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Abstract: Maintaining precise and robust control in robotic systems, particularly those 

with nonlinear dynamics and external disturbances, is a significant challenge in robotics. 

Sliding-mode control (SMC) is a widely used technique to tackle these issues; however, it 

is plagued by chattering and computational complexity, which limit its effectiveness in 

high-precision environments. This study aims to develop and assess a quantum-inspired 

sliding-mode control (QSMC) strategy to enhance the SMC’s robustness, precision, and 

computational efficiency, specifically in controlling a six-jointed articulated robotic arm. 

The methodology involves creating a comprehensive kinematic and dynamic model of 

the robot, followed by implementing both classic SMC and the proposed Q-SMC in a com-

parative way. The simulation results confirm that the Q-SMC method outperforms the 

classic SMC, particularly in reducing chattering, improving tracking accuracy, and de-

creasing energy consumption by approximately 3.79%. These findings suggest that the Q-

SMC technique provides a promising alternative to classical control methods, with poten-

tial applications in tasks requiring high precision and efficient robotic manipulations. 
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1. Introduction 

1.1. Context of the Study 

Robust control is a key component in robotics, particularly in controlling the com-

plexities of nonlinear dynamics and external disturbances that arise when operating ar-

ticulated robotic arms. Sliding-mode control (SMC) is well known for its robustness and 

precision, particularly in managing the nonlinear dynamics and external disturbances en-

countered when controlling robotic arms. Its ability to maintain stability and performance 

despite the system’s uncertainties makes it particularly ideal for articulated robotic arms 

with large degrees of freedom [1–4]. SMC accomplishes this by shifting the system’s state 

to a predefined sliding surface, where it can effectively handle variations in the robot’s 

dynamics and external forces applied to tasks such as trajectory tracking, path planning, 

and force control, ensuring that the robotic arm can execute precise and reliable move-

ments even under challenging conditions [5–7]. However, traditional SMC techniques 

have substantial limitations, such as chattering and computing complexity, which limit 
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their practical implementation in high-precision and dynamic situations [8–10]. To ad-

dress these challenges, the current study provides a robust sliding-mode controller with 

chattering rejection capabilities and suggests a quantum-inspired sliding-mode control 

approach designed for a six-degree-of-freedom articulated robotic arm. The work ad-

vances the field by constructing a thorough kinematic and dynamic model of the robot 

using precise CAD designs from SolidWorks software 2024 SP4.0 to extract mass proper-

ties required for correct path planning and trajectory execution and evaluating the prac-

tice’s performance parameters [11]. A unique quantum control algorithm employing mul-

tiple qubit operators is also developed, which improves the robustness of the control strat-

egy. This novel approach improves the robustness and precision of the control system, 

considerably boosting the robot’s energy efficiency performance, as evidenced by rigor-

ous testing. Integrating the quantum principles into SMC is a novel advancement in ro-

botic arm control, opening new avenues for overcoming the constraints of traditional ap-

proaches to create more efficient and adaptive robotic systems. 

1.2. Related Works 

The integration of backstepping terminal sliding-mode control with radial basis func-

tion neural networks, as demonstrated by Vijay and Jena [12], highlights the application 

of SMC in controlling specific objects of a robot manipulator with three degrees of free-

dom (DOF) in an overhead transmission; however, challenges such as parameter tuning 

and computational complexity have not been solved. Similarly, Adhikary and Mahanta 

[13] introduced an adaptive backstepping SMC with time delay estimation, enhancing 

trajectory tracking and disturbance rejection in two-DOF robotic manipulators, though 

real-time implementation poses challenges. Norsahperi and Danapalasingam [14] ad-

vanced the field by proposing an improved optimal integral SMC to reduce the tracking 

error and energy consumption in robotic manipulators. This has been validated through 

simulations on a two-DOF manipulator, with significant potential for industrial applica-

tions. Nguyen et al. [15] developed a backstepping global fast terminal sliding-mode con-

trol, addressing chattering and enhancing transient response in a two-DOF robotic ma-

nipulator, although uncertainty estimation remains challenging. Baek et al. [16] contrib-

uted with their widely and stable adaptive SMC, focusing on a two-link planar robot ma-

nipulator, demonstrating adaptability with challenges in tuning and convergence. Further 

advancing SMC, Baek and Kwon [17] introduced a strong and stable adaptive SMC, en-

hancing disturbance rejection and minimizing chattering in robotic manipulators, partic-

ularly in dynamic uncertainty environments. Feng et al. [18] addressed chattering mitiga-

tion through full-order SMC with time-varying gains applied to a two-DOF robotic ma-

nipulator. At the same time, Zhai and Li [19] focused on high-speed and high-precision 

applications through fast-exponential SMC, integrating a super-twisting controller with a 

high-order sliding-mode observer. Soriano et al. [20] shifted the focus to energy efficiency, 

proposing an optimized SMC using a bat algorithm to reduce energy consumption in a 

SCARA robot, emphasizing the importance of sustainability in industrial robotics. The 

integration of neural networks with SMC has also seen considerable advancements, with 

Yen et al. [21] combining recurrent fuzzy wavelet neural networks with adaptive SMC to 

enhance tracking accuracy and stability in industrial robots. At the same time, Jung [22] 

used radial basis function-like neural networks in neuro-sliding-mode control for a three-

link rotary robot manipulator, refining SMC gain selection. Gambhire et al. [23] provided 

a broader perspective by examining the evolution of SMC techniques, including integrat-

ing intelligent control strategies such as neural networks, emphasizing the need for robust 

control mechanisms. Yu et al. [24] extended the discussion with a comprehensive over-

view of terminal SMC, suggesting an integration with artificial intelligence techniques to 

enhance adaptability and robustness. Finally, Yin et al. [25] introduced a compensation 
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SMC with a nonlinear disturbance observer for machining robotic manipulators, signifi-

cantly improving tracking accuracy and robustness, particularly in industrial applica-

tions. The literature on SMC techniques in robotics indicates a clear trend toward more 

adaptive, intelligent, and energy-efficient control methods, with ongoing research focus-

ing on optimizing real-time implementation and integrating advanced computational 

techniques to address persistent challenges such as chattering, uncertainty estimation, and 

energy consumption. 

Quantum-inspired SMC denotes a substantial upgrade in control techniques. It aims 

to manage the limitations of the classic SMC, such as chattering, robustness against dis-

turbances, and computational efficiency. Incorporating quantum principles into SMC of-

fers new possibilities for enhancing the precision and robustness of science and engineer-

ing, especially in robotic systems, making it a promising area for prospective investiga-

tion. 

Early applications of quantum methods in robotics demonstrate the potential of 

quantum SMC to make fundamental transformations in control systems. For example, 

Gan et al. [26] integrated quantum-behaved particle swarm optimization with SMC to 

improve control systems for unmanned underwater vehicles, focusing on enhancing ro-

bustness in complex underwater environments. Similarly, Fazilat et al. [27] developed a 

quantum-based kinematic model for industrial robotic arms, such as the ABB IRB140, se-

riously reducing computational demands and facilitating real-time processing. Zioui et al. 

[28] further contributed by modeling rigid body orientation using quantum spins, a cru-

cial aspect of robotics that simplifies spatial orientation modeling and bridges classical 

and quantum control systems. The development of quantum algorithms and their appli-

cation in robotics has shown notable promise. Boudjoghra et al. [29] introduced a quan-

tum computing-based solution using the Harrow–Hassidim–Lloyd (HHL) algorithm to 

address state-domain equations in control theory. This approach is particularly beneficial 

for dynamic systems in robotics, reducing computational intricacy. Singh and Sloth [30] 

developed an evolving type 2 quantum fuzzy neural network for robotic manipulators, 

integrating quantum fuzzy logic with traditional neural networks to enhance adaptability 

and stability. State-of-the-art applications of quantum control in robotics are beginning to 

emerge, showcasing the potential of these methods to enhance performance in problem-

atic environments. Zheng and Su [31] used QPSO to enhance SMC for electro-hydraulic 

servo systems, achieving significant improvements in tracking accuracy and setting a 

benchmark for optimizing control in uncertain robotic environments. Qu et al. [32] intro-

duced a novel integral SMC for helicopter systems, integrating quantum information tech-

niques to improve control accuracy and disturbance rejection, which is crucial for dy-

namic robotic systems like helicopters. In another investigation, Zioui et al. [33] extended 

quantum computing applications in robotic kinematics by developing a quaternion model 

for robotic arm positioning, demonstrating the feasibility of quantum models in practical 

robotics and paving the way for future Q-SMC strategies. The impact of quantum-inspired 

control methods on robotics is increasingly evident as researchers explore their adaptabil-

ity and efficiency. Sivak et al. [34] proposed a model-free quantum control approach using 

reinforcement learning, enhancing the adaptability and performance of quantum-based 

control methods in environments where precise models are challenging to obtain. Quan-

tum computing’s potential to revolutionize robotics is further highlighted by Petschnigg 

et al. [35], who synthesized the current state of quantum computing and proposed its ap-

plication to complex robotic challenges like AI, machine learning, and kinematics. Niu et 

