success-
fully apply RL to tight-clearance peg-in-hole tasks, training recurrent neural networks to
adapt the insertion trajectories dynamically. Yasutomi et al. [13] further demonstrate the
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effectiveness of RL in learning fine-grained control strategies for accuracy tasks, even under
varying environmental conditions.

Despite their promise, these methods require significant resources, including large
labeled datasets and extensive training and validation times. This dependency on
offline model preparation complicates their application in dynamic and fast-paced
industrial settings.

To address these limitations, self-supervised learning (SSL) has emerged as a helpful
approach. SSL enables systems to autonomously label data from raw observations, reducing
the need for pre-labeled datasets. For example, Haugaard et al. [25] focus on combining
spiral search with visual feedback to collect and label data using an SSL paradigm, training
a neural network offline and deploying it based on the validation results. While this
reduces the cycle times for assembly tasks, their offline implementation requires delaying
the production process to develop and validate the model.

A related application of SSL in the context of grasping is explored by Peng et al. [26],
who propose a self-supervised learning-based 6-DOF grasp planning method. In their
approach, grasp poses are automatically labeled using a force closure decision algorithm,
and a deep learning model is trained offline to classify the grasp quality. While this method
enhances the robustness in grasping unknown objects in unstructured environments, its
offline nature limits its adaptability to dynamic settings.

These examples highlight two corrective strategies: a flexible assembly strategy [25],
which focuses on compensating for in-hand errors during assembly, and a picking refine-
ment strategy [26], aimed at improving the grasping accuracy during the picking stage.
While effective, both rely on offline implementations that require delaying the production
process to develop and validate models, resulting in downtime and limited adaptability. To
overcome these challenges, an alternative is to implement advanced learning techniques in
an online manner, enabling continuous training and updates while the production line is
operational. This approach enhances the performance and reduces the cycle times by sup-
porting real-time decision-making, processing data as they become available. A challenge
in online learning is the unpredictability and dynamism of data distributions, complicating
model selection and hyperparameter optimization. Automated machine learning (AutoML)
addresses this by automating processes like model selection and tuning, allowing systems
to adapt to fluctuating data with minimal intervention. AutoML can train machine learning
models by exploring various configurations and hyperparameters in parallel, making it
useful for robust and efficient online learning systems [27,28]. To the best of our knowledge,
we are the first to integrate online learning, AutoML, and SSL in this context.

Our method integrates online implementation, self-supervised data labeling, and
AutoML to reduce cycle times and streamline the training process. The system collects
real-time data during each assembly cycle and builds multiple learning models through
AutoML. It then evaluates the models and selects the best-performing one to correct
misalignments based on insights from corrective strategies. Additionally, the system
includes an intelligent decision-making process that dynamically selects between using the
trained model or corrective strategies, optimizing the performance in a fully automated
manner, without human intervention.

3. Proposed Method
Our system automates the process by capturing data during each cycle. The recorded

data, denoted as D = {P̂, ϵin-hand}, include two key components: the initial estimation
of the grasping pose, denoted as P̂, and the total in-hand error, denoted as ϵin-hand, both
represented as Cartesian poses. The total in-hand error represents the cumulative error
corrected by both the picking refinement strategy, denoted as ϵpicking, and the flexible
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assembly strategy, denoted as ϵplacing. The corrective strategies are explained in detail in
Section 4.

The self-supervision in our system is derived from this pipeline, as the system au-
tonomously generates the ground truth data and corresponding labels for the training of
machine learning models. Specifically, the learning model input is the initial estimated pose
P̂, while the output, serving as the ground truth, is the cumulative correction ϵin-hand; the
learning model data flow is illustrated in Figure 2. This self-labeling mechanism enables
the system to operate without manual intervention, continuously collecting and integrating
new data to improve the model dynamically and adapt to changing production conditions.

Input feature:
P̂

Learning
model

f

Output feature:
ϵ∗in−hand

Figure 2. Model data flow.

