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Abstract: Due to space and energy restrictions, lightweight autonomous underwater
vehicles (AUVs) are usually fitted with low-power processing units, which limits the ability
to run demanding applications in real time during the mission. However, several robotic
perception tasks reveal a parallel nature, where the same processing routine is applied for
multiple independent inputs. In such cases, leveraging parallel execution by offloading
tasks to a GPU can greatly enhance processing speed. This article presents a collection
of generic matrix manipulation kernels, which can be combined to develop parallelized
perception applications. Taking advantage of those building blocks, we report a parallel
implementation for the 3DupIC algorithm—a probabilistic scan matching method for sonar
scan registration. Tests demonstrate the algorithm’s real-time performance, enabling 3D
sonar scan matching to be executed in real time onboard the EVA AUV.

Keywords: underwater; sonar; scan matching; Coda Octopus Echoscope; 3DupIC; mapping;
localization; AUV; OpenCL; GPU; real time

1. Introduction
In recent times, there has been a growing demand for autonomous underwater vehicles

(AUVs) to perform various applications, such as offshore structure inspection, exploration
of underwater environments, environmental and habitat monitoring, and more. Recent
statistics show an increasing interest in research areas related to the development of under-
water robots, with particular relevance in topics of localization and navigation [1].

Robotic localization concerns about determining an updated solution for the robot’s
current pose within a well-defined global reference frame. It is commonly accepted that
robust, accurate and long-term localization cannot be achieved through a single sensor [2].
Therefore, modern methods for robotic localization rely on data fusion techniques to
combine measurements from complementary sensors in an effort to compensate for the
weaknesses of each device [3] and achieve robust long-term performance.

The problem is usually found in addressed using probabilistic state estimation meth-
ods, implementing a dead reckoning core, associated with a high rate sensor to preform
prediction. In underwater applications, inertial motion unit (IMU) and Doppler Velocity
Log (DVL) constitute two valuable devices for performing dead reckoning. IMUs provide
high rate linear accelerations and angular velocity measurements, which, through integra-
tion, produce position and attitude estimates. On the other hand, DVLs directly measure
linear velocities of the robot with respect to the seafloor.
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Since dead reckoning is susceptible to drift, state corrections from other sensors, prefer-
ably producing direct state observations, are necessary to ensure long-term consistency.
Unfortunately, the acquisition of global localization fixes is not straightforward underwater.

The use of the Global Navigation Satellite System (GNSS) is possible on the surface
to retrieve accurate position and heading corrections [4]. However, due to the attenuation
of electromagnetic waves underwater, this resource becomes unavailable as soon as the
vehicle dives. Acoustic positioning solutions [5] enable the computation of relative position
between nodes equipped with compatible transponders. Nevertheless, since this solution
requires the installation of an external infrastructure, it is not practical for most applications.

Another possibility, explored in this article, relies on sensing the surrounding environ-
ment to retrieve robot displacement estimates. In underwater environments, ranging sonars
constitute a robust source of geometric data, from which displacement measurements can
be extracted using scan matching techniques. Given two range scans of the same static
scene, taken from different perspectives, the scan matching process computes the rigid
body transformation that brings the scans together in the same reference frame. Assuming
the sensor is fixed with respect to the robot frame, the transformation that best overlaps the
two scans corresponds to the relative robot displacement between scan acquisition poses.
Displacements computed through scan matching can be integrated into the localization
system in two ways: either inserted in the dead reckoning core, as highly accurate odometry
references, or they can be integrated in a SLAM system to provide relative displacements
and loop closure constraints.

By its simplicity, the iterative closest point (ICP) is a popular scan matching tech-
nique [6]. It recursively minimizes the distance between point-to-point matches, selected
using the Euclidean distance. Countless variants of the ICP algorithm have been pro-
posed [7,8], either to increase speed [9] or improve robustness, convergence and accu-
racy [7,8,10–12]. Most registration methods were originally developed for terrestrial ap-
plications, assuming that high resolution and accurate range measurements are readily
available from Light Detection and Ranging (LIDAR) sensors. In underwater environments,
current sonar ranging technology offers significantly lower resolution, reduced sampling
rates and higher percentage of outliers. As a result, scan matching methods tailored to
these specific conditions are required.

Probabilistic scan matching formulations incorporate not only range measurements but
also account for their uncertainty. This becomes particularly relevant when measurement
uncertainty is high, as is the case of underwater sonars [13]. Building upon the initial pIC
method [14], several variants were introduced to target the unique characteristics of each
sonar type, with reported applications for imaging [15,16] and profiling sonars [13,17,18].
All these techniques involve an intermediate sub-map building stage, which is used to form
dense patches of the scene, that can be later registered through scan matching. The submap
building stage requires short-term accurate dead reckoning, which can be a limitation in
underwater scenarios, where DVL dropouts and measurement outliers may negatively
affect the localization accuracy.