al. [36] involved quantum control through deep reinforcement learning to optimize quan-

tum systems, offering insights into adapting these methods for robotic applications that 

require real-time decision-making under uncertainty. Specialized quantum control strat-

egies for robotics continue to advance the field. Reshetnikov and Ulyanov [37] explored 
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the application of quantum fuzzy controllers in robotic systems like mobile manipulators, 

demonstrating marked control accuracy and robustness improvements. Tavanaei-

Sereshki and Ramezani-al [38] developed a quantum genetic algorithm-based SMC for 

autonomous underwater vehicles, showing superior performance in nonlinear, dynamic 

surroundings and highlighting the broader applicability of quantum-inspired control 

strategies in other robotic systems. The study by Xi et al. [39] addresses the significant 

challenge of controlling robot manipulators in industrial environments characterized by 

high uncertainties and nonlinear dynamics. Their robust adaptive SMC system integrates 

an adaptive sliding-mode disturbance observer with backstepping techniques, demon-

strating enhanced precision and stability in uncertain environments. The reviewed studies 

collectively illustrate the transformative potential of quantum SMC in various aspects of 

intelligent mechanisms and robotics. By addressing challenges in traditional control meth-

ods, from high-dimensional optimization to real-time adaptation in dynamic environ-

ments, these studies contribute to a growing body of knowledge that could significantly 

influence overcoming the limitations of classical methods, enhancing the precision, ro-

bustness, and computational efficiency of robotic control systems. 

1.3. Problem Formulation and Contribution 

While SMC has proven to be a robust solution for managing the nonlinear dynamics 

and external disturbances in robotic arms, significant limitations such as chattering and 

computational complexity persist. These issues hinder the practical application of SMC in 

high-precision, dynamic environments, particularly in robotics systems with high degrees 

of freedom. More adaptive, precise, and computationally efficient control strategies still 

need to be met, especially in scenarios requiring real-time response and energy efficiency. 

It is essential to investigate filling this gap by exploring the potential of quantum-inspired 

sliding-mode control to examine the probability of overcoming these intrinsic limitations. 

The primary purpose of the current examination is to develop and validate a novel 

quantum-enhanced sliding-mode control strategy, particularly for a six-degree-of-free-

dom articulated robotic arm and perform a comparative study between the performance 

of classic SMC and a quantum version of sliding-mode control. It aims to enhance SMC’s 

robustness, precision, and computational efficiency by integrating quantum principles 

into the control strategy, focusing on addressing the persistent issues of chattering, com-

putational complexity, and robustness against disturbances, which are vital for achieving 

high-performance robotic control to improve the control system’s energy efficiency and 

adaptability, ultimately contributing to more reliable and efficient robotic arm manipula-

tions in dynamic environments. 

The effectiveness of this study lies in its possibility of enhancing control systems in 

robotics by introducing quantum-inspired sliding-mode control as a practicable alterna-

tive to classic methods. Incorporating quantum principles into SMC could increase robotic 

systems’ performance and energy efficiency by addressing the evolution of computational 

methodologies. It offers a more robust and precise control strategy that can be applied in 

applications, particularly in the adaptability and effectiveness of robotic systems in real-

world scenarios where precision, speed, and reliability are paramount. 

The present study compares two control strategies, the classical sliding-mode control 

and its quantum-inspired sliding-mode control counterpart. The primary objective was to 

evaluate the integration of quantum principles into control methodologies and assess its 

potential to enhance performance. In this comprehensive case study, we developed a ro-

bust SMC-based control framework for our robotic arm and extended it to include quan-

tum-inspired elements. While acknowledging the effectiveness of other advanced control 

strategies such as Model Predictive Control, reinforcement learning-based methods, 

Adaptive Control, Fractional Order Control, and H-infinity Robust Control, we notice the 
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significance of exploring these approaches to broaden the comparative scope of our re-

search. However, for this study, we focused on a singular, well-established control strat-

egy and its quantum-inspired enhancement to facilitate a concentrated and stringent anal-

ysis of their respective performance. 

The current research presents a comprehensive study of robust control of an indus-

trial manipulator robotic arm incorporating quantum-inspired sliding-mode control for 

robotic arms. Section 2 explores the kinematic modeling of the ABB IRB140 robot, empha-

sizing an advanced approach to developing a precise model for motion planning and per-

formance evaluation. This section also details the CAD design of the robotic arm, under-

scoring the critical importance of accurately obtaining mass properties. Furthermore, it 

outlines the design of a robust SMC strategy, including techniques for reducing chattering 

and introducing a novel quantum-inspired sliding-mode control algorithm employing 

multiple qubit operators. Section 3 presents the experimental results, demonstrating the 

superior performance of the quantum-enhanced SMC in managing the manipulator robot 

arm. Finally, Section 4 discusses the implications of these findings and suggests directions 

for future research in the control of robotics and quantum computing. 

2. Methodology 

2.1. Robotic Arm Presentation 

The study focuses on the ABB IRB 140 robot, illustrated in Figure 1. This six-axis ar-

ticulated robot is widely employed in different industrial applications. According to 

ABB’s technical specifications, it provides flexible mounting options, such as floor, wall, 

and inverted positions, to accommodate different working environments. The IRB 140 ro-

bot is commonly utilized for arc welding, assembly, material handling, machine tending, 

cleaning, and spraying, packing, and deburring. With a weight of approximately 98 kg, it 

can support an end-effector with a payload capacity of up to 5 kg. The robot’s reach ex-

tends to about 810 mm at its mounting flange, and it can bear up to 1.5 kg of equipment 

on its upper arm. The joint limits offer a significant functional workspace, as outlined in 

Table 1 [11]. 

 

Figure 1. The ABB IRB 140 robot located in the UQTR automation laboratory. 

Table 1. Joint limits of the ABB IRB 140 robot. 

Joints Type of the Joint Limits (°) 

1 R +180 to −180 

2 R +110 to −90 
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3 R +50 to −230 

4 R +200 to −200 

5 R +120 to −120 

6 R 1 +400 to −400 

1 R stands for rotational or revolute. 

The robotic arm features an IRC5 advanced controller designed to handle multiple 

robots, optimizing their performance for shorter cycle times and precise movements. It 

also incorporates RobotWare (Robot Studio), allowing ABB robots to be programmed 

from a workstation without disrupting active production processes. This configuration 

includes the ABB Virtual Controller, a representation of the production-level software that 

enables program development. Robot Studio presents highly realistic simulations, utiliz-

ing simple robot programs and configuration files that accurately reflect real-world oper-

ations [11]. 

For the present research, the ABB IRB 140 robot was utilized in its original configu-

ration, strictly following the manufacturer’s specifications. The robot’s structure and sys-

tem remained unchanged, with no custom modifications. This approach ensures that our 

study’s results and insights accurately reflect the standard performance of the ABB IRB 

140 as commonly observed in industrial settings. Additionally, it provides a baseline for 

evaluating the robot’s efficiency and dynamics in typical operational scenarios. 

2.2. Mathematical Model of the Robot 

The evaluation of the ABB IRB-140 robotic arm at the UQTR mechatronic laboratory 

began by inputting joint-specific data to generate trajectories, which served as a founda-

tion for implementing kinematic models. These models were developed using Denavit–

Hartenberg parameters (Table 2) to define the position and orientation of the end-effector. 

The robot’s joint motions were generated using fifth-order polynomial equations and 

transformation matrices, allowing for a detailed description of the potential positions and 

orientations. This kinematic analysis was a prototype of dynamic modeling, which em-

ployed the Euler–Lagrange method to explore the robot’s dynamics, focusing on joint 

torque calculations and energy consumption. The dynamic model was further enhanced 

by incorporating inertia and mass center point data from detailed CAD/CAM designs cre-

ated using SolidWorks software. This phase seamlessly transitioned into computer-aided 

optimization (CAO), enabling comprehensive simulations representing various model fi-

delity levels. Integrating kinematic and dynamic models facilitated a comprehensive anal-

ysis, allowing precise estimation of the robot’s energy needs through torque profiles. 

Table 2. Denavit–Hartenberg Parameters of the ABB IRB 140 [11,28]. 

Link a (mm) α (°) d (mm) q (°) 

1 𝑎1 = 70 −90 𝑑1 = 352 𝑞1 

2 𝑎2 = −360 0 0 𝑞2 + 90 

3 0 −90 0 𝑞3 

4 0 90 𝑑4 = 380 𝑞4 

5 0 −90 0 𝑞5 

6 0 0 𝑑6 = 65 𝑞6 

After that, the inverse kinematics was developed. The model involves determining 

the joint angles that achieve a specific end-effector position. This model is crucial for main-

taining safe and reliable robot operations but also allows for explicit control over the ro-

bot’s posture. Additionally, it offers a computationally efficient method for determining 
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joint angles, making them particularly beneficial in real-time control scenarios where 

rapid computation is essential. 