Using Equation (1), the corrected grasping Cartesian pose, denoted as P, can be
calculated. This grasping pose is designed to ensure that the object is centered in the
gripper during the pick operation, allowing the assembly to be successfully completed
using the predefined hole position.

P = P̂ − ϵin-hand = P̂ − (ϵpicking + ϵplacing) (1)

Model training occurs periodically after each assembly when the training set reaches a
sufficient size. The input of the model, denoted as f , is the initial estimation of the grasping
pose, P̂. The training set, denoted as Dn, is composed of several D = {P̂, ϵin-hand} acquired
during each cycle in a self-supervised manner. The model output is the predicted total
in-hand error (ϵ∗in-hand), represented as a Cartesian pose. Based on the predicted error and
with the input data, P̂, the grasping pose estimated by the model, denoted as P∗, can then
be calculated using Equation (2). It is important to note that the grasping pose predicted
by the model, P∗, is not equal to the corrected grasping pose obtained through corrective
strategies, P. This discrepancy arises due to the associated error in the model’s prediction.

P∗ = P̂ − ϵ∗in-hand = P̂ − f (P̂) = P∗(P̂) (2)

In this case, due to the online nature of the system, instead of training a single model,
we employ an AutoML implementation where multiple learning models are trained with
different hyperparameters and evaluated, and the best-performing one is selected for
deployment. Therefore, in this section, when we refer to the selected model, we are
referring to the model with the highest evaluation score from the set of trained models.
More details about the models and scores used can be found in Section 4. Nevertheless, the
usage of the selected model depends on two main requirements:

• The selected model’s score, denoted as Smodel , must exceed a predefined threshold,
denoted as Tscore;

• The input feature, P̂, must not exceed a data drift threshold, denoted as Tdatadri f t.

Data drift evaluation involves monitoring the input data before the selected model’s
deployment to avoid applying the selected model to inputs that were not included during
the training phase. With each new assembly cycle, a new estimated input data point,
P̂, is generated. This input is compared against the various estimated inputs stored in
the training set. If the new input exceeds the data drift threshold Tdatadrift, it indicates a
potential drift and the selected model will not be deployed. Instead, corrective strategies
will be employed, and the sample, D, will be added to the training set. When both
requirements are fulfilled, the selected model is deployed. The selected model is used to
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predict the in-hand error of the pose P̂, and, using Equation (2), the system moves to a
corrected pose, P∗. This approach optimizes the performance by eliminating the need for
corrective strategies. This process is illustrated in Figure 3, with further details provided in
Section 4.

P̂
Smodel > Tscore

and
P̂ < Tdatadri f t

Apply Model

Use
corrective
strategies

ϵin−hand

ϵ∗in−hand

Database

Model’s:
Training,

Evaluation
and Selection

Selected Model:
f

Smodel

Yes

No

Figure 3. Decision logic for deployment of the selected model or corrective strategies based on
thresholds. The system input is the estimated grasping pose P̂, and the outputs are the total in-hand
error ϵin-hand or the predicted error ϵ∗in-hand. The decision node determines whether to apply the
selected model or use corrective strategies, with the results from corrective strategies saved in the
database for model training.

4. Experiment
The purpose of this experiment is to evaluate the performance of our proposed method

in a real-world scenario. The use case involves the assembly of a wheel onto a toy car, as
illustrated in Figure 4. This scenario requires high accuracy for both assembly and grasping,
with a tolerance level of 0.11 mm.

Figure 4. Representation of the use case area.

The setup includes an assembly area (a fixed workstation) and a pick area (with wheels
in variable positions); see Figure 4. The mounted camera identifies the wheels via artificial
vision and places them onto the car. The wheel hole positions are defined beforehand.

For our experiment, we employed a KUKA IIWA14 robotic arm, a collaborative robot
with 7 degrees of freedom that provides impedance control. Attached to the arm is a
PGC-140-50 parallel gripper, offering configurable gripping force and accurate control over
object handling. Additionally, we integrated an Allied Vision Manta G-917B camera with
a 12 mm lens, mounted on the robot’s end-effector in an eye-in-hand configuration; see
Figure 5.
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Figure 5. Experimental setup.

