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Abstract: This paper presents a path-planning approach for tethered robots. The proposed
planner finds paths that minimize the tether tension due to tether–obstacle and tether–
floor interaction. The method assumes that the tether is managed externally by a tether
management system and pulled by the robot. The planner is initially formulated for
ground robots in a 2D environment and then extended for 3D scenarios, where it can be
applied to tethered aerial and underwater vehicles. The proposed approach assumes a
taut tether between two consecutive contact points and knowledge of the coefficient of
friction of the obstacles present in the environment. The method first computes the visibility
graph of the environment, in which each node represents a vertex of an obstacle. Then,
a second graph, named the tension-aware graph, is built so that the tether–environment
interaction, formulated in terms of tension, is computed and used as the cost of the edges.
A graph search algorithm (e.g., Dijkstra) is then used to compute a path with minimum
tension, which can help the tethered robot reach longer distances by minimizing the tension
required to drag the tether along the way. This paper presents simulations and a real-world
experiment that illustrate the characteristics of the method.

Keywords: tethered robots; path planning; minimum tension

1. Introduction
One of the most challenging aspects of tethered robots is their reduced mobility com-

pared to untethered vehicles. This is a concern because the robot’s workspace typically
contains obstacles that can restrict the robot’s movement and reach, as the tether may be-
come tangled or caught in an obstacle [1–3]. Consequently, efforts to prevent entanglements
are well justified, as presented in [4], in which a framework of non-binary entanglement
states was proposed to evaluate the likelihood of a tether becoming tangled. Another
common approach to address this issue often involves finding paths to and from a specific
location that are within the same homotopy class, which has been explored in various
domains, including ground-based [5,6], underwater [7,8], and aerial [9] vehicles. A homo-
topy class comprises a set of paths in which each path can be continuously deformed into
another without crossing any obstacles [10]. This concept is important for round-trip paths,
as discussed in [11]. While homotopy-based tether problems form a critical component of
path planning for cabled robots, they represent only one aspect of the broader challenges in
this domain since practical applications, such as those discussed in [12,13], may present
different tether-related issues. Multi-robot systems involving heterogeneous platforms
connected by a tether, such as those in [14–16], for example, may require strict control of
the tension and length of the tether to permit collaboration between the agents. Minimizing
the length of the tether, as investigated in [17,18], is, in fact, the focus of several systems.
While in real-world scenarios the tether length is inherently finite and reducing the length
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may help avoid entanglements [6], there are instances where obstacles in the environment
can introduce additional challenges to a tether-based robotic mission, where even short
tethers may create important constraints for the robot’s motion.

The interaction between the tether and the obstacles can have significant implications
and can sometimes be used for the robot’s benefit. In some cases, the tether acts as both a
constraint and an enabler for robots. For example, in [19], the tether–environment inter-
action was leveraged to enable tethered robots to traverse extreme terrains, such as steep
slopes and vertical walls. The approach incorporates interaction points (anchors) between
the tether and the terrain, dynamically predicting anchor attachments and detachments
to ensure stability. Key aspects include on-demand traversability analysis that considers
tether force, anchor history, and terrain–tether interactions, as well as a sampling-based
planner that operates in a non-Markovian framework to generate safe and stable paths on
3D terrain.

A related application that exploits tether dynamics is the payload manipulation prob-
lem with tethered robots, as discussed in [20]. In this context, tethered agents use friction by
allowing the cable to wrap around obstacles, thereby amplifying the holding force. There-
fore, even small and weak tethered robots can leverage the capstan force to manipulate
heavy loads. In this sense, the capstan effect refers to the tension in a rope necessary to
maintain the equilibrium of a cable wrapped around a cylindrical object, preventing the
rope from slipping or unwinding.

Using a similar idea to leverage the tether–environment interaction, the authors
of [21] proposed a path-planning approach to generate cable tension via the capstan effect,
allowing static equilibrium for the safe traversability of rappelling robots on extreme
terrains. They used a C1-Tangent [22] graph for continuously differentiable (C1) path
representation and employed a modified version of the Hybrid-state A* [23] algorithm to
search for feasible paths. Friction is implicitly accounted for through the capstan effect
(coefficient of friction is not explicitly used), which arises from the winding angle around
obstacles. To ensure realistic operation, the algorithm includes a constraint on the winding
angle, considering the finite tether length and a limited number of obstacles. The heuristic
combines path length and winding angle in a convex cost function, weighted by a parameter.
Depending on the parameter’s value, the algorithm performs accordingly: when set to 0, it
efficiently finds shorter paths (completeness not guaranteed); when set to 1, completeness
is guaranteed. However, selecting an optimal value for this parameter can be challenging,
as highlighted by the authors.

Friction, however, is undesirable for most tasks involving tethered robots, particularly
those with an externally deployed tether (managed from the anchor point), which is the
most common case. As the interaction with obstacles intensifies, so does the associated
tension, which may lead to issues such as a higher force required from the robot to pull the
cable and halting the vehicle if operation limits are exceeded. This is especially critical for
flying robots with low thrust limits. Furthermore, for ground vehicles, an increased tether
tension may lead to wheel slippage, which may damage their localization system. It is also
important to note that higher levels of tether-obstacle friction correspond to increased wear
of the tether. In such cases, minimizing cable–environment interaction is fundamental.