In the past, we have presented a probabilistic scan matching technique specifically
developed for registration of 3D scans from an Echoscope acoustic camera—the 3D un-
derwater probabilistic iterative correspondence (3DupIC) [19]. It differs from previous
techniques as it eliminates the need for submap construction, enabling its application in
situations of degraded dead reckoning. On the downside, the algorithm involves com-
plex matrix calculations that, when executed sequentially on the AUV’s processor, lead to
computational overload with wait times far exceeding the desired real-time response. As
described in the next section, the 3DupIC is an iterative algorithm that repeats two main
tasks until convergence: (1) establish point to point matches; (2) minimize the Mahalanobis
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distance between compatible point pairs. In both stages, either individual points and
point pairs are assumed to be independent, making the processing operations well suited
for parallelization.

The key contribution of this article is the report of a GPU-accelerated implementation
of the 3DupIC algorithm, capable of achieving real-time responses. With a divide-and-
conquer philosophy, the problem was broken down into a set of basic matrix operations,
for which the code is provided in this article. These building blocks can be reused to
achieve accelerated implementations of other computationally intensive tasks involving
large matrices. Furthermore, the adoption of Open Computing Language (OpenCL) [20],
a platform agnostic framework for parallel programming, facilitates integration in other
systems with hardware from different vendors. Performance tests on an embedded com-
puter demonstrate the ability to run the algorithm in real time, enabling its use in a fully
operational AUV.

This article is organized as follows. Section 2 presents the 3DupIC method, describing
the probabilistic model applied to each sonar beam, the point matching strategy and the
error minimization procedure. Section 3 explores the OpenCL programming concepts and
details the developed processing kernels. Section 4 describes how the kernels from Section 3
are combined and launched to execute the 3DupIC algorithm from Section 2. Experimental
tests demonstrating the real-time capabilities are presented in Section 5. Finally, Section 6
provides the conclusion.

2. 3DupIC Scan Matching
The 3DupIC [19] is a probabilistic scan matching method, which adapts the original

probabilistic iterative correspondence (pIC) [14] to perform registration, in six degrees
of freedom, of 3D scans acquired from an Echoscope 3D underwater sonar. The proba-
bilistic formulation allows noise to be considered during the point matching and error
optimization stages.

Figure 1 illustrates a single scan gathered from the Echoscope 3D profiling sonar. Each
scan takes the form of a 128 by 128 matrix of range measurements, covering a seabed area
inside the sonar field of view of 50 degrees in both along-track and across-track directions.

Figure 1. Representation of a scan (red dots) captured by the Echoscope 3D sonar. The 3D model of
the EVA AUV, where the sonar is assembled, is shown in the top right corner. The sonar field of view
of 50º, in the along-track and across-track directions, is also illustrated.
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2.1. Probabilistic Scan Modeling

To produce the probabilistic scan model, individual points are considered independent
from each other. The ith scan point is represented by a multivariate Gaussian distribution
bs

i = N (b̂s
i , Σs

i ), where b̂s
i is a three element vector containing the measured 3D coordinates,

defined in the sonar reference frame s. The probabilistic model for the entire scan S is the
concatenation of all individual beams Ss = {bs

1, . . . , bs
n}.

The covariance matrix Σs
i for the ith beam is obtained by

Σs
i = Rs

gΣ
g
i (R

s
g)

T (1)

where Σ
g
i is the covariance matrix in the beam’s reference frame g, and Rs

g is the rotation
matrix that transforms from g to s. The covariance matrix, Σ

g
i , embodies the uncertainty

associated with the conic beam shape. From Figure 2, two main sources of uncertainty
impact the precision of the measurement: in the plane perpendicular to the beam direction,
the insonification area increases as a function of the angular beam aperture α and the slant
range r; in the direction of the beam, the range error is a function of the intrinsic range
resolution η. Therefore, in the g reference frame, with the Z-axis passing through the center
of the cone, the uncertainty is characterized by the following covariance matrix:

Σ
g
i =

(ri · tan(α/2))2 0 0
0 (ri · tan(α/2))2 0
0 0 (ηi/2)2

 (2)

Figure 2. Illustration of the conic beam shape from which the probabilistic beam model derives. For
visualization purposes, the conical beam is depicted with an exaggerated aperture α.

2.2. Probabilistic Scan Matching

Let us consider a reference scan Sn
re f =

{
pn

1 , . . . , pn
m | pn

j = N
(
p̂n

j , Σn
j
)}

, composed of
m measurements, modeled according to our probabilistic sensor model and defined in the
navigation reference frame n. Eventually, the robot moves, and a new scan is acquired. Let
us refer to this new scan as the target scan Ss

target =
{

qs
1, . . . , qs

o | qs
i = N

(
q̂s

i , Σs
i
)}

, with o
measurements, defined in the sonar reference frame s.