The differential kinematics was also developed to define how the angular velocities 

of a robot’s joints relate to its end-effector’s linear and angular velocities. By analyzing 

velocities and static forces, the Jacobian matrix 𝐽 of the manipulator is derived. This ma-

trix plays a key role in examining and controlling robotic motion, identifying singularities 

and redundancy, formulating inverse kinematic equations, and characterizing the manip-

ulability of velocity and force [40]. The Jacobian matrix is specifically adapted to the 

unique joint configurations of each robot, greatly enhancing motion planning and control, 

which are essential for executing precision tasks. It also addresses singularities and re-

dundancies, improving the robot’s operational efficiency and safety. 

Finally, a dynamic model is developed to enable the analysis of a robot’s performance 

regarding joint acceleration forces and torques. The Euler–Lagrange method is commonly 

employed to establish such a dynamic model. The first three proximal joints are funda-

mental as they play a significant role in assessing the mechanical loads experienced by the 

mechanical structure of the robot during operation, which is a key factor in the dynamic 

modeling and assumptions made in the model. The dynamic behavior of a robotic arm 

with 𝑛 joints can be described by relation (1) [11]. 

M q ̈+ V + G = τ (1) 

In this context, �̈� represents the joint acceleration vector, 𝑀 is the inertia matrix, 𝑉 

corresponds to the Coriolis vector, 𝐺 denotes the gravitational vector, and 𝜏 is the force 

and torque vector. In our study, the elements of the inertia matrix and the positions of the 

mass centers were determined using SolidWorks software. The uniform density assump-

tion for each link was applied across all models. It also considered key values related to 

mass and other physical properties, such as the mass center positions and inertia matrices, 

represented within their respective reference frames for the three proximal links. The pre-

cision of a dynamic model relies heavily on accurately determining mass centers and in-

ertia matrices. To obtain these necessary data in engineering, straightforward dimensional 

specifications, and scientific methods, including CAD modeling, Experimental Modal 

Analysis, and Inertia Measurement Units, are utilized. CAD modeling provides detailed 

information on dimensions and mass distribution, while Experimental Modal Analysis 

and Inertia Measurement Units offer direct measurements of inertia characteristics. The 

mass of each link can be calculated assuming constant and uniform density. SolidWorks 

software was utilized to determine the volume of each link. The mass of each link is esti-

mated by multiplying the ratio of an individual link’s volume to the total robot volume 

by the total robot mass. 

2.3. CAD Designs of the Robot 

Employing SolidWorks, we performed a high degree of precision in modeling each 

robotic arm component. A determined purpose of accuracy and steady state to our con-

ceptual design parameters depicted our methodology. This introductory phase has spec-

ified a solid foundation for a robotic arm balanced to enhance the capabilities within in-

dustrial automation, mainly characterized by its superior functionality. During the CAD 

design process, we make the simplifying assumption that the robot’s components have a 

uniform density. While this assumption simplifies the calculations, it may result in inac-

curacies since it must account for the material variations in the real robot. Additionally, 

ergonomics and safety were essential throughout the design iterations, driven by an iter-

ative process. This process concerned rigorous stress examination, evaluation of energy 

consumption patterns, and comprehensive persistence testing. These steps were required 

to establish the arm’s mechanical robustness and stable reliability, ensuring its 
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appropriateness for reinforcing industrial application. The precise, detailed model de-

picted in Figure 2 is fundamental for the simulations that require high fidelity and detailed 

analysis. This model reproduces the robot’s configuration with maximum accuracy, mak-

ing it ideal for investigating elaborate dynamics and interactions within the real robot’s 

mechanism. Mass and inertia values are established on the presumed material properties 

and the model’s geometry. These values are essential for dynamic simulations, but they 

may not fully reflect the actual robot due to potential manufacturing variations and in-

consistencies in material properties [11]. 

 

Figure 2. Detailed SolidWorks model of the ABB IRB 140 robotic arm [11]. 

The specifics of the model and the results for the proximal links obtained using the 

mass properties tool are outlined in Table 3 [11]. 

Table 3. Mass property results of each model calculated using SolidWorks software [11]. 

ABB IRB 140 Parameters (Unit) Link 1 Link 2 Link 3 

Mass Properties 

Weight (kg) 35 25 18 

Xc (mm) 277.87 218.29 −24.56 

Yc 373.12 229.73 −219.9 

Zc −199.03 112.43 −25.86 

Ixx (kg·m2) 6.5 0.9 2.5 

Ixy 1.1 −0.03 −0.001 

Ixz 3.05 0.1 0.09 

Iyy 2.02 1.3 2.7 

Iyz 5.07 −0.01 −0.8 

2.4. Robot Performance Assessment 

To evaluate the accuracy of the three models’ predictions, we analyzed the energy 

consumption by the three proximal joints and the robot’s total energy consumption over 

the same duration and path of movement. In the proposed modeling approach, the energy 

consumption of each joint at a specific time can be calculated from the joint torque and 

angular velocity using Equation (2). The robot’s integrated energy consumption is as-

sumed to be the sum of the energy consumption values of all the joints. 

Ei = ∫ τi

tf

t0

(t).q
i̇
(t) dt (2) 
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We employ a theoretical approach to evaluate the energy consumption of robotic 

arms. This approach centers on dynamic models that simulate each joint’s torque τi and 

angular velocity q
i̇
 Detailed explanations of how these parameters are simulated are pro-

vided in the methodology section. The simulated values are then used in Equation (2) to 

calculate the energy consumption of each joint. The theoretical method offers a compre-

hensive analysis of energy consumption, avoiding the practical challenges and complexi-

ties associated with the installation and calibration of physical sensors on the robotic arm. 

Focusing on a theoretical and simulation-based approach contributes significantly to 

understanding energy dynamics in robotic arms, especially in scenarios where direct 

measurement is impractical or impossible. This approach also aligns with current trends 

in employing computational models to analyze complex system contributions to robotics 

fields. 

2.5. Sliding-Mode Control Strategy 

One method of robust control technique for controlling a complicated and nonlinear 

mechanism like a manipulator robotic arm is called sliding-mode control methodology, a 

type of variable structure control system [4,10,41]. The most crucial feature of the sliding-

mode control is the complete insensitivity to parametric uncertainty and external disturb-

ances during the sliding process. The variable structure control system utilizes a high-

speed switching-control law for two purposes. First of all, it forces the nonlinear system’s 

form trajectory along a user-defined surface in the state space, named the sliding or 

switching surface [42,43]. The control approach has one gain if the state trajectory of the 

mechanism is above the surface and a different gain if the controlling object, such as tra-

jectory in robotics, drops below the surface and because of this named sliding surface. 

Secondly, it keeps the mechanism state control object on this surface by following the time 

[44,45]. During the controlling process, the control system’s structure differs from one to 

another and thus it donates the name variable structure control. This model also permits 

the elimination of interactions among the joints of the manipulator [46,47]. A general 

equation of the motion can be represented in the space state by the following [48]: 

𝑥 =  𝑓 (𝑥 , 𝑡)  +  𝑔 (𝑥 , 𝑡) . 𝑢 (3) 

where 𝑢 is the control input, 𝑥 is the state vector also considered as the output, and the 

functions 𝑓 (𝑥, 𝑡) and 𝑔 (𝑥, 𝑡) are nonlinear functions. 

The control input variable is defined in the following: 

𝑢𝑖(𝑥, 𝑡) = {
𝑢𝑖

+(𝑥, 𝑡)              𝑖𝑓  𝑆𝑖(𝑥, 𝑡) > 0

𝑢𝑖
−(𝑥, 𝑡)              𝑖𝑓  𝑆𝑖(𝑥, 𝑡) < 0

 (4) 

where 𝑢𝑖   is the 𝑖𝑡ℎ  component of 𝑢   and 𝑆𝑖(𝑥, 𝑡) = 0  is the 𝑖𝑡ℎ  component-switching 

hypersurfaces S(x, t) = 0, 𝑆 ∈ 𝑅𝑚. 