To minimize the effect of the environment on the cable, the authors of [24] proposed a
tethering management system that mitigates potential snagging points resulting from tether–
obstacle interactions. Their prototype was conceived to be agnostic, allowing seamless
integration with any tethered ground vehicle without requiring specialized modifications.
The system employs pulleys that envelop the tether and move in tandem to alleviate
tension at points closer to the robot, where contact tension due to interactions tends to be
most pronounced. Furthermore, the authors include a comprehensive analysis of tension
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resistance in real-world, non-idealized capstan objects, including those with circular and
rounded square corners. A similar analysis of capstans in the environment, encompassing
geologic (rock), living (trees), and built (fire hydrant) capstans, was presented in [20],
based on a robotic experiment. Remarkably, the results indicate that the exponential
relationship described by the capstan equation remains consistent for these objects, with
variations primarily related to the coefficient of friction specific to each object. The findings
of previous research provide insights for employing the capstan model when the tether
bends around an obstacle with sufficient curvature in its corners. The problem resides in
understanding the physical properties of the environment to quantify friction numerically.
This information allows for modeling the environment based on the obstacle friction,
enabling the identification of paths with the least amount of tension developed from tether–
obstacle interaction. By finding low-tension paths (low friction levels), we can extend the
robot’s reachability to greater distances and safeguard the tether from premature abrasion.

Therefore, this paper proposes a new path-planning approach for tethered robots
that aims to reduce tension resulting from the tether’s interactions with obstacles when
an external tether management system controls the tether pulled by the robot. The main
contributions of this work include the creation of a tension-aware graph that incorporates a
tension-based cost function, enabling the search for paths with minimal tension. This graph is
built upon the visibility graph of the workspace by incorporating the edges of the visibility
graph as the nodes of the tension-aware graph. This allows the use of both the bending angles
of the tether when it wraps around obstacles and the cable segment between contact points
to compute the two tension-based terms of the cost function. An overview of the method is
shown in Figure 1. Although several previous works have proposed motion planners that
deal with tether tangling, to the best of the authors’ knowledge, the proposed algorithm is the
first that explicitly minimizes tether tension. Initially designed for ground-based robots in
a 2D environment, the method is later adapted for 3D environments. It operates under the
assumption of a taut tether between consecutive contact points and requires knowledge of the
coefficient of friction associated with the environment’s obstacles and the ground.
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Figure 1. Example of the tension-aware path-planning pipeline: (a) 2D environment with an obstacle
( ), start ( ), and goal ( ) positions. (b) Visibility graph, G, where edges are represented by red lines
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and nodes are represented by circles numbered from 1 to 6. Here, v1 and v6 are the start and goal
positions, while vi with i = 2, . . . , 5 represents the obstacle vertices with known coefficients of
friction µ2 = 0.91 ( ), µ3 = 0.13 ( ), µ4 = 0.91 ( ), and µ5 = 0.63 ( ). (c) Edges of G marked with
triangles ( ) correspond to nodes of the tension-aware graph Gt in (d). (d) Besides the edges of
G, two nodes named virtual start ( ) and virtual goal ( ) are added to Gt so that it has unique start
and goal nodes. A path with minimum tension ( ) was found in Gt using Dijkstra through nodes
(virtual start) → (1, 3) → (3, 2) → (2, 6) → (virtual goal), which corresponds to the lowest tension
route via nodes 1→ 3→ 2→ 6 in G.

The rest of this paper is organized as follows. The problem statement is presented in
Section 2. In Section 3, the proposed motion planner is formulated. Section 4 describes our
experiments and discusses the most relevant results. Finally, Section 5 concludes this paper
and proposes future work.

2. Problem Statement
The problem we want to solve is to find paths with minimal tension for tethered robots.

In this scenario, a flexible and free tether is deployed externally by a fixed-position tethering
system located at xstart ∈ Rd, where d = 2 or 3, which serves as the initial position of the
robot. It is assumed that at xstart, the tether is tensioned by a force T0. The robot, modeled
as a point mass, is tasked with navigating through a cluttered environment containing a
set of no polygonal obstacles, denoted as Oi. The robot’s goal is to reach the destination,
identified as xgoal ∈ Rd. The tether is permitted to make contact with the vertices of the
obstacles along its path from the starting point to the goal. Additionally, it is assumed that
there is knowledge of the static friction coefficient for each vertex and that the obstacle
vertices are sufficiently rounded to accommodate the bending angle of the tether. Under
these assumptions, the capstan equation, tailored for cylindrical-shaped objects, can be
used along the bending angle and friction coefficients when the tether comes into contact
with a corner. In a 2D environment (d = 2), where the tether makes contact with the floor,
knowledge of the friction coefficient of the floor, denoted as µfloor, is assumed. Also, the
cable density is assumed to be constant and known.

3. Method
This section details the proposed methodology. An overview of the method is given next.

3.1. Overview

We initially assume a 2D environment containing polygonal obstacles. Figure 1a
illustrates a scenario with a single rectangular obstacle, along with the start and goal
positions. In the first step, our method computes the visibility graph (G). Nodes are
numbered from 1 to nV , as shown in Figure 1b, where nV = 6, and visible nodes are
connected by edges (Figure 1c).

Using a mapping function, Φ, each edge of G is then transformed into a node in the
tension-aware graph, Gt. This transformation is necessary due to the nature of the problem,
where two consecutive edges of G (sharing a common node) encode the bending angle
formed by their respective line segments. In the context of the tension-aware graph, Gt , a
single node represents an edge of G. Since two consecutive edges in G define an angle, the
cost associated with two connected nodes in Gt is determined by a function of the wrapping
angle (as used in the capstan model) and (half) the length of the two corresponding edges in
G. The tension-aware graph Gt is established through Algorithm 1, detailed in Section 3.6.

In our example, the edge-to-node mapping is represented in the visibility graph in
Figure 1c by triangle symbols placed at the midpoint of each edge of G. For example,
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three consecutive nodes {v1, v3, v2} in G form two consecutive edges: edge e13, connecting
nodes v1 and v3, and edge e32, connecting nodes v3 and v2. This mapping is also displayed
in the tension-aware graph in Figure 1d, where the triangle symbols in Gt represent nodes.
It can be observed in this figure that the nodes v̂13 and v̂32 in Gt are derived from the two
previous edges e13 and e32 in G. The ‘hat’ notation refers to the variables of the tension-
aware graph. Additionally, notice that the edge connecting v̂13 and v̂32 in Gt corresponds to
two consecutive edges e13 and e32 in G, which forms the angle ∠v1v3v2. This angle, along
with the lengths of the two edges, e13 and e32, is then used to compute the edge cost in
the tension-aware graph, Gt. In Figure 1d, the horizontal axis represents the index i of
the parent node vi, while the vertical axis represents the index j of the child node vj, both
referenced from the visibility graph. The red and green triangles in Figure 1d represent the
start (v̂start) and goal (v̂goal) nodes in Gt.