The displacement between scan acquisition poses x = N
(
x̂, Σx

)
is provided by an

external localization algorithm. Taking advantage of the displacement estimate, the target
scan can be transformed to the reference frame of the reference scan as follows:

q̂n
i = R

(
x̂
) (

Rb
s q̂s

i + tb
s

)
︸ ︷︷ ︸

q̂b
i

+t
(
x̂
)

(3)

Σn
i = R

(
x̂
)

Rb
s Σs

i

(
Rb

s

)T

︸ ︷︷ ︸
Σb

i

(
R
(
x̂
))T (4)
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where Rb
s and tb

s define, respectively, the rotation matrix and translation vector from
the sonar to the body reference frame b. These parameters, obtained through a previous
calibration procedure, allow the beam to be transformed to the body frame qb

i = N (q̂b
i , Σb

i ).
The transformation from the body to the navigation frame involves the rotation matrix
R
(
x̂
)

and the translation vector t
(
x̂
)
, obtained from the current displacement estimate.

However, since the scan, the displacement and the extrinsic calibrations are inaccurate,
as simply applying Equation (3) does not ensure the perfect alignment between both
scans. The 3DupIC aims to refine this alignment and the associated robot displacement by
repeating two steps until convergence. First, based on the Mahalanobis distance, point-to-
point matches are established between scans. In the second stage, the Mahalanobis distance
between associated point pairs is minimized.

2.2.1. Point Matching

For each point qs
i in the target scan, all points in Sn

re f are tested for similarity using the
squared Mahalanobis distance:

d2
ij = ϱT

ijΣ
−1
ij ϱij (5)

where
ϱij = f (x̂k, q̂s

i )− p̂n
j (6)

represents the error between the jth reference point and the ith target point. The latter is
projected into the n reference frame through function f

(
x̂k, q̂s

i
)
, defined in Equation (3).

The covariance matrix Σij, characterizing the matching uncertainty, is calculated using
Equation (7).

Σij = Σn
j + Σn

i + Jx(x̂, q̂b
i )Σx

[
Jx

(
x̂, q̂b

i

)]T
(7)

The covariance matrices Σn
j and Σn

i represent the uncertainties of the scan point
pairs, computed using Equation (4). Since the localization uncertainty Σx affects the
matching result, its contribution to the matching uncertainty is also considered: expres-

sion Jx(x̂k, q̂b
i )Σx

[
Jx

(
x̂k, q̂b

i

)]T
. The matrix Jx(x̂k, t̂b

i ) is the Jacobian of the error function
(Equation (6)) with respect to the displacement states, evaluated at the current estimate x̂
and at the scan point in the body frame q̂b

i . The matrix Σx refers to the covariance matrix of
the displacement estimate.

The Mahalanobis distance is assumed to be Gaussian; therefore, the squared Maha-
lanobis distance follows a chi-squared distribution χ2

q, where q is the dimensionality of
vector ϱij—which is, in this case, 3. A point pn

j is statistically compatible with a point qs
i if

it passes the chi-squared test, i.e., the squared Mahalanobis distance is less than the inverse
chi-squared cumulative function χ2

qα, evaluated for a given confidence level α. Additionally,
from the set of compatible points, only the one with a smaller Mahalanobis distance is
selected. Therefore, a point pair is defined as

< pn
j , qs

i >: pn
j =

(
arg min d2

ij

)
∧
(

d2
ij < χ2

nα

)
(8)

This search is repeated for all points in the target scan to build a set of point matches
M = {< pn

κ1, qs
κ1 >, . . . ,< pn

κn, qs
κn >}, where, for simplicity, κi represents the index

pairing for the ith correspondence.

2.2.2. Optimization

The optimization step minimizes the squared Mahalanobis distances between corre-
sponding points to obtain a refined displacement estimate:

x̂ = min ∑ ϱt
κiΣ

−1
κi ϱκi. (9)
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Equation (9) has a closed-form solution given by

x̂ = (JTQJ)−1JTQA (10)

where

J =


Jx(x̂, q̂s

κ1)

Jx(x̂, q̂s
κ2)

...
Jx(x̂, q̂s

κn)

, A =


Jx(x̂, q̂s

κ1)x̂ − ϱκ1
Jx(x̂, q̂s

κ2)x̂ − ϱκ1
...

Jx(x̂, q̂s
κn)x̂ − ϱκn

 (11)

and the matrix Q is a block diagonal matrix, containing the inverse of the covariance
matrices (Equation (7)), characterizing the uncertainty of each pair as follows:

Q =


(Σκ1)

−1

(Σκ2)
−1

. . .

(Σκn)
−1

 (12)

3. Parallel Programming with OpenCL
The accelerated version of the 3DupIC was implemented using OpenCL—a cross-

platform framework that abstracts the underlying hardware and enables parallel
execution [20,21].

3.1. OpenCL Execution Model

Parallel programming is particularly suitable for problems that can be divided into
smaller tasks to be executed simultaneously. In OpenCL, these self-contained functions are
called kernels. The host program transmits orders to target devices using command queues,
through which memory operations, kernel execution and synchronization commands
are transmitted.