The intrinsic camera calibration was performed using the method proposed by Zhang
et al. in [29]. This method yielded an intrinsic pixel error of 0.25 pixels for both axes. For the
extrinsic calibration matrix, we tested all the methods discussed in the literature [17–22] and
found that the separate methods provided the best results, particularly the Tsai method [17].
This aligns with the findings of [15], which state that separate methods perform better
when prioritizing accuracy in translation over rotation. In our case, we prioritized accuracy
in translation as the tool’s orientation was predefined to be perpendicular to the table.
Consequently, the Tsai method [17] was selected for its superior accuracy in our experiment.

4.1. Definition

The cycle begins with the mounted camera capturing an image of the pick area.
From this image, the centers of the wheels are identified using the Hough transformation,
proposed by Hough et al. in [30]. The detected pixel coordinates are then translated into
spatial coordinates by leveraging the known distance to the table and the intrinsic camera
matrix. Subsequently, these spatial coordinates are transformed from the optical frame
to the robot’s base frame using the eye-in-hand transformation matrix. The robot’s tool
orientation is fixed to be perpendicular to the table, resulting in an estimated grasping
Cartesian pose, denoted as P̂. For this use case, since z and the orientation are constant, the
Cartesian pose parametrization is reduced from (x, y, z, a, b, c), where (x, y, z) represent the
translational component and (a,b,c) the rotation component as simply (x, y) values.

However, significant perspective errors can arise due to the distance between the wheel
and the camera, which hinder the system’s ability to grasp the wheel. The eye-in-hand
configuration facilitates a picking refinement strategy that involves detecting the wheel,
progressively approaching it, centering the camera, and refining the wheel’s position, as
illustrated in Figure 6. Through this process, we obtain an estimated grasping pose, P̂i,
where i represents the number of refinement steps taken, ensuring sufficient accuracy for
successful wheel picking.

Even if the piece is picked, the accuracy is compromised by the remaining in-hand
error. For cases involving parallel grippers picking shape-symmetric objects, the stroke
axis of the fingers being perpendicular to the object’s symmetry axis acts as a centering
mechanism, thereby limiting the in-hand error to one degree of freedom; see Figure 7. This
error significantly impacts subsequent assembly operations, causing an offset in the axis, as
illustrated in Figure 7b.
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(a) (b) (c)
Figure 6. Stages of the refinement process for wheel detection: (a) the initial capture, (b) an intermedi-
ate capture during progressive approach, and (c) the final capture where the wheel position is refined
for high accuracy.

(a) (b)
Figure 7. Representation of degrees of freedom: (a) the degrees of freedom during picking, with the
red axes fixed, green axes free and orange in-hand error, and (b) the degree of freedom during the
placing task.

To address the residual errors, we implemented a heuristic that enhances the flexibility
of the assembly process. This strategy is based on the flexible assembly strategies discussed
in the literature [4–6,8,9]. Specifically, we adopted the heuristic from [6], which directs the
robot to follow a Lissajous curve trajectory as a hole search route; see Figure 8. This method
effectively adapts to the shape of the errors and optimizes the search along the degree
of freedom axis while smoothly adjusting in the perpendicular direction. The need for
movement in this perpendicular direction arises from the robot’s operation in impedance
mode, where the positioning accuracy may decrease. However, it is important to point out
that both the picking refinement strategy and the flexible assembly strategy can lead to
increased cycle times on the assembly line.

Figure 8. Lissajous search route curve.
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4.2. Model-Based In-Hand Error Correction

The proposed method requires recording a training set, consisting of multiple instances
D = {P̂, ϵin-hand} obtained in each cycle, where P̂ is the initial estimate of the grasping
Cartesian pose and ϵin−hand is the in-hand total error, calculated as the sum of ϵpicking

and ϵplacing.
In this experiment, ϵpicking is calculated in Equation (3). Here, P̂ represents the estimated

grasping pose from the initial image, while P̂i denotes the estimate from the closest subsequent
image. Figures 7a and 7b illustrate the captured images in these two positions, respectively.