According to the presented rules with discontinuous control, the system is named a 

variable structure system since the controller switches alternatively based on the state of 

the mechanism. The sliding mode appears on a switching surface 𝑆(𝑥)  =  0 , which 

pushes the machine to behave as a linear-time uniform system, which can be assumed to 

be stable. For it to be linear, the surfaces can be written as: 

𝑠𝑖(𝑥) = 𝑥𝑛 + ∑ 𝜆𝑖 . 𝑥𝑖

𝑛

𝑖=1

 (5) 

The condition for the sliding mode to exist on the 𝑖𝑡ℎ surface is provided by the fol-

lowing equation: 

lim
𝑠𝑖→0+

�̇� > 0        and 𝑙𝑖𝑚
𝑠𝑖→0−

�̇� < 0         (6) 
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This is when 𝑆�̇� < 0 is too close to 𝑆𝑖(𝑥) = 0, when all the trajectories shift towards 

the switching surface. In the perfect sliding mode on 𝑆𝑖, the related control is the equal 

control issued from Equation (3) and given by the equation for �̇� = 0: 

𝑢𝑒𝑞 = 𝑔−1(𝑥, 𝑡)[�̇�(𝑡) − 𝑓(𝑥, 𝑡)] (7) 

So, the discontinuous control input presented in relation (4) can be noted as follows: 

𝑢𝑖 = {
𝑢𝑖𝑒𝑞

∗ + ∆𝑢𝑖
+              𝑖𝑓  𝑆𝑖 > 0

𝑢𝑖𝑒𝑞
∗ + ∆𝑢𝑖

−               𝑖𝑓  𝑆𝑖 < 0
 (8) 

where 𝑢𝑒𝑞 illustrates the low-frequency control component or the steady state equivalent 

control signal, and ∆𝑢  presents the high-frequency discontinuous term. For the func-

tional case, the control equation is known by the evaluated value due to error moduliza-

tion and variation in the parameters as follows: 

𝑢𝑒𝑞
∗ = 𝑢𝑒𝑞 + ∆𝑢𝑒𝑞 (9) 

This last formula is equivalent to the discontinuous control input in relation (8). The 

term of high-frequency ∆𝑢 can be represented differently, such as the equation based on 

the classical reaching law, which is one of the methods reported in the literature for alle-

viating chattering in sliding mode. Classical reaching law can express in four principal 

subcategories that are represented as the following: 

Constant reaching law: 

�̇� = −𝜀. 𝑠𝑔𝑛(𝑠) ,           𝜀 > 0 (10) 

Exponential reaching law: 

�̇� = −𝜀. 𝑠𝑔𝑛(𝑠)  − 𝑘𝑠,           𝜀 > 0       𝑘 > 0 (11) 

Power-rate reaching law: 

�̇� = −𝑘 |𝑠𝛼|. 𝑠𝑔𝑛(𝑠),          0 <  𝛼 < 1       𝑘 > 0 (12) 

General reaching law: 

�̇� = −𝜀. 𝑠𝑔𝑛(𝑠) − 𝑓(𝑠)  , 𝜀 > 0   where 𝑓 (0)  = 0 and 𝑠𝑓(𝑠) > 0 when s ≠ 0 (13) 

To obtain a robust sliding-mode control based on reaching law, consider the general 

equation motion as below: 

�̈� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑(𝑡) (14) 

where 𝑓(𝑥) and 𝑔(𝑥) are unknown equations and  𝑔(𝑥) > 0 and 𝑑(𝑡) are the terms of 

disturbance. As sliding surface and derivative of the sliding surface, the combination of 

error of models considered satisfy the Hurwitz condition and can be described as follows: 

𝑠 = �̇� + 𝑐𝑒, 𝑐 > 0 (15.1) 

𝑒 = 𝑟 − 𝑥(𝑡) (15.2) 

�̇� = �̇� − �̇�(𝑡) (15.3) 

For the derivative of the sliding-surface equation considering the effect of external 

disturbance as 𝑑(𝑡): 

�̇� = �̈� + 𝑐�̇� = �̈� − �̈� + 𝑐(�̇� − �̇�) = �̈� − 𝑓(𝑥) − 𝑔(𝑥)𝑢 − 𝑑(𝑡) +  𝑐(�̇� − �̇�) (16) 

To obtain the robust control sliding mode based on the exponential reaching law 

from the relations of (12) and (16): 
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�̈� − 𝑓(𝑥) − 𝑔(𝑥)𝑢 − 𝑑(𝑡) + 𝑐(�̇� − �̇�) = −𝜀. 𝑠𝑔𝑛(𝑠)  − 𝑘𝑠 

𝑢 =  
1

𝑔(𝑥)
( �̈� − 𝑓(𝑥) − 𝑑(𝑡) + 𝑐(�̇� − �̇�) + 𝜀. 𝑠𝑔𝑛(𝑠) + 𝑘𝑠 

(17) 

The derivative of the sliding-surface equation can also be considered with (15) de-

scribed with the disturbance term as follows: 

�̇� = −𝜀. 𝑠𝑔𝑛(𝑠)  − 𝑘𝑠 + 𝑑𝑐 − 𝑑 (18) 

The disturbance term 𝑑𝑐 must satisfy the conditions for reaching the sliding surface, 

and the term d should be limited. 𝑑𝑙 and du are the lower and upper terms of disturb-

ance, respectively, as: 

𝑑𝑙 ≤ 𝑑(𝑡) ≤ 𝑑𝑢 , when s(t) > 0 , �̇� = 𝜀 − 𝑘𝑠 + 𝑑𝑐 − 𝑑 , we want �̇� (t) <  0, so let 𝑑𝑐 =

 𝑑𝑙. 

When s(t) < 0, �̇� = −𝜀 − 𝑘𝑠 + 𝑑𝑐 − 𝑑, we want �̇�(t) > 0, so let 𝑑𝑐 =  𝑑𝑢 

Therefore, if we define 𝑑1 =  
𝑑𝑢−𝑑𝑙

2 
 , 𝑑2 =  

𝑑𝑢+𝑑𝑙

2 
 , then we can obtain the following: 

𝑑𝑐 =  𝑑2 − 𝑑1. 𝑠𝑔𝑛(𝑠) (19) 

The discontinuity of the sign function will generate chattering in the closed loop sys-

tem. For this reason, the sign function is usually substituted by a saturation function sat 

(𝑠/𝜀), where 𝑠𝑎𝑡(. ) is described as follows: 

𝑠𝑎𝑡(𝑥) = {
𝑥                 𝑖𝑓 |𝑥| ≤ 1

𝑠𝑔𝑛 (𝑥)     𝑖𝑓 |𝑥| > 1
 (20) 

To mitigate chattering, the study employs an exponential reaching law, which adjusts 

the conventional reaching law to achieve a smoother transition as the system state ap-

proaches the sliding surface. This is accomplished by adding a term, −𝑘 ⋅ 𝑠, which grad-

ually decreases the convergence rate to the sliding surface, thereby reducing the rapid 

switching responsible for chattering. Additionally, the discontinuous sign function 

𝑠𝑔𝑛 (𝑠)  is replaced with a saturation function sat (𝑠/𝜖) , which introduces a boundary 

layer around the sliding surface. This change smooths the control action, significantly 

curbing chattering by preventing abrupt changes in the control input. By adjusting the 

thickness of this boundary layer, the system can strike an optimal balance between reduc-

ing chattering and maintaining precise control, enhancing the robustness and applicabil-

ity of SMC in high-precision environments. 

Employing this alternate will present a tracking error. The trade-off between the 

tracking error and control bandwidth will be created by setting the boundary layer 

properly. As mentioned before, the position of the robot’s end-effector in this case study 

depends on the first three joints and links. For this reason, the control strategy implements 

the first three joints of the robot. Generally, for the three links, the robot’s sliding-mode 

control can be described as follows: 

𝑠 = �̇� + 𝑐𝑒 (21) 

For example, 𝑒 = 𝜃𝑑 − 𝜃. 

This will lead to �̇� = �̈� + 𝑐�̇� = 𝜃�̈� − �̈� + 𝑐�̇� and 

�̇� = −𝜀 𝑠𝑔𝑛(𝑠) (22) 

The combination of Equations (21) and (22) will result in the following: 

�̈� =  𝜃�̈� + 𝑐�̇� + 𝜀 𝑠𝑔𝑛 (𝑠) (23) 

The general equation of the robot relies on the dynamics of the robot described as 

relation (1), which can be rewritten in terms of accelerations as the following: 
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�̈� = 𝑀−1(𝜏 − 𝑉 − 𝐺) (24) 

With relations (23) and (24), we obtain the main equation of sliding-mode control as 

follows: 

𝜏 = 𝑀 (𝜃�̈� + 𝑐�̇� +  𝜀 𝑠𝑔𝑛(𝑠)) + 𝑉 + 𝐺 (25) 

Assuming the presence of the disturbances for the robot in the working space to de-

termine and track of end-effector position and considering inverse kinematics and dy-

namics of the robot manipulator, we can achieve the following equation for controlling in 

the sliding-mode technique: 

𝜏 = 𝑀. 𝐽−1(𝑋�̈� + 𝑐�̇� +  𝜀 𝑠𝑔𝑛(𝑠) − 𝐽(̇𝜃)�̇�) + 𝑉 + 𝐺  (26) 

2.6. Quantum Computing Basics 

Quantum computing operates on a different principle compared to classical compu-

ting, utilizing quantum bits, or qubits, to encode and process information. A qubit state, 

denoted as |𝑞⟩, can be expressed as a superposition of the classical binary states 0 and 1 

[49,50]. Mathematically, this is represented as: 

|𝑞⟩ = 𝛼|0⟩ + 𝛽|1⟩  (27) 

Here, 𝛼  and 𝛽  are complex coefficients that correspond to the probability ampli-

tudes of the qubit being in the states |0⟩ and |1⟩, respectively. These probabilities can be 

interpreted such that |𝛼|2 gives the likelihood of the qubit being in the |0⟩ state, while 

|𝛽|2 gives the probability of it being in the |1) state. In the context of vector space, the 

states |0⟩  and |1⟩  can be represented as the vectors |0⟩ ≡ (
1
0

)  and |1⟩ ≡ (
0
1

) , respec-

tively [49,50]. Thus, a qubit state |𝑞⟩ can be depicted in vector form as (
𝛼
𝛽). Quantum 

operations, known as quantum gates, can be applied to qubits to alter their states. These 

operations are often represented by Hamiltonian matrices [28,33]. The fundamental quan-

tum gates that act on a single qubit include the identity, X, Y, and Z gates, which corre-

spond to the Pauli matrices 𝜎0, 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧, respectively, as defined by the following 

matrices [50]: 

𝜎0 = (
1 0
0 1

) (28) 

𝜎𝑥 = (
0 1
1 0

) (29) 

𝜎𝑦 = (
0 −𝑖
𝑖 0

)    (30) 

𝜎𝑧 = (
1 0
0 −1

)    (31) 

Other single-qubit quantum gates can be expressed as a linear combination of the 

Pauli gates, such as the Hadamard gate depicted in Equation (32) and the three basic ro-

tation gates illustrated in Equations (33)–(35) [51,52]. 