When launching a kernel, the host program must specify the size of the index space
(work size), which corresponds to the number of kernel instances (work-items) to be executed.
Each individual work-item is assigned with a unique global ID, based on the coordinates
within the index space. In our application, taking, for example, a kernel to process each scan
point individually, an index space of 16,384 is the most obvious solution, as it corresponds
to the number of points in an Echoscope 3D scan. Additionally, the index space, also
called NDRange in OpenCL, follows a N-dimensional arrangement, where N ∈ {1, 2, 3}.
Returning to the previous example of an Echoscope 3D scan that takes the form of a
128 × 128 matrix, a two-dimensional index space with a size of 128 in each dimension (total
size of 128 × 128 = 16,384) provides a good fit.

All hardware poses a limit on the number of work-items that can be executed simul-
taneously. The assurance of simultaneous execution is only given for work-groups, which
correspond to subsets of the total work size. The work-group size, also referred to as local
size, can be specified at kernel launch time. Similarly, it is an N-dimensional space, with
N ∈ {1, 2, 3}. Returning to the Echoscope 3D scan example, one could choose to form
work-groups of 128 work-items to process each row of 128 sonar readings simultaneously. In
this case, the definition of the local size should be 128 for the first dimension and 1 for the
second dimension.

Each work-item has the ability to query its ID with respect to the global size and the
local size using the get_global_id and get_local_id functions, respectively.
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3.2. Memory Model

The OpenCL specification defines separate memory blocks for the host and the device,
meaning that the host memory cannot be directly accessed by the device and vice versa.
However, it is possible to transfer data using functions from the OpenCL API or through
shared virtual memory. The workflow of a typical OpenCL application starts by copying
the input data, usually stored at the host side, to the memory of the device. Once the
processing is completed, the result is transferred in the opposite direction, i.e., from the
device to the host.

The OpenCL specification defines various memory regions available for the kernels
running on the target device (Figure 3). A global memory block is shared between all
processing units. It is normally the largest memory space but also the slowest. Allocations
on this region are performed by the host at runtime, enabling data transfer between the
host and the device. A constant memory region, available inside the global memory, stores
read-only data from the device’s perspective. Only the host is allowed to write in the
constant memory block. Each work-group is provided with a local memory block to be
shared by the corresponding work-items. This is a low latency and high bandwidth memory
region when compared to the global memory. Finally, a private memory region is available
for each individual work-item. This is where local variables are stored. Within the kernel,
keywords __global, __local and __constant are used to specify the region where variables
are stored.

Figure 3. Memory model for a kernel executing in the target device (adapted from [21]).

3.3. Programming Routines

The accelerated 3DupIC performs several calculations, involving matrix multiplication,
matrix transpose and reductions. Next, a brief description of the parallel implementation of
each of these operations is provided. It is important to mention that all operations outlined
in this paper assume that matrices are stored in column-major order, so that the elements
of a matrix A with m rows and n columns can be indexed in the following way:

A[m×n] =


A[0] A[m] . . . A[(n − 1)m]

A[1] A[m + 1] . . . A[(n − 1)m + 1]
...

...
. . .

...
A[m − 1] A[2m − 1] . . . A[nm − 1]

 (13)

3.3.1. 3 × 3 Matrix Multiplication

Consider the following matrix multiplication A = B.C, where A, B and C are 3 × 3
square matrices:
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 a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2


︸ ︷︷ ︸

Matrix A

=

 b0,0 b0,1 b0,2

b1,0 b1,1 b1,2

b2,0 b2,1 b2,2


︸ ︷︷ ︸

Matrix B

 c0,0 c0,1 c0,2

c1,0 c1,1 c1,2

c2,0 c2,1 c2,2


︸ ︷︷ ︸

Matrix C

(14)

To develop the matrix multiplication in a concurrent way, lets focus on the calculation
of a single element. Taking, for example, a1,2, it is obtained by taking the dot product
between the second row of B and the third column of C: a1,2 = b1,0 · c0,2 + b1,1 · c1,2 + b1,2 ·
c2,2. Replacing element indexes, assuming a column-major matrix ordering (Equation (13)),
we obtain the following: A[7] = B[1] ∗ C[2] + B[4] ∗ C[5] + B[7] ∗ C[8]. More generally, for
the element in row i and column j, indexes can be defined as A[i + j ∗ 3] = B[i] ∗ C[j ∗
3] + B[i + 3] ∗ C[j ∗ 3 + 1] + B[i + 6] ∗ C[j ∗ 3 + 2]. Finally, the matrix multiplication can be
obtained by repeating the previous operation for all elements of A. This is the same as
repeating the kernel function nine times from Listing 1, launched with a 2D work size of
3 × 3.

Listing 1. 3 × 3 Matrix Multiplication Kernel.
1: __kernel void 3_3_Mat_Mul ( __global f l o a t * A, __global f l o a t * B , __global f l o a t * C) {
2: i n t row = g e t _ g l o b a l _ i d ( 0 ) ;
3: i n t c o l = g e t _ g l o b a l _ i d ( 1 ) ;
4: A[ row+ c o l *3]=B [ row ] *C[ c o l * 3 ] +
5: B [ row+3]*C[ c o l *3+1] +
6: B [ row+6]*C[ c o l * 3 + 2 ] ;
7: }

3.3.2. Matrix Transpose

The matrix transpose operation rearranges the matrix elements to produce a mirrored
version across the diagonal:

B = (A)T =




a0,0 a0,1 . . . a0,n

a1,0 a1,1 . . . a1,n
...