As a final step, the Dijkstra algorithm searches on Gt to find the path with the minimum
tension, which is then mapped back to the initial graph, G. This step creates a path with the
least tension through the nodes {v1, v3, v2, v6}. In cases where such a path does not exist,
the method indicates a failure, thus indicating the completeness of the path-planning method.
A detailed breakdown of each step of the method is provided in the following sections.

3.2. Visibility Graph

The visibility graph of a 2D environment [25] is used as the starting point for the
proposed method. Here, it is denoted as G = (V, E), where V and E represent the sets
of nodes and edges of the graph, respectively. V includes the start (xstart) and goal (xgoal)
positions and encompasses all vertices of the polygonal obstacles in the set of obstacle
vertices. The set of vertices, V, is ordered such that the first and last nodes of V represent
the start and goal coordinates, respectively. Using a uniform notation, this set can be
represented as V = {v1, . . . , vnV}, where v1 and vnV correspond to the nodes associated
with the coordinates xstart and xgoal, respectively.

3.3. Tension-Aware Graph

The tension-aware graph, denoted as Gt = (Vt, Et), is generated from the visibility
graph using a bijective function Φ : N2 → N, mapping the edges eij ∈ E in G to the nodes
v̂m ∈ Vt. The ‘hat’ notation represents entities in the tension-aware graph. Note that there
is a one-to-one correspondence between the edges and nodes in the graphs.

To address potential multiple start and goal nodes in Gt due to mapping Φ, two virtual
nodes, {vvstart, vvgoal} /∈ V are introduced. These nodes are called virtual because they
do not exist in G but are only used to compose the first and last nodes in Gt uniquely.
The node virtual start, vvstart, composes the edge evvstart,vstart , which yields a single start
node through the mapping function Φ(evvstart,vstart) → v̂start. The node virtual goal, vvgoal,
composes the edge evgoal, vvgoal , which gives a unique goal node via the mapping func-
tion Φ(evgoal, vvgoal) → v̂goal. Note that while the nodes {vvstart, vvgoal} /∈ V and edges
{(vvstart, vstart), (vgoal, vvgoal)} /∈ E, they are required to build the nodes {v̂start, v̂goal} ∈ Vt.
All edges ê ∈ Et are weighted by a tension-based cost function, which is presented in detail
in Section 3.5.

3.4. Assessing Feasible Free-Tether Configurations

To create the tension-aware graph, which contains only edges that correspond to
feasible configurations of a free tether, a geometric analysis needs to be conducted. By “free”
we mean a tether that does not become stuck or snagged in any part of the environment.
Under this assumption, the cable can only bend toward an obstacle upon contact.
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From the set of visibility graph nodes V, an ordered triplet of distinct nodes, A, B, C,
is used to assess whether the tether configuration is feasible. The nodes are chosen so that
the line segments AB and BC are adjacent at point B. Figure 2a shows the case where a
cable touches three distinct obstacles through vertices, A, B, and C. The obstacle containing
the vertex B, OB, is used to check the intersection with the triangle ABC. An intersection
between ABC and OB (ABC∩OB ̸= ∅) means that the tether will bend toward that obstacle,
which represents a feasible free-tether configuration, as shown in Figure 2b. On the other hand,
Figure 2c shows an unfeasible free-tether configuration, checked in the same way as before.
As illustrated in Figure 2d, ABC′ ∩OB = ∅, which means that a free-tether configuration
goes from A to C′ directly through the line segment AC′. Therefore, the path through the
adjacent line segments AB and BC′ is an infeasible free-tether configuration.

(a) (b)

(c) (d)
Figure 2. Tether configuration feasibility check. (a) Case where a tether touches three obstacles (gray
polygons) at their vertices A, B, and C. The obstacle containing vertex B is highlighted and labeled OB.
(b) Feasible free-tether configuration, checked by assessing ABC ∩OB ̸= ∅. (c) Unfeasible free-tether
configuration for vertices A, B, and C′. (d) Triangle ABC′ does not intersect OB (ABC′ ∩OB = ∅),
indicating a non-feasible configuration.

3.5. Cost Function

The cost of each edge in Gt is based on two components. One term depends on the
angles formed by the tether upon contact with obstacles and their friction coefficient. This
term, denoted as τcapstan, is modeled by the capstan equation [26]. The second component
is derived from segments of the tether that also contribute to developing additional tension
when it contacts the ground. Because this term manifests between pairs of nodes in the
visibility graph, it is called the intra-node term, denoted as τintra. Thus, the combined cost
function can be generically expressed as τ = τcapstan + τintra . Both terms in the function
are discussed next.

3.5.1. Capstan Term

The physical interaction between the tether and an obstacle vertex can be represented
by the capstan model, as illustrated in Figure 3a. According to this principle, when a
cable makes contact with a fixed cylindrical object that has a rough surface, the tension on
each side of the cable varies due to the friction between the cable and the object, which
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counteracts the motion. As depicted in Figure 3a, the holding tension T0 is less than
the tension T when the cable is wrapped around an angle θ on a surface with a friction
coefficient of µ. The capstan equation, which governs the relationship between these
variables, is given by T = T0eµθ , which can be expressed as a ratio between the tensions as

T
T0

= eµθ . (1)

It is important to note that, as shown in (1), the capstan model depends solely on
the friction coefficient and the wrapping angle around a circular object. This implies that
the friction is either derived from a surface with uniform roughness or represented by an
average value for surfaces with nonuniform roughness. While this assumption simplifies
the model, it does not account for variations in friction based on the wrapping angle or
specific locations along the surface.