𝐻 =
√2

2
(

1 1
1 1

) =
√2

2
(𝜎0 + 𝜎𝑥) (32) 

𝑅𝑥(𝜃) = (
𝑐𝑜𝑠𝜃 −𝑖 𝑠𝑖𝑛𝜃

−𝑖 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
) = 𝑐𝑜𝑠𝜃 𝜎0 − 𝑖 𝑠𝑖𝑛𝜃 𝜎𝑥 (33) 
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𝑅𝑦(𝜃) = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) = 𝑐𝑜𝑠𝜃 𝜎0 − 𝑖 𝑠𝑖𝑛𝜃 𝜎𝑦 (34) 

𝑅𝑧(𝜃) = (𝑒−𝑖𝜃 0
0 𝑒𝑖𝜃

) = 𝑐𝑜𝑠𝜃 𝜎0 − 𝑖 𝑠𝑖𝑛𝜃 𝜎𝑧 (35) 

2.6.1. Developing the Quantum Comparator 

The quantum comparator is an innovative computational tool that harnesses quan-

tum principles to enhance precision and efficiency in comparison tasks. It integrates two 

primary components: a quantum subtractor and a quantum sign detector [50]. 

The quantum subtractor computes the difference between two real numbers. Oper-

ating within the quantum framework, it offers higher parallelism and potentially faster 

speeds than classical subtractors. This enables it to prepare the data for the next step by 

providing the relative magnitude of the two numbers. Once the subtraction is complete, 

the result is passed to the quantum sign detector. This component determines the sign of 

the computed difference, indicating whether the first number is more significant than, less 

than, or equal to the second number. By leveraging quantum superposition and entangle-

ment principles, the quantum sign detector identifies the sign accurately and efficiently, 

completing the comparison. These components work together to enable the quantum 

comparator to perform comparisons with greater accuracy and speed than classical meth-

ods, making it a valuable tool in quantum computing applications [53–55]. 

2.6.2. The Quantum Subtractor 

The quantum subtractor for two real numbers relies on the tensor product between 

two real qubit states, 𝑞1 = 𝐶𝜃1
|0⟩ + 𝑆𝜃1

|1⟩ and 𝑞2 = 𝐶𝜃2
|0⟩ + 𝑆𝜃2

|1⟩. These qubit states, 𝑞1 

and 𝑞2, are derived by applying a quantum rotation around the 𝑦-axis, as described by 

the following equations: 

𝑞1 = 𝑅𝑦(𝜃1)|0⟩ (36) 

𝑞2 = 𝑅𝑦(𝜃2)|0⟩ (37) 

The tensor product between 𝑞1 and 𝑞2 yields the coefficients of the eigenstates: 

𝑞1 ⊗ 𝑞2 = 𝐶𝜃1
𝐶𝜃2

|00⟩ + 𝐶𝜃1
𝑆𝜃2

|01⟩ + 𝑆𝜃1
𝐶𝜃2

|10⟩ + 𝑆𝜃1
𝑆𝜃2

|11⟩ (38) 

The coefficient 𝑆𝜃1
𝐶𝜃2

 can be obtained by measuring the system 𝑞1 ⊗ 𝑞2 in the state 

|10⟩. This coefficient can be rewritten using the trigonometric identity: 

𝑆𝜃1
𝐶𝜃2

= sin (
𝛼 − 𝛽

2
) cos (

𝛼 + 𝛽

2
) =

1

2
(sin (𝛼) − sin (𝛽)) (39) 

where 
𝛼−𝛽

2
= 𝜃1 and 

𝛼+𝛽

2
= 𝜃2, with 𝛼 = 𝜃1 + 𝜃2 and 𝛽 = 𝜃2 − 𝜃1. 

Thus, the subtraction of two real numbers 𝑥 = sin (𝛼) and 𝑦 = sin (𝛽) can be com-

puted through the following steps: 

Step 1: Compute 𝛼 = arcsin (𝑥) and 𝛽 = arcsin (𝑦). 

Convert the input numbers 𝑥 and 𝑦 into angles 𝛼 and 𝛽, which will be used for 

quantum operations. 

Step 2: Determine 𝜃1 as 
𝛼−𝛽

2
 and 𝜃2 as 

𝛼+𝛽

2
. 

This calculates the rotation angles 𝜃1 and 𝜃2, encoding the difference and sum of the 

input numbers. 

Step 3: Initialize the qubits 𝑞1 and 𝑞2 to |0⟩. 

This prepares the qubits in a known starting state before any quantum operations are 

applied. 
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Step 4: Apply the quantum rotations 𝑅𝑦(𝜃1) to 𝑞1 and 𝑅𝑦(𝜃2) to 𝑞2. 

This performs quantum rotations on the qubits using the calculated angles, encoding 

the input numbers into the qubit states. 

Step 5: Measure the system in the state |10⟩. The coefficient should be calculated on 

the state vector, yielding half of the subtracted result, which can be doubled by applying 

a gain. However, the sign of the subtracted result is required for creating a comparator, 

and it is the same as the sign of its half. Consequently, doubling the result is unnecessary. 

This method involves measuring the quantum system to obtain a coefficient related to the 

difference. 

2.6.3. The Quantum Sign Detector 

The quantum sign detector is inspired by the Boolean subtraction operation, partic-

ularly focusing on the concept of the borrow, which is illustrated in the truth table. The 

borrow, denoted as 𝑟, is equal to 1 only when the minuend 𝑎 is 0 and the subtrahend 𝑏 

is 1. The logical expression for the borrow can be represented as 𝑟 = 𝑎‾ ⋅ 𝑏. This expression 

indicates that a borrow occurs, meaning 𝑟 equals 1, only if 𝑎 is less than 𝑏. The quantum 

sign detector is inspired by the expression of the borrow of the Boolean subtraction, as 

described in the truth table depicted in Table 4. 

Table 4. Truth table of the subtraction between two Boolean numbers. 

𝒂 𝒃 𝒔 =  𝒂 − 𝒃 𝒓 (Borrow) 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

In quantum computing, classical logic operations are translated into quantum gate 

operations. The purpose of the quantum sign detector is to implement the logic of the 

borrow operation using quantum gates, effectively detecting whether the result of a sub-

traction would require a borrow, which in classical terms, would indicate a negative re-

sult. Two key quantum gates are involved in this operation: the X gate (quantum NOT) 

and the CCNOT gate (Toffoli gate). The X gate is the quantum analogue of the classical 

NOT gate. It flips the state of a qubit; for instance, if the input qubit is in the |0⟩ state, 

applying an 𝑋 gate changes it to |1⟩, and vice versa. In the context of the quantum sign 

detector, the X gate is used to invert the qubit representing 𝑎, producing |𝑎‾⟩, which cor-

responds to the classical negation of 𝑎. 

The CCNOT gate, or Toffoli gate, is a controlled-controlled-NOT gate. It performs a 

NOT operation on a target qubit only if the two control qubits are both in the |1⟩ state. In 

the quantum sign detector, the CCNOT gate, takes |𝑎‾⟩ and |𝑏⟩ as inputs and operates on 

an ancillary qubit initialized to |0⟩. This operation effectively implements the logical AND 

between 𝑎‾ and 𝑏, which corresponds to the classical borrow operation. 

The quantum circuit for the sign detector operates as follows: Start by preparing 

qubits that represent the binary values 𝑎 and 𝑏, along with an additional ancillary qubit 

initialized to |0⟩. The qubit representing 𝑎 is then passed through an X gate to obtain |𝑎‾⟩. 

Subsequently, the CCNOT gate is applied to |𝑎‾⟩ and |𝑏⟩, with the ancillary qubit as the 

target. The state of the ancillary qubit will be flipped to |1⟩ if both |𝑎‾⟩ = 1 and |𝑏⟩ = 1, 

thereby implementing the borrow logic. The final state of the ancillary qubit indicates the 

result of the quantum sign detection. If the ancillary qubit is in the |1⟩  state, it corre-

sponds to a borrow in the classical operation, signifying that the subtraction of 𝑏 from 𝑎 

would result in a negative value. This quantum implementation of the borrow operation 

not only mirrors the classical logic but also leverages the principles of quantum 
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mechanics, such as parallelism and quantum efficiency. Figure 3 depicts the quantum sign 

detector in a quantum circuit. 

 

Figure 3. The quantum sign detector circuit [56]. 