...
. . .

...
am,0 am,1 . . . am,n




T

=


a0,0 a1,0 . . . am,0

a0,1 a1,1 . . . am,1
...

...
. . .

...
a0,n a1,n . . . am,n

 (15)

This operation can be performed by simply swapping the element indexes: bi,j =

aj,i. A generic kernel function used to produce the index swap operation is provided in
Listing 2. To transpose an m by n matrix, the kernel function should be launched with a
two-dimensional NDRange and a total work size of m × n. In this way, one work-item will be
executed for each matrix element, producing the full inversion of the input matrix.

Listing 2. Matrix Transpose Kernel.
1: __kernel void Mat_Transpose ( __global f l o a t * A, __global f l o a t * B ) {
2: i n t row = g e t _ g l o b a l _ i d ( 0 ) ;
3: i n t c o l = g e t _ g l o b a l _ i d ( 1 ) ;
4: i n t to ta l_rows = g e t _ g l o b a l _ s i z e ( 0 ) ;
5: i n t t o t a l _ c o l s = g e t _ g l o b a l _ s i z e ( 1 ) ;
6: i n t s r c _ i d x = row+ c o l * to ta l_rows ;
7: i n t dest_ idx = row* t o t a l _ c o l s + c o l ;
8: B [ dest_ idx ]=A[ s r c _ i d x ] ; //Copy from A to B
9: }

3.3.3. Reduction

Parallel reduction operations are used to concurrently condense data into a single
element using associativity binary operators. Typical problems solved with reductions
include searching for the minimum or the maximum value inside an array, or summing all
array elements. For a detailed explanation of reductions and practical recipes, the Raymond
Tay’s book is recommended [22]. To illustrate the reduction operation, lets consider simple



Robotics 2025, 14, 13 9 of 17

case of pre-initialized eight-element array (data), stored in the global memory block, from
which we want to find the minimum value. Assume the reduction kernel is launched
with a one-dimensional NDRange, imposing a work size of eight and a work-group size also
equal to eight, which means that a total of eight work-items will be executed, all in the same
work-group.

The parallel implementation to search for the minimum is provided in Listing 3. The
algorithm is illustrated in Figure 4 to reveal the iterative nature of the reduction process.

Figure 4. Illustration of a parallel reduction operation to find the minimum value of an eight-element
array. Prior to the reduction itself, the eight work-items start by copying a single element value from
the global to the local memory block, shared inside the work-group. Three comparison iterations are
performed until the minimum value is stored in the first position of the shared array.

Listing 3. Min() Reduction Kernel.
1: __kernel void Min_reduction ( __global f l o a t * data , _ _ l o c a l f l o a t l o c a l _ a r r a y [ 5 1 2 ] ,

__global f l o a t * min )
2: {
3: i n t id = g e t _ l o c a l _ i d ( 0 ) ;
4: i n t n_elements = g e t _ l o c a l _ s i z e ( 0 ) ;
5:

6: //copy from the g loba l to l o c a l memory
7: l o c a l _ a r r a y [ id ]= data [ id ] ;
8:

9: //synchronizat ion b a r r i e r
10: b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
11:

12: // i t e r a t i v e loop
13: f o r ( i n t i =n_elements /2; i >0 ; i /=2) {
14: i f ( id < i )
15: //compare element p a i r s
16: i f ( l o c a l _ a r r a y [ id+ i ] < l o c a l _ a r r a y [ id ] )
17: l o c a l _ a r r a y [ id ] = l o c a l _ a r r a y [ id+ i ] ;
18: b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
19: }
20: i f ( id ==0) //return the minimum value
21: min [0 ]= l o c a l _ a r r a y [ 0 ] ;
22: }

In a reduction, all work-items within a work-group cooperate to solve the problem, which
implies the need for a shared memory area to store intermediate results. Local memory
constitutes the best option in this particular case, as it is shared inside the work-group and
provides fast access. Accordingly, the input_array—second argument of the reduction
kernel function (Listing 3)—is allocated for this purpose in the local memory region. In
each iteration, multiple comparisons between element pairs are performed to select the
minimum value of each pair. Only the element satisfying the search criteria passes to
the next iteration. From one iteration to the next, half of the work-items become dormant,
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as a consequence of failing condition from line 14 in Listing 3. At the last iteration, the
minimum value is stored in the first element of the shared array. The final result is written
to the min variable by work-item index 0 (line 21 in Listing 3).

During the iterative process, the local_array is repeatedly read and written by different
work-items. After writing operations (lines 7 and 17), the synchronization barriers from lines
10 and 18 stop the work-items inside the work-group until the barrier is reached by every
work-item, ensuring the writing operations are finished before the work-items are allowed
to continue.