Given the friction coefficient at each vertex of an obstacle, µ, our task is to find the
wrapping angle θ using the proposed formulation. As shown in Figure 2b, the tether
bending angle can be found by examining three consecutive points A, B, and C, where at
point B, the tether bends at an angle ∠ABC in a feasible free-tether configuration. To derive
θ, the scheme represented in Figure 3a is adapted for conditions similar to those depicted
in Figure 2b, thus allowing us to express θ in terms of ∠ABC.

(a) (b)
Figure 3. (a) Transforming angle ∠ABC into a capstan angle θ by establishing the angle relationship
θ = 180◦ −∠ABC through a geometric scheme that relates the capstan model with the representation
of polygonal obstacles. (b) Illustration of a viable free-tether configuration, wherein it interfaces with
three obstacles (gray polygons) at vertices A, B, and C.

The process starts by introducing a circle with a radius R tangent to both line segments
AB and BC. The choice of the radius R is arbitrary, as it does not affect the capstan equation.
The points of tangency, denoted as a and b along with the circle’s center o, form a sector
with an angle of θ. As depicted in Figure 3a, at the intersection points a and c, the tensions
T0 and T are also tangent to the circle, in accordance with the capstan model illustrated
in the same figure. By considering the polygon Baoc in Figure 3a, the sum of the internal
angles gives the relationship between θ and ∠ABC as θ = 180◦ −∠ABC .

Without loss of generality, let us consider the situation represented in Figure 3a, where
the tension at A is T0 and at C is T, with T ≥ T0. Using the capstan Equation (1) and
expressing the tension at C as T = T0 + ∆T, where ∆T is the tension developed when the
tether interacts with the obstacle at B, we have τcapstan = ∆T/T0 = eµθ − 1 , which is the
normalized value of the tension created from the tether–obstacle interaction. To obtain a
cost function with a physical unit, the normalized tension is multiplied by T0, which gives
the capstan term of the cost function:

τcapstan = T0(eµθ − 1) . (2)
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3.5.2. Intra-Node Term

The second term in the cost function, denoted as τintra, accounts for the increase in
tension as the tether is paid out. This term takes into consideration the weight of a cable of
length Le given by linear distances lying intra-pair of consecutive nodes. Employing the
notation adopted in the formulation, the tether length is given by the sum of line segments
AB and BC, as illustrated in Figure 3b. Consequently, the weight of a cable, characterized
by linear density ρ and length Le = AB + BC, is calculated using We = ρagLe , where ag

represents gravitational acceleration.
An observation about the actual path length and its calculation within the cost function

can be addressed. The length of the path computed from the start point, vstart, to the goal
point, vgoal, in a piecewise linear path, as shown in Figure 4, is given by

L = v1v2 + v2v3 + . . . + vn−2vn−1 + vn−1vn . (3)

When constructing the tension-aware graph, three consecutive points (nodes in the
visibility graph) are considered in each iteration. The process starts from the virtual start
node, vvstart, and goes toward the virtual goal node, vvgoal. Since this process involves
three points and only one point moves toward the goal in each iteration, a line segment is
included twice in the computation. The following relationship can be established using
Equation (3), recalling that the lines connecting to the virtual nodes have length zero, i.e.,
vvstartvstart = vgoalvvgoal = 0, or, in terms of numeric indices, v0v1 = vnvn+1 = 0:

∑ Le = (v0v1 + v1v2) + (v1v2 + v2v3)+

(v2v3 + . . . + vn−2) + (vn−2vn−1 + vn−1vn) + (vn−1vn + vnvn+1)

∑ Le = v0v1︸︷︷︸
0

+2(v1v2 + v2v3 + . . . + vn−2vn−1 + vn−1vn) + vnvn+1︸ ︷︷ ︸
0

∑ Le = 2L .

(4)

This relationship shows that the computed length Le = AB+ BC, used in the following
cost function, must be divided by a factor of 2.

Figure 4. Computation of the path length through the edges in the visibility graph G. The path is
represented as a sequence of nodes ( ) in G, starting at the initial node v1 ( ) and ending at the goal
node vn ( ). The edges connecting consecutive nodes ( ) encode the path length based on Euclidean
distance. The virtual nodes vvstart ( ) and vvgoal ( ), which connect to the start (vstart) and goal (vgoal)
nodes, form zero-length edges represented by dashed lines ( ) and do not contribute to the total
path length. Thus, the total path length is given by L = v1v2 + v2v3 + . . . + vn−2vn−1 + vn−1vn.

Finally, when the cable is in contact with the floor in a static equilibrium state, the
normal force on the cable is equal to its weight, i.e., N = We. Given the friction coefficient
of the floor, the tension resulting from its interaction with the cable is expressed as

τintra = c · (ρag ∑ Le/2) , (5)

where c = µfloor is the friction coefficient of the floor.
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3.6. Algorithms

To determine the path with the minimum tension, two algorithms are proposed.
Algorithm 1 builds the tension-aware graph, in which the edges are weighted by a tension-
based cost function. Algorithm 2 performs a graph search on the tension-aware graph using
the Dijkstra algorithm to find the path with the lowest cost. It also verifies the existence of
the path and checks whether it exceeds the maximum tether length.