2.6.4. The Quantum Adder 

To effectively implement the hysteresis function, a subtractor is required, which can 

be realized using an adder and a sign detector. The necessary components for the sign 

detection have already been developed in the context of the comparator function. There-

fore, the remaining task is to develop the quantum adder. The addition of two real num-

bers, 𝑥 and 𝑦, is achieved using trigonometric identities as illustrated in the following 

steps. This process is grounded in the principles of quantum mechanics, specifically lev-

eraging the tensor product and quantum state measurements. The tensor product between 

quantum states 𝑞1 and 𝑞2 yields the coefficients of the eigenstates presented in Equation 

(38), and to focus on the addition process, we measure the system 𝑞1𝑞2 in the state |01⟩. 

This measurement can be reformulated using the following trigonometric identity: 

𝑆𝜃1
𝐶𝜃2

= 𝑐𝑜𝑠 (
𝛼 − 𝛽

2
) 𝑠𝑖𝑛 (

𝛼 + 𝛽

2
) =

1

2
(𝑠𝑖𝑛 (𝛼) + 𝑠𝑖𝑛 (𝛽)) (40) 

Here, 𝛼 = 𝜃1 + 𝜃2 and 𝛽 = 𝜃2 − 𝜃1. Therefore, the addition of two real numbers 𝑥 

and 𝑦, where 𝑥 = sin (𝛼) and 𝑦 = sin (𝛽), is computed as follows: 

Step 1: Compute 𝛼 = arcsin (𝑥) and 𝛽 = arcsin (𝑦). 

The real numbers 𝑥  and 𝑦  are first converted into angles 𝛼  and 𝛽  using the 

arcsine function, which is crucial for preparing the inputs for subsequent quantum oper-

ations. 

Step 2: Calculate 𝜃1 =
𝛼−𝛽

2
 and 𝜃2 =

𝛼+𝛽

2
. 

Using the computed angles 𝛼 and 𝛽, the intermediary angles 𝜃1 and 𝜃2 are calcu-

lated and will define the quantum rotations applied to the qubits. 

Step 3: Initialize quantum states 𝑞1 and 𝑞2 to 0. 

The qubits 𝑞1 and 𝑞2 are initialized to the ground state |0⟩. This initialization pro-

vides a known reference state for the quantum operations. 

Step 4: Perform quantum rotations 𝑅𝑦(𝜃1) on 𝑞1 and 𝑅𝑦(𝜃2) on 𝑞2. 

The rotations 𝑅𝑦(𝜃1)  and 𝑅𝑦(𝜃2)  are performed on the qubits 𝑞1  and 𝑞2 , respec-

tively. These rotations adjust the quantum states to encode the information about the orig-

inal real numbers. 

Step 5: Measure the system at the state |01⟩. The measurement yields the coefficient 

of the state vector, representing half of the sum 𝑥 + 𝑦. While the full addition result typi-

cally requires multiplying this coefficient by 2, in this context, only the sign of the result 

is necessary for constructing the hysteresis function. Hence, the multiplication by 2 can be 

omitted, as the sign of the result remains unchanged. 

Developing a quantum adder is required for implementing advanced quantum func-

tions. This process harnesses key quantum abilities such as superposition, interference, 

and measurement. The quantum adder can efficiently and simultaneously operate on 

multiple states, yielding precise and optimized outcomes that are often unachievable with 
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classical computing methods. The quantum system’s capability to compute the sign of the 

sum without needing a full-scale addition underscores quantum computing’s potential to 

simplify and enhance resource-intensive operations. 

2.6.5. Proposed Quantum Algorithm 

The quantum error 𝑒𝑄 is derived using a series of quantum operations that replace 

the classical error calculation. Let 𝑃 denote the desired position and 𝑃3 the actual posi-

tion of the end-effector. The quantum error 𝑒𝑄 is calculated as follows: 

For each axis 𝑖, compute the angles 𝛼𝑖 and 𝛽𝑖 corresponding to the components of 

𝑃 and 𝑃3: 

𝛼𝑖 = 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑃𝑖) (41) 

𝛽𝑖 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑃3𝑖) (42) 

Next, calculate the rotation angles 𝜃1𝑖 and 𝜃2𝑖 as: 

𝜃1𝑖 =
𝛼𝑖 − 𝛽𝑖

2
 (43) 

𝜃2𝑖 =
𝛼𝑖 + 𝛽𝑖

2
 (44) 

Two qubits 𝑞1𝑖  and 𝑞2𝑖  are initialized in the state |0⟩  and the quantum rotations 

𝑅𝑦(𝜃1𝑖) and 𝑅𝑦(𝜃2𝑖) are applied to these qubits, respectively: 

𝑞1𝑖 = 𝑐𝑜𝑠 (𝜃1𝑖)|0⟩ + 𝑠𝑖𝑛 (𝜃1𝑖)|1⟩ (45) 

𝑞2𝑖 = 𝑐𝑜𝑠 (𝜃2𝑖)|0⟩ + 𝑠𝑖𝑛 (𝜃2𝑖)|1⟩ (46) 

The tensor product of these qubits is computed, and the system is measured in the 

state |10⟩ to yield the quantum error component: 

𝑒𝑄𝑖
= 𝑘 ⋅ (𝑞1𝑖 ⊗ 𝑞2𝑖 ⊗ 𝑞3𝑖) 

 
(47) 

Here the symbol ⊗ represents the tensor product, and 𝑘 is a parametric term that 

can be adjusted to scale the quantum error component as needed for the specific require-

ments of the quantum control algorithm. 

The derivative of the quantum error 𝑑𝑒𝑄 is computed using the quantum subtractor. 

Considering 𝑑𝑃 as the desired angular velocity and 𝑑𝑃𝑄 as the quantum-calculated an-

gular velocity obtained through the 𝑅𝑦 gate, the derivative error 𝑑𝑒𝑄 is determined by 

the following relation: 

𝑑𝑒𝑄 = 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (𝑑𝑃, 𝑑𝑃𝑄) (48) 

The quantum sliding surface 𝑠quantum is formed to approximate the classical sliding 

surface using quantum gates. First, the quantum error 𝑒𝑄 is scaled by a constant vector 

𝑐: 

scaled error = 𝑐 ⋅ 𝑒𝑄 (49) 

Then, the scaled quantum error and the quantum derivative error are added using 

quantum rotations. The resulting quantum sliding surface is expressed as: 

𝑠quantum = 𝑛 (𝑠𝑖𝑛 (
𝜃𝑐⋅𝑒

2
) + 𝑠𝑖𝑛 (

𝜃𝑑𝑒𝑄

2
)) (50) 
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Here, 𝑛 is a parameter that can be tuned according to the specific requirements of 

the control system normalization, providing more flexibility in how the quantum sliding 

surface is scaled, and 𝜃𝑐𝑒 and 𝜃𝑑𝑒 are the rotation angles for the scaled error and deriva-

tive error, respectively. The sign of the quantum sliding surface 𝑠quantum is detected using 

quantum computational techniques. The quantum state |𝑠⟩ representing the sliding sur-

face is prepared as: 

|𝑠⟩ = 𝑐𝑜𝑠 (𝜃)|0⟩ + 𝑠𝑖𝑛 (𝜃)|1⟩ (51) 

where 𝜃 is calculated by the relation: 

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑠(𝑡)

𝑚𝑎𝑥(|𝑠(𝑡)|)
) (52) 

The quantum sign detector then applies the X gate (quantum NOT gate) and the Tof-

foli gate (CCNOT gate) to determine the sign of the sliding surface. The outcome of the 

measurement after applying these gates indicates the sign of the sliding surface, with the 

ancillary qubit’s state corresponding to +1 or −1. 

The quantum control law 𝑢𝑄 is formulated by integrating the quantum sliding sur-

face and the sign detection results. The control variable 𝑉 is computed using the quantum 

sliding surface as: 

𝑉 = 𝐽−1 ⋅ (�̈� + 𝑐 ⋅ 𝑑𝑒𝑄 + 𝑞 ⋅ 𝑆𝑖𝑔𝑛 (𝑠𝑄) − 𝐽 ⋅ �̇�) (53) 

where 𝐽 is the Jacobian matrix, �̈� represents the desired acceleration, and 𝐽 ⋅ �̇� accounts 

for the effects of dynamic changes in the system. 

The final control input 𝑢𝑄 is then calculated as: 

𝑢𝑄 = 𝑀 ⋅ 𝑉 + 𝐵 + 𝐺 (54) 

So, 𝑀 is the inertia matrix, 𝐵 represents the Coriolis/centripetal forces, and 𝐺 de-

notes the gravitational forces. 