3.3.4. Generic Matrix Multiplication

For small and fixed-size matrices, the multiplication operation can be easily hard-
coded to be executed by a single work-item. Alternatively, a simple parallel implementation
following Listing 1 is also possible. However, a new strategy is necessary to multiply large
size matrices with a variable shape, as is often required by the 3DupIC. Please consider the
following matrix multiplication case:


a0,0 a0,1 . . . a0,p−1

...
...

. . .
...

am−1,0 am−1,1 . . . am−1,p−1


︸ ︷︷ ︸

A[m×p]

=


b0,0 b0,1 . . . b0,n−1

...
...

. . .
...

bm−1,0 bm−1,1 . . . bm−1,n−1


︸ ︷︷ ︸

B[m×n]


c0,0 . . . c0,p−1

c1,0 . . . c1,p−1
...

. . .
...

cn−1,0 . . . cn−1,p−1


︸ ︷︷ ︸

C[n×p]

(16)

To compute Matrix A, a total of m × p individual elements need to be calculated
according to the following expression:

ai,j =
n−1

∑
k=0

[
(bi,k) ·

(
ck,j

)]
(17)

where ai,j is the element of A at row i and column j. According to (17), n multiplications
are performed to calculate a single element of A. Therefore, the complexity of the generic
matrix multiplication problem is m × p × n. Accordingly, our kernel function (Listing 4) is
designed to be launched with a three-dimensional NDRange of m × p × n, where the first
dimension indexes the matrix rows m, the second dimension indexes the matrix columns
p, and the n multiplications, necessary to calculate each matrix element, are associated
with the third dimension. Each individual work-item becomes responsible for computing a
single term of the sum: (bi,n) ·

(
ck,j

)
(line 15, Listing 4). Finally, a reduction operation is

performed (lines 18 to 25, Listing 4) to sum all partial terms and store the result ai,j (line 25,
Listing 4). All indexes are computed according to (13).

The implementation presented in Listing 4 assumes a maximum work-group size of
512, meaning that only matrices with n < 512 can be multiplied using this kernel. In fact, in
the 3DupIC, this value is often exceeded. In those situations, a similar strategy can be used,
but instead of storing the reduction value inside the final matrix, a larger size auxiliary
matrix should be used to store this intermediate result. To complete the summation of the
values stored in the auxiliary matrix, additional reductions should be performed until the
value of ai,j is obtained.
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Listing 4. Generic Matrix Multiplication Kernel.
1: __kernel void General_mat_mul ( __global f l o a t * A, __global f l o a t * B , __global f l o a t

* C, _ _ l o c a l f l o a t terms [ 5 1 2 ] )
2: {
3: i n t i = g e t _ g l o b a l _ i d ( 0 ) ; //from 0 :m−1
4: i n t j = g e t _ g l o b a l _ i d ( 1 ) ; //from 0 : p−1
5: i n t k = g e t _ g l o b a l _ i d ( 2 ) ; //from 0 : n−1
6: i n t l o c a l _ i d = g e t _ l o c a l _ i d ( 2 ) ; //from 0 : wg_size −1
7: i n t m = g e t _ g l o b a l _ s i z e ( 0 ) ; //#rows
8: i n t p = g e t _ g l o b a l _ s i z e ( 1 ) ; //#columns
9: i n t wg_size = g e t _ l o c a l _ s i z e ( 2 ) ;

10: i n t wg_id = get_group_id ( 2 ) ;
11:

12: i n t b_idx = i + wg_id * wg_size *m + l o c a l _ i d *m;
13: i n t c_idx = j *p + wg_id * wg_size + l o c a l _ i d ;
14:

15: terms [ l o c a l _ i d ] = B [ b_idx ] + C[ c_idx ] ;
16:

17: //Reduction to sum a l l terms i n s i d e the work−group
18: b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
19: f o r ( i n t i =wg_size /2; i >0 ; i /=2) {
20: i f ( l o c a l _ i d < i )
21: terms [ l o c a l _ i d ] += terms [ l o c a l _ i d + i ] ;
22: b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
23: }
24: i f ( l o c a l _ i d ==0) // s t o r e the sum
25: A[ i + j *p ]= terms [ l o c a l _ i d ] ;
26: }

4. Accelerated 3DupIC
The parallel implementation of the 3DupIC algorithm is organized in two main blocks:

the first group of kernel functions is concerned with finding compatible point matches
between scans, performing all calculations between Equations (1) and (8); in the second
step, a series of large matrix operations is executed to solve Equation (10).

4.1. Point Matching Step

The kernel functions concerned with finding the point matches between the target and
reference scans are summarized in Table 1. Rows in the table specify the local and global
work sizes applied for each kernel. The last column indicates the elements computed by the
kernels, also referencing the equation used for their calculation.

Table 1. Kernels used in the point matching step. The outputs are identified by the symbol and
corresponding equation.