Algorithm 1: Building a tension-aware graph

Input : G = (V, E): Visibility graph of the map
Φ: Mapping function
O: A set of disjoint polygonal obstacles
F : A structure with params µ, and c
T : A structure with tether params ρ and T0

Output : Gt = (Vt, Et): Tension-aware graph

1 (vstart, vgoal)← Start and goal nodes from G
2 vvstart ← vstart − 1
3 vvgoal ← vgoal + 1
4 Vt ← {Φ((vvstart, vstart))} ∪Φ(E) ∪ {Φ((vgoal, vvgoal))}
5 Et ← ∅
6 for all v̂ ∈ Vt do
7 eij = Φ−1(v̂)

8 V j
t ← All edges connecting to eij by node vj

9 for all v̂j ∈ V j
t do

10 ejk = Φ−1(v̂j)

11 vi, vj ← Nodes from edge eij

12 vj, vk ← Nodes from edge ejk

13 A, B, C ← Coordinates of nodes vi, vj, vk

14 if vi == vvstart then
15 Et ← Et ∪ {(eij, ejk)}
16 Set cost of edge {(eij, ejk)} to c · (ρagBC/2)
17 else if vk == vvgoal then
18 Et ← Et ∪ {(eij, ejk)}
19 Set cost of edge {(eij, ejk)} to c · (ρag AB/2)
20 else
21 ABC ← Triangle from coordinates A, B, and C
22 OB ← Obstacle that contains the point B from O
23 if ABC ∩OB ̸= ∅ then
24 θ ← π −∠ABC
25 Le ← AB + BC
26 Et ← Et ∪ {(eij, ejk)}
27 Set cost of edge {(eij, ejk)} to τ = T0(eµθ − 1) + c · (ρagLe/2)
28 end
29 end
30 end
31 end
32 End Function
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3.6.1. Tension-Aware Graph Creation

Algorithm 1 takes five inputs and produces an output, which is the tension-aware
graph. In line 1, the algorithm begins by retrieving the start (vstart) and goal (vgoal) nodes
from the visibility graph, G. The node-index definition for the virtual nodes takes place in
lines 2 and 3, where the virtual node vvstart precedes vstart, and vvgoal succeeds vgoal. The
initialization of the tension-aware graph, Gt = (Vt, Et), occurs in lines 4 and 5. Line 4
performs the mapping function Φ to map the edges in G to the nodes in Gt. Two additional
edges, which connect the virtual nodes to the start and goal nodes, are added to Gt as
follows: {Φ((vvstart, vstart))} ∪ Φ(E) ∪ {Φ((vgoal, vvgoal))}. The number of nodes of the
tension-aware graph is nE + 2, where nE is the number of edges in the visibility graph.

Line 6 iterates over all nodes in Gt, and in line 7, the inverse mapping function Φ−1

retrieves the edge eij from the visibility graph G, which is linked to the current node v̂ in the
tension-aware graph Gt. Line 8 creates a list of all outbound edges of the visibility graph
that are connected to eij at vj. Line 9 iterates over all elements in V j

t . Line 10 is used to
retrieve the edge ejk that is connected to the previous edge eij. Then, lines 11 and 12 retrieve
nodes vi, vj, vk from edges eij and ejk. Line 13 extracts the coordinates A, B, and C from
nodes vi, vj, and vk, respectively. These coordinates are used to compute the tether length
and check feasible configurations of the tether.

Lines 14 to 16 check whether the virtual start node vvstart has been found. If
found, a new edge {(eij, ejk)} is appended to the tension-aware graph with a cost of
τintra = c · (ρgBC/2). The same rule applies to lines 17 to 19 when the virtual goal node
vvgoal has been reached.

The strategy for constructing the tension-aware graph relies on a geometric approach
to check feasible free-tether configurations and compute the tension-based cost function. In
line 21, the coordinates A, B, and C are used to form a triangle ABC. Additionally, in line 22,
the obstacle containing vertex B, OB, is selected, as shown in Figure 2a. To find feasible
tether shapes when contacting obstacle corners, an intersection between the triangle ABC
and OB is checked. When the intersection exists, lines 24 to 27 are executed, where the
corresponding edge is added to the tension-aware graph (Gt), the wrapping angle θ is
computed, and the tether length associated with this segment is also calculated. The friction
coefficient (µ) at B is retrieved from the data structure F , along with the parameter c, which
defines the intra-node cost mode. The force on the cable T0 and the linear density ρ are
retrieved from the data structure T . Finally, the cost function τ = T0(eµθ− 1)+ c · (ρagLe/2)
is computed to set the cost of the newly created edge in the tension-aware graph.

3.6.2. Tension-Aware Graph Search

In line 1, Algorithm 2 starts by using the Dijkstra algorithm to search for a path from
v̂start to v̂goal in Gt, storing the result as Pt. Line 2 obtains the number of nodes in Pt. Lines 3
and 4 initialize the variables for the path length (L) and the path (P).

Lines 5 to 9 build the path P ∈ G and calculate its cumulative tether length. Note that
the iteration excludes the first (j = 1) and the last (j = n) nodes in Pt, which represent the
virtual start and goal nodes, respectively. Line 6 decodes each node in Pt ∈ Gt using the
inverse mapping function to retrieve the edges from the visibility graph G. Line 7 appends
the corresponding edge to the path P , while lines 8 and 9 determine the length of each
edge and add it to the total length of the path.

Line 11 verifies the feasibility of the path by checking whether a path has been found
during the search in line 1 and whether the tether length is shorter than the maximum
allowable length Lmax. If these conditions are met, the algorithm returns the path with
the minimum tension; otherwise, it returns a failure, thus showing the completeness of the
path-planning method.
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Algorithm 2: Searching the tension-aware graph

Input : Gt = (Vt, Et): Tension-aware graph
Φ: Mapping function
Lmax: Maximum length of the tether
Start (v̂start) and goal (v̂goal) nodes of Gt

Output : A path from vstart to vgoal with minimum tension or failure

1 Pt ← Dijkstra(v̂start, v̂goal, Gt)
2 n← Number of nodes in Pt

3 L← 0
4 P ← ∅
5 for j = 2 to n− 1 do
6 e = Φ−1(Pt(j))
7 P ← P ∪ e
8 Le ← Euclidean length of edge e
9 L← L + Le

10 end
11 if P ̸= ∅ and L ≤ Lmax then
12 return P
13 else
14 return failure
15 end
16 End Function

3.7. Analysis

The proposed tension-aware path-planning algorithm is complete. Note that it is
always possible to construct a tension-aware graph using Algorithm 1. If this graph
connects the virtual start to the virtual goal, the Dijkstra algorithm will return a path that
can always be related to the edges in the visibility graph. If the path in the visibility graph
is shorter than the maximum tether length, Algorithm 2 succeeds. If the Dijkstra algorithm
returns an empty path or the path found is longer than the tether length, the algorithm
indicates that a path does not exist.