3. Results and Discussion 

The following Simulink model is employed as the implementation algorithm for the 

carried-out simulation of the motion control of the robotic arm manipulator. Simulink al-

lows creating blocks that have all the features and capabilities of any type of built-in func-

tion. The block function of the plant implemented all equations for the dynamic equations 

of motion, such as the inertia, gravity, and Coriolis centrifugal parameters, to obtain the 

torque and force equation of the robot presented in the kinematics and dynamic models 

of the robot in the methodology section of the current study and the mass properties of 

the robot, which consist of mass center points and inertia matrixes for the first three links 

presented in the section on CAO design and Table 3. A classic sliding-mode controller 

with the expositional reaching law approach based on the presented method is imple-

mented in the controller block function, and the schematic diagram of the controller model 

is represented in Figure 4. Other Simulink models based on the quantum approach incor-

porating the quantum operators to handle the quantum version of the sliding-mode con-

troller for the robot manipulator are designed and illustrated in Figure 5. 
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Figure 4. Simulink trajectory model of the robot manipulator for SMC. 

 

Figure 5. Simulink trajectory model of the robot manipulator for Q-SMC. 

The sliding-mode controller algorithm is used for motion control based on a design 

with and without disturbances to evaluate the model’s robustness. The value of disturb-

ances applied based on the sine and cosine trajectory of the joint variable is predefined as 

a percentage of the input signal to examine the robustness of the designed controller. The 

implemented algorithm examines thoroughly a specific trajectory to verify the perfor-

mance and behavior of the designed sliding-mode controllers of the robot to execute tasks 

undertaking the controllers. A circular trajectory is defined in the robot’s working space 

considering avoiding singularity to perform the robot’s task and estimate the chosen con-

troller’s execution. The motion of the end-effector begins at the same point for both con-

trollers, positioned somewhere within the working space but outside the circular trajec-

tory. Upon initiating the simulation, the robot attempts to reach the desired circular path, 

perform a circular motion along the defined trajectory, and maintain its position according 

to the specified parameters. The successful transition from an initial position outside the 

defined path to accurately following the specified circular trajectory within the robot’s 

workspace confirms the correct operation of the controllers. Figure 6 illustrates the robot 

performing the assigned task under the SMC and Q-SMC controllers. 
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Figure 6. Projection of X–Y–Z trajectory of robot manipulator executed by controllers. 

The Q-SMC aligns closely with the desired trajectory, guiding the robotic arm to pre-

cise coordinates, as the red dotted line shows. In contrast, the SMC controller, represented 

by the blue dotted line, exhibits delayed response and reduced accuracy, resulting in the 

arm deviating more noticeably from the intended path when reaching the coordinates. 

Figures 7–9 illustrate the comparative position-tracking performance of the robotic 

arm’s end-effector along the X, Y, and Z axes, employing both classic sliding-mode control 

and quantum-inspired sliding-mode control. The Q-SMC demonstrates superiority over 

the SMC in both transient and steady-state performance. As highlighted in the zoom-in 

inset, it achieves faster convergence to the desired trajectory with reduced overshoot. This 

enhancement is attributed to quantum-inspired innovations that facilitate smoother con-

trol actions and improved management of nonlinearities and disturbances. 

 

Figure 7. Comparison of position tracking (X–component) for the robot end-effector. 
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Figure 8. Comparison of position tracking (Y–component) for the robot end-effector. 

 

Figure 9. Comparison of position tracking (Z–component) for the robot end-effector. 

Furthermore, Q-SMC maintains a closer adherence to the desired trajectory through-

out the simulation, exhibiting exceptional tracking accuracy and robustness. The results 

along the Y-axis further underscore the benefits of Q-SMC, which delivers precise and 

smooth trajectory tracking. Consistently, Q-SMC outperforms SMC in terms of quicker 

convergence and reduced overshoot. The enhanced transient response and accurate path 

alignment are evident throughout the simulation. These improvements stem from the pro-

posed controller’s capacity to effectively mitigate uncertainties and disturbances, result-

ing in smoother and more dependable control actions. 

In contrast, SMC displays slightly greater deviations from the desired trajectory, par-

ticularly during the transient phase, highlighting Q-SMC’s superior precision and robust-

ness. The quantum-inspired enhancements significantly reduce overshoot and oscilla-

tions, as depicted in the magnified transient response. Although both controllers ulti-

mately achieve the target position, Q-SMC consistently provides better precision and sta-

bility throughout the simulation. The reduced chattering observed with Q-SMC decreases 

abrupt control actions, enhancing energy efficiency and preserving the mechanical integ-

rity of the system. These findings reaffirm Q-SMC as a robust control strategy for applica-

tions requiring smooth and accurate trajectory tracking. 



Robotics 2025, 14, 14 21 of 31 
 

 

Figures 10–12 illustrate the tracking error of the robot’s end-effector under both clas-

sical SMC and Q-SMC controllers. The results indicate that Q-SMC achieves a particularly 

lower steady-state error compared to SMC, showing improved tracking precision. While 

both controllers exhibit rapid error convergence, Q-SMC stabilizes more quickly with 

minimal oscillations, reflecting its enhanced robustness and smoother control actions. 

These findings underscore the effectiveness of the Q-SMC approach in maintaining trajec-

tory accuracy, even in dynamic conditions. 

 

Figure 10. Comparison of tracking error (X–component) for the robot end-effector. 

 

Figure 11. Comparison of tracking error (Y–component) for the robot end-effector. 
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Figure 12. Comparison of tracking error (Z-component) for the robot end-effector. 

Additionally, Q-SMC’s reduced chattering and optimized control actions further val-

idate it as a robust and precise control strategy for robotic systems. The classical SMC 

shows a notable initial overshoot in the Y-position, highlighting its greater sensitivity to 

sudden changes in system dynamics. In contrast, Q-SMC exhibits better stability, faster 

error convergence, and reduced fluctuations, resulting in a more consistent response over 

time. This difference in robustness allows Q-SMC to handle dynamic variations more ef-

ficiently and makes its smoother trajectory control particularly suitable for precision ap-

plications, solidifying its reputation as an advanced and effective control method for ro-

botic systems. 

The tracking performance for the Z-position of the robot’s end-effector reveals that 

both controllers undergo a transient phase. However, Q-SMC achieves quicker conver-

gence to near-zero errors and maintains a smoother trajectory. While classical SMC shows 

effectiveness, it experiences slight oscillations during stabilization, indicating a less re-

fined response to system dynamics. In contrast, Q-SMC’s ability to stabilize rapidly while 

managing smoother tracking errors underlines its precision and robustness, especially in 

addressing nonlinearities. These results further confirm the practicality of Q-SMC for ap-

plications that require high accuracy and reliability in robotic motion control. 

Table 5 reviews the results of the classic and quantum sliding-mode controller per-

formances. The comparison shows that the performances of both controllers are nearly 

identical. The evaluation of each controller’s performance considers key metrics such as 

steady-state error, response speed, rise time, and settling time, addressing both time- and 

frequency-domain requirements. Considering all the measured parameters for both con-

trollers when following the same trajectory, the Q-SMC model demonstrated superior 

performance. 

Table 5. Performance of angular position for the different controllers. 

Performances Rising Time (s) Settling Time (s) Overshoot (%) Steady-State Error (%) 

 

Arm 1 

Arm 2 

Arm 3 

 SMC   

0.301 0.42 1.76 0.088 

0.297 0.79 2.09 0.076 

0.302 0.53 1.97 0.066 

 

Arm 1 

 Q-SMC   

0.283 0.383 1.32 0.071 
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Arm 2 

Arm 3 

0.276 0.565 1.41 0.055 

0.295 0.497 1.25 0.042 

The controllers’ ability to withstand modeling inaccuracies and unmodeled dynam-

ics can be determined from their performance under disturbance conditions, albeit implic-

itly. In practical applications, the models used for controller design are usually approxi-

mations, making a controller’s capability to maintain its performance despite such inac-

curacies crucial. A control system’s capacity to respond promptly and effectively to antic-

ipated and unforeseen changes, including disturbances, is vital. This is particularly crucial 

in dynamic systems, where delays can result in significant errors or instability. The con-

trollers’ robustness is evaluated by analyzing their responses to disturbances, particularly 

when exposed to a sinusoidal disturbance set at 35% of the input signal. The performance 

response of the controllers under disturbance demonstrates satisfactory and appropriate 

behavior, as detailed in Table 6. 

Table 6. Performance of angular position for the different controllers under disturbance. 

Performances Rising Time (s) Settling Time (s) Overshoot (%) 
Steady-State Error 

(%) 

 

Arm 1 

Arm 2 

Arm 3 

 SMC   

0.525 0.579 1.85 0.0999 

0.662 0.799 2.03 0.0807 

0.515 0.598 1.97 0.0794 

 

Arm 1 

Arm 2 

Arm 3 

 Q-SMC   

0.454 0.691 1.39 0.0785 

0.479 0.659 1.48 0.0551 

0.463 0.623 1.28 0.0510 

Upon reviewing the data in Tables 5 and 6, it is evident that the system’s performance 

with and without disturbances is quite similar. However, in the presence of disturbances, 

the steady-state error increased to 10.71% for the quantum sliding-mode controller and 

12.13% for the classical sliding-mode controller. The overshoot remained unchanged, 

while the rise times increased by an average of 0.2 s. Similarly, in the scenario without 

disturbances, the controllers displayed comparable response and reaching times under 

disturbance conditions for the same trajectory execution and initial conditions. 