Kernel Global Work Size Local Work Size Outputs

Scan_initialization 16,384 Auto q̂b
i (3), Σb

i (4), valid_points

Transform_scan 16,384 Auto q̂n
i (3), Σn

i (4), Jx(x̂, q̂b
i )Σx

[
Jx

(
x̂, q̂b

i

)]T
(7)

Matching_part1 16,384 × 16,384 1 × 256 d2
ij (5), ϱij (6), (Σij)

−1 (7), {64 candidates}
Matching_part2 16,384 × 64 1 × 64 < pn

j , qs
i > (8)

Build_matrices #matches Auto J (11), A (11), Q (12)

The first kernel entry in the table (Scan_initialization) is applied only once, as soon as
a new target scan becomes available. Here, a simple outlier detection test is executed for
each point to reject measurements very close to the sonar, within a threshold of 50 cm. Each
Echoscope 3D scan usually contains a small amount of low range outlier measurements.
This is the only filtering applied to the sonar scans during the entire process. Additionally,



Robotics 2025, 14, 13 12 of 17

the probabilistic beam model is constructed for each measurement (Equation (2)), and
extrinsic calibration parameters are applied to transform each beam from the sonar to the
body reference frame, by partially applying Equations (3) and (4).

Subsequently, the algorithm enters an iterative cycle, where the robot displacement
solution is consecutively refined. The Transform_scan kernel executes a work-item for each
scan point to transform the beam model to the same reference frame of the reference scan.
The last term of Equation (7) is also calculated.

Matching_part1 is assigned with a 2D work size of 16,384 × 16,384 to test all matching
hypothesis by comparing each point from the target scan with all points in the reference
scan. Each work-item computes the Mahalanobis distance (Equation (5)) and performs
the statistic compatibility test (second term of Equation (8)). For each point in the target
scan, all 16,384 points in the reference scan are evaluated, leading to 64 work-groups with
256 work-items per target scan point. A reduction is performed within the work-group to
find the reference point with the smallest Mahalanobis distance. This brute-force search
corresponds to the most heavy computation of the 3DupIC algorithm. From this process,
64 matching hypotheses are generated for each point in the target scan, requiring a second
reduction using kernel Matching_part2 to find the matching pair.

With all point matches established, the Build_matrices kernel concatenates the contri-
bution of each pair, following Equations (11) and (12), in preparation for the optimization
process.

4.2. Optimization Step

The optimization step computes the robot displacement that minimizes the Maha-
lanobis distance between previously established point matches, by solving the normal
equation (Equation (10)). As most calculations consist of matrix multiplications and trans-
pose operations, the generic kernel functions presented in the previous section are used
here. A total of eight kernels are executed, as illustrated in Figure 5. The operations are
executed sequentially, with the first multiplication JTQ being performed by kernel k1 and
producing a 6 × 3n matrix, where n represents the number of point matched pairs. Kernel
k2_mul multiplies the result from kernel k1 with matrix J using the generic matrix multi-
plication kernel from Listing 4. A second reduction kernel (k2_red) is necessary to sum all
partial terms.

The inversion of the 6 × 6 matrix is performed using the adjoint method implemented
by kernel k_inv. The result of the inversion kernel is multiplied by JT , resulting in a 6 × 3n
matrix. Finally, the result from k3 is multiplied by QA through kernel k4_mul. The final
solution is computed with two consecutive reductions (kernels k4_red1 and k4_red2) to
perform a row-wise sum of the 6 × n matrix produced by kernel k4_mul.

Figure 5. Illustration of the kernel functions that, when applied sequentially, solve the normal
equation. The values inside the square brackets represent the size of the output matrix produced by
each kernel.
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5. Results
Considering that the Echoscope 3D sonar is usually carried by our EVA AUV, all

experiments presented next were performed using an identical embedded computer to
the one available onboard the real robot. The computer has an 11th Gen Intel Core i7-
1185GRE processor, running a Fedora 38 distribution of the Linux operating system, and
an integrated GPU Intel Iris Xe Graphics (TGL GT2) with OpenCL 3.0 support. To ensure
realistic performance metrics, the algorithm was tested with real data, which were collected
during field trials for the ¡VAMOS! project, held at the Silvermines flooded quarry in the
Republic of Ireland.

The results of a sequential version of the algorithm, executed on the CPU, are presented
in Figure 6. Almost 1.5 s are necessary to perform a single iteration on average. The
matching step, where all possible point matches between both scans are tested using the
Mahalanobis distance, is the most expensive operation, consuming approximately 80%
of the total iteration time. The optimization step, where large matrix manipulations are
necessary to solve the normal equation (Equation (10)), spends most of the remaining time.
The construction of the probabilistic sensor model (Equations (1)–(4)) and concatenations
to build Matrices A, J and Q (Equations (11) and (12)) take negligible processing time.