The time complexity of the method can also be analyzed. The creation of the visi-
bility graph G, necessary for Algorithm 1, can be performed in O(n2

V) in the worst-case
scenario [27]. The complexities of Algorithms 1 and 2 are computed as described below.

3.7.1. Tension-Aware Graph Creation

Lines 1 to 5 of Algorithm 1 contribute a constant time complexity of O(1), with the
exception of line 4, which has a complexity of O(n̂V), where n̂V is the number of nodes in
Gt. The two nested loops starting at lines 6 and 9 iterate over the nodes in Gt. Within these
loops, most of the operations have a complexity of O(1). Checking for obstacles associated
with point B, if stored beforehand in an appropriate data structure, has a complexity of
O(no), where no is the number of obstacles in the environment. The 2D polygon intersection
check in line 23, if implemented with an optimal algorithm [28], can be performed in
O(ns log ns), where ns is the total number of sides of the obstacle OB. Lines 24 to 27 have a
time complexity ofO(1) for each operation. Therefore, the complexity of Algorithm 1 arises
from the two nested loops (lines 6 and 9), which iterate over the nodes in Gt and contribute
to a worst-case complexity of O(n̂2

V) or O(n4
V), since every edge in G is mapped to a node

in Gt plus two virtual nodes, i.e., n̂V = nE + 2, and the relationship between the nodes and
edges in a directed graph in a worst-case scenario is given by nE = nV(nV − 1). Considering
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the complexities of the inner operations within these loops, the overall complexity becomes
O(n4

V(no + ns log ns)).

3.7.2. Tension-Aware Graph Search

The search for the minimum tension path begins at line 1 by seeking a path from v̂start

to v̂goal in Gt using the Dijkstra algorithm [27]. Considering the number of nodes (n̂V)

and edges (n̂E) in the tension-aware graph, the overall time complexity of this operation
is O(n̂V log(n̂V + n̂E)). Lines 2 to 4 exhibit a complexity of O(1). The loop in line 5
encompasses lines 6 to 9, which also have a complexity of O(1). As the loop in line 5
iterates over the number of nodes n in the path Pt, it has a complexity ofO(n), which, in the
worst-case scenario, is O(n̂V). The remaining lines of the algorithm also have complexity
O(1). Therefore, by noticing that n̂V = O(n2

V) and n̂E = O(n4
V) in the worst-case scenario,

the overall time complexity of this algorithm is O(n2
V log(nV)).

Thus, by combining the complexities of creating and searching the graph, the overall
complexity of the method can be expressed as O(n4

V(no + ns log ns)), which is mainly due
to the creation of the tension-aware graph.

3.8. Extension to 3D

This section presents the extension of the method to 3D scenarios. To do so, we
assume that the environment is known a priori and that the 3D obstacles have a special
prismatic shape created from 2D polygonal obstacles by extending their shapes up in a
vertical straight path to a certain height. Despite the simplicity of such shapes, they can
be considered good approximations for trees in a forest or pillars in an indoor building.
The heights of the obstacles may vary. The method assumes a taut tether between pairs of
consecutive contact points, including the start and goal positions.

Let the start and goal positions be defined as {xstart, xgoal ∈ R3}, which are located
in free space and connected through a tether. The start and goal positions may not be
in the line of sight of each other due to the presence of obstacles. Let three consecutive
tether–obstacle contact points be defined as A, B, and C. These points are used to define
a planeH such that {A, B, C} ⊂ H. The contact points for prism-shaped obstacles, such
as those in Figure 5, can be computed in advance using the start and goal positions. This
involves two steps: (1) determining the horizontal coordinates (x, y) in the xy-plane; and
(2) calculating the z-coordinate based on the horizontal distance and the cable’s elevation
angle. Assuming a constant elevation angle between xstart and xgoal, the height (z) of each
contact point can be derived from the known obstacle edges and the horizontal distances. A
plane defined by these contact points slices through the obstacles that contain these points,
thereby creating a 2D representation of the space and allowing the use of the method
originally developed for the 2D case.

To use this approach, the cost function is adjusted to account for the cable’s weight,
which contributes to changes in tension as the tether length varies. In this scenario, only
the weight of the cable corresponding to the length Le is considered. Equation (5) is used,
but the parameter c is set to 1.0 instead of the value of the friction coefficient of the floor,
c = µfloor, used in the 2D scenario. Hence, the intra-node term of the cost function can be
generically expressed as

τintra = c · (ρag ∑ Le/2) ,

where

c =

{
µfloor : 2D Case (Tether on the floor)

1.0 : 3D Case (Tether suspended)
. (6)
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Figure 5 illustrates a 3D environment populated with four prism-shaped obstacles
numbered from 1 to 4. In this scenario, a tether connects the start and goal positions
through the contact points A (obstacle 2) and B (obstacle 3). Based on tether tautness, three
consecutive points, {A, B, xgoal}, define a plane, exemplified by the planeH. Within this
plane, the method developed for 2D cases through Algorithms 1 and 2 can be extended to
the 3D environment.

Figure 5. Representation of a 3D environment with four prism-shaped obstacles ( ). A tether ( )
connects the start ( ) and goal ( ) positions passing through the contact points A and B ( ). A plane
H ( ) is defined by three consecutive path nodes (A, B, and xgoal in this case), assuming a taut tether
(straight line) between pairs of consecutive nodes.

3.9. Relaxing Constraints

This section discusses some of the method’s constraints and considerations for relaxing
them, thus allowing it to be applied in several practical situations.