ϵpicking = P̂ − P̂i (3)

On the other hand, ϵplacing is calculated using Equation (4). Here, PLissajous indicates
the robot’s pose upon completing the peg-in-hole task using the Lissajous path, while Ptaught

is the intended pose for assembly, determined through teaching. Figure 9a,b illustrate these
two positions, respectively.

ϵplacing = PLissajous − Ptaught (4)

(a) (b)
Figure 9. Poses for calculation of placing error: (a) the intended position Ptaught, showing mis-
alignment between the hole axis (green) and the wheel axis (orange), although the gripper axis
(red) is aligned with the hole axis, and (b) the actual position PLissajous achieved using the Lissajous
path, where the hole axis (green) and wheel axis (orange) are aligned, but the gripper axis (red) is
misaligned with the hole axis.

In each cycle, data from successful picking operations are collected and processed
before being added to the training set. First, the samples, including both the estimated
grasping Cartesian pose P̂ and the in-hand error ϵin-hand, are normalized and compared
with the training set using the interquartile range (IQR) method, proposed by McGill et al.
in [31], to filter out atypical values. Only samples that are not identified as atypical are
included in the training set. To manage the growing database, a maximum sample limit is
imposed. If this limit is exceeded, k-means clustering is employed to reduce the number
of samples.

Due to the online nature of the system, instead of training a single model, we use
an AutoML implementation with the PyCaret library [32]. PyCaret trains and evaluates
multiple models in parallel, including linear models (linear regression, ridge regression),
non-linear models (random forest, gradient boosting, support vector regression), and others,
like quantile regression. Although PyCaret does not support neural networks, it is sufficient
for the validation of the proposed pipeline. Since many PyCaret models (e.g., support
vector machines, random forests, k-nearest neighbors) are univariate, we train separate
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models for each dimension. In this experiment, the Cartesian pose is reduced to x and y
coordinates, so we train one model for x and another for y.

For each dimension, all models available in PyCaret are trained separately. Each model
is then evaluated using 10-fold cross-validation, providing the best regression model for
each dimension, resulting in two selected models, one for each axis. PyCaret also provides
a score vector, denoted as Si = {R2, MAE}, for each selected model.

The selected models’ deployment relies on the process outlined in the diagram shown
in Figure 3. When a new cycle begins, the first grasping pose, P̂, is estimated. At this stage,
there are two options: either use the corrective strategies, which may take more time, or
deploy the selected models.

For the selected models’ deployment, their score vector, denoted as Smodel , is compared
to a predetermined threshold vector, Tscore = {TR2 , TMAE}, to ensure its adequacy. For a
selected model to be accepted, both metrics must surpass their respective thresholds, which
means SR2 >= TR2 & SMAE <= TMAE. Note that both the x and y selected models must
surpass the predetermined threshold vector. Next, P̂ is compared to the nearest sample in
the training set; see Figure 10. If the Euclidean distance between P̂ and the nearest sample
exceeds the predefined threshold Tdatadri f t, the selected models are considered insufficient,
and a new sample is collected to further explore that area. Conversely, if the distance does
not exceed the threshold, the selected models are considered capable of explaining the
ϵin−hand associated with that pose. In this case, the selected models meet the criteria to
replace the existing corrective strategies.

(a) (b)
Figure 10. Explanation of the data drift threshold. The white circles represent the positions explored
in the training set. (a) The input position exceeds the predefined threshold, indicating potential data
drift and disabling the selected models’ usage for these data. (b) The input position does not exceed
the threshold, suggesting that the selected models remain valid.

4.3. Results

The experiment was conducted over 100 cycles. The demonstration can be seen in
the corresponding video (demonstration video available at https://www.youtube.com/
watch?v=5NOlWvdF94A, (accessed on 20 December 2024)). The accuracy threshold was
set at Tscore = {0.9, 0.1}, while the data drift threshold was set at Tthreshold = 15 cm,
corresponding to the wheel’s radius.