A tenfold speedup is achieved by the parallelized version, as depicted in Figure 7.
The stacked bar plot shows the contribution of each kernel to the overall time necessary to
execute a single iteration of the parallelized 3DupIC method. Each iteration takes just under
140 ms to execute, which is more than 10 times faster compared to the CPU experiment.
Similarly to the sequential implementation, most of the time is spent on the matching step
(98%). The matching operation performs a brute-force search, testing the compatibility of
all points in the reference scan for each point in the target scan. This is a complex problem
with over 268 × 106 possible combinations. Significant acceleration is also observed in the
optimization step, which i executed in under one millisecond.

In an effort to further improve the algorithm’s performance, an optimized searching
strategy was implemented, reducing the search to a small 16 × 16-point window. This
search window is placed around the expected position where the matching point should
lie, computed by geometrically transforming a given target point to the reference frame
of the reference scan. This drastically reduces the computational load associated with the
Matching_part1 kernel, leading to the processing times depicted in Figure 8. The optimized
version takes around seven milliseconds to perform a single iteration, which constitutes
a crucial improvement to reach real-time performance. The optimized implementation
is 20 times faster than the brute-force approach and 200 times faster than the brute-force
version running on the CPU.

Figure 6. Processing time required to perform a single iteration of the original 3DupIC method in a
sequential manner on the CPU.
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Figure 7. Time spent on a single iteration of the original 3DupIC method when executed in a
parallelized manner on the GPU.

Figure 8. Processing time required to perform a single iteration of the optimized 3DupIC that reduces
the matching point search to a small window of 16 × 16 points.

Figure 9 represents the total time and the number of iterations necessary to achieve
convergence for 300 different scan registration cases, performed over a trajectory of ap-
proximately 150 m. The values where obtained for the optimized version of the algorithm,
with the simplified matching approach. From the figure, a clear relation can be identified
between the total processing time and the number of iterations performed. On average,
23.5 iterations and 0.1728 s are necessary to complete one scan registration, but these values
can reach up to 0.6 ms for situations where the number of iterations approaches 90.

Figure 9. Representation of the total time (left axis and line) and number of iterations (right axis and
dots) necessary to perform 300 different scan registrations (horizontal axis).

Results demonstrate the capability of registering at least one key scan per second.
Assuming a maximum surveying speed of 2 m per second, a new scan is registered every
2 m of displacement. For a surveying altitude of 2 m and a robot moving in a straight line
at 2 m/s, the expected overlap between scans is approximately 66%. Therefore, even in
this worst-case scenario, we can conclude that our parallel implementation of the 3DupIC
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method achieves real-time performance, so it can be executed onboard the EVA AUV
during a real surveying mission.

A detailed analysis of the 3DupIC registration accuracy can be found in [19] and is
beyond the scope of this article. However, the illustration of the trajectories produced
by the three variants (Figure 10) serves to demonstrate the consistency of the results.
Although the trajectories produced by the three scan matching solutions are consistent,
minor discrepancies can be observed. The deviations between the CPU produced trajectory
and the parallelized versions are attributed to numerical approximations resulting from
the use of single-precision data types in the GPU implementation. A slight difference
is also observed between the trajectories of the parallelized versions, stemming from
the different matching strategies used. Since the scan matching was used to register
consecutive scans and no loops were closed, some degree of random walk is expected
due to the aforementioned factors. The noticeable difference between the scan matching
results and the ground truth trajectory is explained by the poor initialization of scan
matching, particularly concerning the initial velocity of the vehicle due to low-quality
DVL measurements.

Figure 10. Comparison between the trajectories produced by the reported implementations and the
ground truth solution.

6. Conclusions
A collection of kernels for generic vector and matrix manipulation was presented.

These building block easily adapt to vectors and matrices of different sizes, making them
suitable for accelerating complex problems involving large-size vector and matrix op-
erations. The adoption of the OpenCL framework facilitates code reusage due to its
multi-platform support.

Taking advantages of the parallel processing kernels, an accelerated version of the
3DupIC algorithm was implemented. The results demonstrate the ability to achieve real-
time performance, even when running the algorithm on a low-power integrated GPU. The
optimized 3DupIC version simplifies the point matching task, running 20 times faster than
the parallelized brute-force implementation and 200 times faster than the CPU implementa-
tion. The three methods produce similar trajectories with negligible random walk, which
validates the simplified matching strategy.

To the authors’ knowledge, there is no other report of a scan matching method capable
of registering 3D scans from an Echoscope sonar in six degrees of freedom and in real
time. This advancement enables the use of the 3DupIC technique in future field operations,
either to improve mapping consistency, provide relative localization corrections, or develop
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a SLAM process. A self-calibration procedure using scan matching is currently being
developed to refine the transformation between the sonar and the body reference frame,
aiming to enhance the global accuracy of the computed trajectories.
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3D Three-dimensional
3DupIC 3D underwater probabilistic iterative correspondence
API Application programming interface
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CPU Central processing unit
DVL Doppler Velocity Log
GNSS Global Navigation Satellite System
GPU Graphics processing unit
ICP Iterative closest point
IMU Inertial motion unit
OpenCL Open Computing Language
pIC Probabilistic iterative correspondence
SLAM Simultaneous localization and mapping
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