The proposed formulation considers polygonal obstacles regardless of their convexity,
meaning that both convex and non-convex polygons can represent obstacles within the
workspace. This flexibility is enabled by the feasible free-tether configuration feature
present in the tension-aware algorithm. However, the method is still based on the presence
of vertices (corners) on the obstacles. To use the method with generic-shaped objects,
including circular or spherical obstacles, the user would need to create virtual vertices
along the surfaces of the obstacle. This is a common approach when visibility graphs are
used [29]. Since the capstan model is independent of the radius of a corner, a small number
of virtual vertices could be created at points of high tether curvatures.

The method also assumes that the tether is either fully on the ground (2D) or in the
air (3D). Consequently, the intra-node term defined in (5) is set based on the following
situations: c = µfloor if the tether is entirely on the floor, or c = 1.0 if the tether is completely
in the air, as summarized in (6). In intermediate situations, where the tether could be
partially touching the ground, c could be considered a weight and set to any value between
µfloor and 1. Note, however, that situations like this, in most cases, would also violate our
assumption of a taut tether. In fact, the experienced reader should know that a completely
taut tether is almost impossible to achieve due to the very high tensions required. Despite
this, our method can be used, as long as the tether is reasonably straight between vertices.
In 3D, this constraint is used to define a plane between three consecutive points. With a
small slack, the cable will be slightly off the plane, resulting in a small deviation between
the computed and actual tether lengths, which can usually be accepted.
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4. Experiments
This section presents simulations and experiments conducted to evaluate the proposed

method. The simulations assumed a bounded 2D space containing polygonal obstacles.
The friction coefficient of the floor was assumed to be µfloor = 0.6. The linear density of the
cable was ρ = 0.01 kg/m for both the simulations and real-world validations. The obstacles
were assumed to have vertices with identical friction coefficients.

To evaluate our method, since no other tension-aware planner exists, we compared
the paths found by the proposed tension-aware algorithm with those of the breadth-first
search (BFS) and Dijkstra algorithms in the visibility graph G of the environment. The BFS
algorithm found the path with the smallest number of nodes, while the Dijkstra algorithm
found the one with the shortest distance. We chose the BFS algorithm because it was
expected that the total contact friction would be reduced if the number of nodes was also
reduced. On the other hand, if the length of the path was reduced, the friction with the
floor was also reduced, justifying the comparison with the Dijkstra algorithm.

Figure 6 shows an environment of dimensions 10 m× 10 m populated with nine obsta-
cles. The start and goal positions are located at xstart = (1.00, 9.00) and
xgoal = (9.00, 1.50). The friction coefficients for the obstacles are µ1 = µ3 = µ5 = µ6 =

µ8 = 0.40, µ2 = µ4 = 0.20, and µ7 = µ9 = 0.10. The Dijkstra algorithm identified the
shortest path with a length of L = 12.84 m and a tension cost of τ = 1.87. Both the BFS and
the tension-aware algorithms yielded paths with equivalent node counts. Although the
BFS algorithm found a path with a shorter length of L = 13.92 m than the one found by
the tension-aware algorithm with a length of L = 14.32 m, the tension cost derived from
the BFS algorithm was τ = 2.32, which was more than twice as high as the tension cost of
τ = 1.01 derived from the tension-aware algorithm.
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Figure 6. Path-planning results obtained by the BFS ( ), Dijkstra ( ), and tension-aware ( )
algorithms in an environment containing 9 obstacles, numbered for reference in the figure. The paths
connect the start ( ) to the goal ( ) positions along with all other vertices that contact the tether ( ).
The lighter the obstacle, the smaller its friction coefficient.

Figure 7 depicts a larger environment with dimensions of 25 m× 10 m populated with
25 obstacles. The start position is located at xstart = (0.40, 1.60) and the goal position is
located at xgoal = (19.60, 9.00). The friction coefficients for the obstacles are all chosen
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randomly within the range 0.0 ≤ µ ≤ 1.0. The shortest path (red) was found by the Dijkstra
algorithm with a length of L = 22.28 m, but it came at the highest cost of τ = 3.67. The
path found by the BFS algorithm was the longest, with a length of L = 25.90 m and an
intermediate cost of τ = 2.49. This path also had the fewest nodes, with only 4 nodes,
excluding the start and goal positions, in contrast to the 7 and 10 nodes in the paths found
by the tension-aware and Dijkstra algorithms, respectively. Note that a path containing
fewer contact points does not guarantee a minimum-tension path. Finally, the tension-
aware algorithm found a path with an intermediate length of L = 23.87 m (approximately
7% longer than the shortest path) and the minimum cost of τ = 2.07.
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Figure 7. Path-planning results obtained by the BFS ( ), Dijkstra ( ), and tension-aware ( )
algorithms in an environment containing 25 polygonal obstacles, numbered for reference in the figure.
The paths connect the start ( ) to the goal ( ) positions along with all other vertices that contact the
tether ( ). The lighter the obstacle, the smaller its friction coefficient.