The system’s performance was evaluated based on two key metrics: the cycle time
reduction and the success rate. These metrics were selected to assess the method’s ability to
optimize the overall workflow and maintain reliable operation throughout the experiment.

The implementation of the model resulted in a significant reduction in the cycle time;
see Figure 11. As the number of cycles increased, both the pick and assembly times demon-
strated notable improvements. Specifically, the pick time decreased from 11 s to 7 s, while
the assembly time was reduced from 14 s to 7 s, leading to a total cycle time improvement

https://www.youtube.com/watch?v=5NOlWvdF94A
https://www.youtube.com/watch?v=5NOlWvdF94A
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of 45%, as the complete cycle time decreased from 25 s to 14 s. The system achieved a
100% success rate across all 100 cycles, ensuring that the wheel was successfully picked and
correctly assembled in every attempt. This consistent performance highlights the method’s
reliability and effectiveness in maintaining high accuracy throughout the process.

Figure 11. Cycle times over 100 cycles, grouped into 5-cycle segments. The vertical axis represents the
average cycle time for each group of 5 cycles, while the horizontal axis indicates the group number.
Each group divides the total cycle time into the pick time and assembly time. A trend line illustrates
the reduction in cycle time as the experiment progresses.

The online implementation of the method was successful, as illustrated in Figure 12.
After the initial eight samples, the models began their training and evaluation. However,
these early samples were insufficient to train a model that could meet the Tscore. An
additional 12 samples were needed to exceed the threshold. This aligns with the results
shown in Figure 11. Until iterations 25 to 30 (group 5), the average cycle time remained
stable and not optimized. From iteration 20, the selected models were deployed only when
the input value, P̂, met the Tdatadrift. The first deployment occurred in iteration 25. This
also corresponds to the trends in Figure 11 and demonstrates a decrease in the cycle time
according to the selected models’ usage shown in Figure 12. This method allowed the
system to explore and adapt to the entire pick area, completing this exploration around
cycle 80.

Figure 12. Decision-making as the experiment progresses.

Each time a new area was explored, a new sample was added to the training set,
prompting the models to be retrained. This retraining process ensured that the selected
models remained accurate and relevant as new conditions were encountered. Among
all the trained models, linear regression consistently achieved the highest score in every
training step, for both the x and y axes. Therefore, the deployed models in this experiment
were linear regression models whenever it was necessary to utilize them
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On the other hand, the model outputs, from both the x and y models, each had an
associated error of 0.7 mm. This is significantly below the accuracy requirement for the use
case, which is approximately 0.11 mm, ensuring consistently high accuracy in placement.
For this reason, all assemblies were completed successfully, both when using the model
and during the initial cycles without it.

5. Discussion
As shown in the previous sections, the system avoids production delays by au-

tonomously developing and validating models during the operation cycle, unlike tra-
ditional offline implementations. This approach continuously collects data without in-
terrupting production and dynamically decides whether to deploy the model or apply
corrective strategies, ensuring real-time adaptability.

The proposed method was validated in the toy car wheel assembly use case. We
evaluated the pipeline based on the cycle time reduction and success rate. The cycle time
was significantly reduced, and the success rate was 100%, validating the self-supervised
labeling, AutoML, and the decision-making system. The balance between the cycle time
reduction and success rate is achieved through the Tscore and Tdatadrift thresholds. These
parameters ensure model deployment only when the accuracy requirements are met,
while corrective strategies address situations where the model cannot perform reliably.
By dynamically adjusting to each cycle’s conditions, the system minimizes delays while
maintaining a high success rate.

To guarantee that the proposed method is effective, the system’s sensitivity to threshold
parameters must be considered. The threshold Tdatadrift influences the system’s respon-
siveness to data drift. Lower values of Tdatadrift increase the system’s sensitivity, triggering
model retraining more frequently and potentially resulting in longer cycle times if the
model undergoes retraining when it is already adequately prepared for deployment. Con-
versely, a higher Tdatadrift threshold might allow the model to operate in unexplored zones,
where it lacks sufficient accuracy and could negatively impact the grasping accuracy. In
our use case, the threshold for Tdatadrift was set to 15 cm, corresponding to the radius of
the wheel. This value was chosen based on the task’s geometry and assumed to be large
enough to capture significant data drift, ensuring that the model remained robust.