Two other simulations, as shown in Figure 8a,b, aimed to highlight the impact of the
intra-node term of the cost function, τintra, especially on longer paths. Figure 8a shows
an environment with dimensions of 5× 5 m and two obstacles. Obstacle O1 has a friction
coefficient of µ1 = 0.5, while O2 has a friction coefficient of µ2 = 0.1. The start and goal
positions are placed at xstart = (0.20, 4.80) and xgoal = (4.80, 0.20). The BFS algorithm
in G found a path with a length of L = 7.26 m and a cost of τ = 1.06. The Dijkstra
algorithm found a path with a length of L = 6.70 m and a cost of τ = 0.68, while for the
tension-aware algorithm, the path had a length of L = 8.71 m and a cost of τ = 0.67. It
can be observed in Figure 8a that the Dijkstra algorithm found a path with smaller tether
bending angles while touching the obstacles with higher friction coefficients. On the other
hand, the tension-aware algorithm chose paths with higher tether bending angles with
smoother surfaces (lower friction). Although the tether length in the tension-aware case
was longer, its length was not enough to penalize the selected path through the linear
term of the cost function, which depends on the tether–floor friction. In Figure 8b, we
show a different environment with the same obstacles as the previous simulation. The
differences between the two environments are as follows: (i) the environment in Figure 8b is
stretched horizontally to have dimensions of 5× 15 m and; (ii) the obstacles are positioned
at different locations: obstacle O1 is located in the middle of the horizontal axis, whereas
O2 is located at the northeast part of the environment. The start and goal positions are
located at xstart = (0.20, 4.80) and xgoal = (14.80, 0.20). The BFS algorithm found a similar
path as that observed in Figure 8a by passing in the lower portion of obstacle O1. This
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path had a length of L = 15.80 and a cost of τ = 1.21. Both the Dijkstra and tension-aware
algorithms found the same path with a length of L = 15.44 and a cost of τ = 1.05. Note in
this case how the tether–floor interaction impacted the cost function on longer paths. In
Figure 8a, given the set of friction coefficients (tether–obstacle and tether–floor interactions),
the main contribution of the cost function comes from the capstan term, which, in turn,
grows exponentially with its variables (bending angle and friction). When distances become
longer, the intra-node term tends to have a more significant impact on the cost function,
acting to minimize the length indirectly, as shown in Figure 8b, where the tension-aware
method provides the same path as the Dijkstra algorithm.

(a) (b)

  

 

Figure 8. Path-planning results highlighting the effect of the “intra-node” term of the cost function on
the tension-aware algorithm ( ), the BFS algorithm ( ), and the Dijkstra algorithm ( ). The lighter
the obstacle, the smaller its friction coefficient. Obstacles are numbered for reference in the figure (a)
In a squared environment, each algorithm yields a distinct path. (b) In an environment three times
wider, the BFS and Dijkstra algorithms find paths similar to that of their counterpart in (a), while
the path of the tension-aware algorithm matches that of the Dijkstra algorithm, indicating that the
minimum tension path is also the shortest. In this case, the “intra-node” term, which is proportional
to the distance, becomes more important than the capstan term.

Our method was also assessed experimentally. Our setup employed a cardboard
box measuring 1.24× 2.04 m placed in a vertical orientation, as shown in Figure 9a. Fif-
teen cylindrical objects, each with a diameter of 8 cm, were attached to the box. These
objects represent the vertices of obstacles within the workspace (cardboard box). Three of
these objects (white circles) were made of plastic with a friction coefficient of µp ≈ 0.19.
The remaining twelve objects were made of cardboard with a friction coefficient of
µp ≈ 0.32. The friction coefficient for each type of corner used in the experimental setup
was determined using the following method:

1. A cable was hung around the obstacle with a known wrapping angle;
2. A small bucket was attached to one side of the cable, and tiny metal balls were

gradually added to the bucket to increase the weight until the cable overcame static
friction and started to move;

3. The tension on the opposite side of the cable was measured using a digital hang-
ing scale;

4. With the known wrapping angle, the added mass, and the measured tension, the
friction coefficient was calculated using the capstan equation.

At the starting position, tension was generated by suspending an object with a known
mass. Given that gravity was used to create tether tension at the starting position, the mass
of the object was selected to be considerably larger than that of the cable in the experiments.
Because of this, the intra-node term of the cost function in (2) was neglected by setting
c = 0. Using the experimental setup as a reference, a virtual setup was recreated to closely
replicate it. The paths generated in this virtual environment were subsequently recreated
with an actual cable for tension assessment.
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The start and goal positions at xstart = (0.04, 1.08) and xgoal = (1.93, 0.23) were
connected with paths obtained by the BFS (blue line), Dijkstra (red line), and tension-aware
(green line) algorithms, as shown in Figure 9a. To evaluate the actual tension on each path,
we replicated the paths in the experimental setup by extending a cable through the same
corners and measuring the tension using a scale at the goal position. Figure 9b shows the
cable replicating the path obtained by the tension-aware algorithm. The cable touched
vertices A− F− G, leading to a path length of L = 2.39 m and a cost of τ = 0.38± 0.06,
mainly because this path explored vertices with lower friction coefficients (vertices F
and G). The path obtained by the BFS algorithm (not shown in the figure) contacted
obstacles through vertices A and B. The path length was L = 2.95 m and its cost was
τ = 0.65± 0.06. The path obtained by the Dijkstra algorithm (also not shown) contacted
obstacles through vertices A− C− D− E, and it had the shortest length of L = 2.37 m and
cost of τ = 0.57± 0.03.

(a) (b)
Figure 9. (a) Paths obtained by the tension-aware ( ), BFS ( ), and Dijkstra ( ) algorithms in a
virtual environment with obstacles numbered 1–4 for reference, and overlaid on the experimental
setup image. Start ( ) and goal ( ) positions along with all other vertices that contact the tether ( ).
(b) Path determined by the tension-aware algorithm and recreated with a tensioned cable passing by
vertices A−F− G. A scale is used at the goal position to measure the tension.

5. Conclusions and Future Work
This paper presented a novel path-planning method for tethered robots. The proposed

approach, which aims to minimize the tension on the tether, assumes an externally managed
cable, with the robot pulling the tether from the anchor point. Initially designed for a 2D
environment populated with polygonal obstacles, the method is extended to 3D scenarios
with prism-shaped obstacles. Originally assuming tether tautness between pairs of contact
points, the method remains valid in 3D scenarios, even for tethers with minimal slack
(tensioned tether). In such cases, a triplet of consecutive contact points is used to form a
plane. Although the cable may deviate slightly from this plane, such minor deviations
have little impact on tether length and can be disregarded when applying the method.
Finally, our approach was evaluated through simulations and real-world experiments for
2D environments, yielding paths with minimum tension. Nonetheless, the “intra-node”
term penalizes longer paths and can indirectly minimize the path length over longer
distances, as shown in the simulations. In the future, we plan to use the method to plan
paths for tethered drones and ground robots in mining inspection tasks.
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