Additionally, the parameter Tscore adjusts the values of the metrics that define the
model, and these must be tuned depending on the specific use case. Using highly restric-
tive threshold values may lead to the model not reaching deployment, as it might never
satisfy the defined objective. In contrast, less restrictive thresholds could compromise the
performance. In our use case, we selected the metrics MAE and R2. The MAE threshold
was set to 0.1, which was smaller than the required accuracy for the task. We chose the
MAE because it directly measures the average magnitude of the error, providing a clear
and interpretable indication of the model performance. The R2 threshold was set to 0.9,
based on our experience with similar tasks, to ensure that the model explained at least 90%
of the variance in the training data. R2 was chosen because it indicates how well a model
fits the data, providing a reliable measure of the model’s explanatory power.

The model incorporates robustness mechanisms through the Tscore and Tdatadrift thresh-
olds, which determine whether corrective strategies should be applied. However, if the
original conditions change, such as the partial calibration misalignment of the camera’s
extrinsic matrix or the displacement of the assembly area due to vibrations, the model
adjusts its behavior using two mechanisms. In the picking stage, if the model fails, correc-
tive strategies are applied and the ground truth sample is saved to progressively adapt
the model to the new conditions. The second mechanism is activated in the placing stage,
where, if the model fails, the flexible strategy is applied to ensure that the wheel is inserted
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correctly. These adjustments allow the system to continue functioning and adapt to new
conditions, although this may temporarily slow down the process.

The model’s generalization depends on the type of errors that it addresses. While it
generalizes well to similar pieces when correcting hardware-related errors, such as camera
distortions or calibration inaccuracies, fine-tuning for specific object geometries limits
its applicability to other scenarios without retraining. In our use case, the model adapts
dynamically to both hardware and task-specific errors, showcasing flexibility in dynamic
environments. However, retraining is necessary for different tasks due to variations in the
error distributions.

Moreover, while our experiment demonstrated a linear distribution of in-hand errors,
the proposed method should be capable of adapting to any error distribution, as long as it
can be modeled by a machine learning model with sufficient data. In our experiment, the
model selection was handled by AutoML through the PyCaret library, which evaluated
25 models, including nonlinear models like random forest, gradient boosting, and support
vector regression. Although we did not use neural networks, as they typically require
more data, our method is model-agnostic and could incorporate neural network models if
necessary. The training pipeline does not make assumptions about the data distribution,
meaning that all regression models are valid for training.

In addition to being model-agnostic, our proposed method is hardware-agnostic,
meaning that it can be used with any robot, camera, and parallel finger gripper in an
eye-in-hand configuration. The scalability of the method is determined by the type of
process rather than the hardware used. While the workflow follows the same structure,
it is adaptable to various picking refinement strategies or flexible placing strategies, not
necessarily requiring both. This ensures that our method can be used across different
manufacturing processes and tasks. This distinction highlights the versatility of our method,
which, while validated in a specific application, is designed to be broadly applicable in
future applications.

6. Conclusions and Future Work
In this work, we have presented a method to reduce the cycle time for accurate pick

assembly operations in an online manner, without the need to delay the production process.
The proposed method is self-supervised, meaning that it does not require any human
intervention for labeling, as target values are automatically obtained during the process.
For model training and validation, we employed AutoML and an intelligent decision-
making system with thresholds, which ensures the model is continuously optimized and
validated without interrupting production. By implementing this strategy, we achieve the
efficiency, accuracy, and flexibility demanded in manufacturing automation, effectively
addressing the challenges of grasping accuracy in vision-guided systems.

In future work, we aim to extend the method to more complex tasks such as pin-
through-hole (PTH) pick-and-assembly tasks and improve its generalization and scalability.
Additionally, while the online training has been conducted locally on a desktop computer,
future work may explore its deployment on edge devices, which are better suited for
industrial environments.
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