Both controllers display worthy robustness in the presence of disturbances, main-

taining low tracking errors even under substantial disturbances. The analysis of the re-

sponse plots highlights several required characteristics relevant to the design and assess-

ment of control systems. Notably, the transient response analysis indicates that Q-SMC 

outperforms SMC by achieving a faster settling time with fewer instabilities, suggesting 

that the improved damping characteristics of Q-SMC enable it to bring the system to a 

steady state more efficiently. Additionally, Q-SMC consistently minimizes steady-state 

error, ensuring greater accuracy in tracking the desired trajectory. This feature is advan-

tageous in precision engineering applications, where performance and implementation 

complexity are key in real-world implementations such as robotics; the selection or design 

of controllers must consider these factors. Moreover, despite being often overlooked, en-

ergy efficiency is vital, especially in systems that operate continuously or under power 

constraints. The smoother control action and reduced oscillations observed in Q-SMC sug-

gest it is more energy-efficient than conventional SMC. 

Figures 13–16 represent the torque control signals for individual robotic arm joints 

and the robot’s total torque, providing essential insights into the performance and effi-

ciency of the evaluated control strategies under 35% of input signal disturbances. 
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Outcomes show how the controllers, SMC and Q-SMC, manage the dynamic require-

ments of individual joints under defined trajectories, recalling the smoothness, oscilla-

tions, and magnitude of the torque values that indicate the control algorithms’ efficiency 

in handling nonlinearities and disturbances. The total torque across all joints offers a close 

view of the robotic arm’s overall dynamic load and energy exertion, which is crucial for 

comparing the total effort required by SMC versus Q-SMC to achieve the same task and 

conditions. These figures are important for performance evaluation, as the torque signals 

indicate the system’s ability to handle nonlinear dynamics, ensure smooth control actions, 

and resist chattering issues typically associated with classical SMC. The data can further 

enable energy efficiency analysis by linking torque values directly to the robot’s energy 

consumption, showcasing how well the control system manages resources. Additionally, 

the formations accentuate the robustness of Q-SMC under disturbance scenarios, high-

lighting its capability to preserve stable arrangements without significant oscillations or 

overshoot. 

 

Figure 13. Control signals for joint 1 for SMC and Q-SMC controllers under disturbance. 

 

Figure 14. Control signals for joint 2 for SMC and Q-SMC controllers under disturbance. 
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Figure 15. Control signals for joint 3 for SMC and Q-SMC controllers under disturbance. 

 

Figure 16. Control signals for the robot under SMC and Q-SMC controllers under disturbance. 

These advancements improve the precision and stability of the robotic manipulator 

while minimizing mechanical wear and stress, ultimately extending the operational 

lifespan of the robotic components. As a result, both approaches are particularly well-

suited for enhancing trajectory tracking precision in high-precision industrial applications 

and complex robotic systems. The findings emphasize the superior robustness and adapt-

ability of Q-SMC, showcasing its potential to excel in high-performance dynamic environ-

ments. 

In terms of total torque profiles, the Q-SMC consistently outperforms classical SMC 

by generating more stable and efficient control signals that effectively reject disturbances 

while maintaining system stability. Collectively, these results demonstrate Q-SMC’s en-

hanced performance in overcoming the limitations of classical SMC, offering improved 

stability, precision, and efficiency. Its ability to effectively surpass chattering positions Q-

SMC as a promising advancement for robust control in industrial automation and other 

high-performance sectors in dynamic and disturbance-prone environments. 

Estimating the energy consumption of robotic systems across various controllers is 

essential for assessing the efficiency and effectiveness of these control strategies. By ana-

lyzing the total energy drawn from the robot’s torque profile needed to perform identical 
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trajectories, we can gain valuable insights into the effectiveness of each controller in man-

aging the complex dynamics of robotic systems. Energy consumption is directly related 

to the operational demands placed on the controller, including the forces and torques re-

quired for precise movements, especially when faced with disturbances. A control strat-

egy that minimizes energy usage while preserving or enhancing system performance in-

dicates superior efficiency, contributing to the robot’s performance and reliability. This 

approach provides a comprehensive framework for considering the balance between con-

trol precision, robustness, and energy efficiency, establishing a clear benchmark for opti-

mizing robotic implementation. 

Figure 17 shows the total energy consumption of the robotic system under disturb-

ance conditions operated by both the SMC and Q-SMC based on the robot performance 

assessment presented in relation (2). The illustration proves that the Q-SMC provides a 

more stable energy profile and decreases total energy consumption compared to the clas-

sical SMC. Particularly, the robot under the Q-SMC controller consumed approximately 

3.79% less energy than the classical SMC controller. This reduction is noteworthy as it 

underlines the quantum approach’s capability to enhance energy efficiency while main-

taining or even enhancing control accuracy. These findings indicate that the Q-SMC effec-

tively reduced the effects of disturbances and optimized energy usage, leading to a more 

sustainable and reliable control strategy. This advancement in energy management is re-

quired for the long-term operation of robotic systems, as it suggests reduced wear on me-

chanical components and a more environmentally tolerable approach to robotic control. 

The results highlight the potential of quantum-inspired control methods in advancing the 

field of robotics, particularly in applications where energy efficiency is as essential as pre-

cision and robustness. 

 

Figure 17. Total energy of the robot run by controllers under disturbance. 

Q-SMC has demonstrated superior energy efficiency compared to SMC. This is par-

ticularly advantageous for battery-powered robots, allowing longer operational durations 

without recharging. Furthermore, reducing energy consumption leads to cost savings and 

a decrease in heat generation in industrial environments, ultimately extending the 

lifespan of robotic components. This enhanced energy efficiency also promotes environ-

mental sustainability by reducing the dependence on non-renewable energy sources. It 
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plays a significant role in ensuring the overall reliability and longevity of robotic systems, 

especially in high-precision applications where maintaining mechanical integrity is criti-

cal. 

In a comprehensive and overarching manner, the principle of superposition facili-

tates the simultaneous representation of multiple potential system states, thereby increas-

ing the control algorithm’s capacity to respond to dynamic changes. Within the Q-SMC 

framework, superposition is utilized to encode the robotic end-effector’s desired and ac-

tual states into a unified quantum state. The quantum error computation detailed in Equa-

tions (41)–(47) exemplifies this principle, as it allows for concurrent analysis of multiple 

input trajectories, enabling rapid and precise error evaluation. This comprehensive error 

assessment mechanism enhances trajectory tracking, promoting faster convergence to the 

desired path and mitigating transient overshoot. As evidenced in Figures 7–12 and Tables 

5 and 6, Q-SMC outperforms classical SMC, demonstrating superior tracking precision 

and smoother control transitions, affirming superposition’s efficacy in optimizing control 

dynamics with or without disturbances. 

Entanglement establishes a foundational relation between interdependent control 

variables, such as error signals and their derivatives, ensuring seamless synchronization 

for dynamic responsiveness. In the Q-SMC framework, this principle is operationalized 

through the quantum comparator and sign detector presented in Sections 2.6.1–2.6.3, en-

abling the real-time alignment of quantum error and its derivative. This synchronization 

ensures that adjustments to the sliding surface accurately mirror dynamic changes in the 

robotic system, resulting in minimizing control response delays. Accordingly, Q-SMC 

consistently delivers precise and stable control actions characterized by reduced trajectory 

deviations and improved steady-state accuracy. The benefits of entanglement’s influence 

are shown in Figures 9–12, where the Q-SMC exhibits robust stability during transient 

phases, effectively accommodating dynamic variations and reinforcing its advanced 

adaptability for complex control scenarios. 

The computational efficiency of Q-SMC derives from the strategic utilization of quan-

tum gates, including Hadamard and rotation gates, which enable intricate mathematical 

operations such as error scaling and derivative computation. These gates manipulate the 

intrinsic parallelism of quantum mechanics, allowing the controller to process high-di-

mensional data in real-time with minimal computational load. For instance, the quantum 

subtractor in Equations (36)–(39) adeptly computes trajectory differences, generating pre-

cise and responsive control signals. This computational optimization translates directly 

into the observed smoother control transitions and significantly reduced delays, as illus-

trated in Figures 13–16, emphasizing the practical benefits of integrating quantum gates 

into the control framework. 

Chattering, a general challenge in classical SMC, is effectively reduced in Q-SMC by 

involving the exponential reaching law combined with a saturation function. This meth-

odology establishes a boundary layer around the sliding surface and smoothens the tran-

sitions in control inputs, thereby minimizing the abrupt variations that cause chattering. 

This refinement, drawing stimulation from quantum error correction, enhances the sys-

tem’s energy efficiency and preserves the robotic components’ mechanical integrity. As 

depicted in Figures 13–16, the torque profiles produced by Q-SMC exhibit considerably 

smoother characteristics compared to those generated by classical SMC. Additionally, the 

system’s enhanced energy efficiency is quantified in Figure 17, where Q-SMC displays a 

3.79% reduction in total energy consumption, emphasizing its superior performance in 

energy-sensitive and precision-demanding applications. 
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4. Conclusions 

The present study aimed to evaluate the effectiveness of quantum-inspired sliding-

mode control in enhancing the robustness, accuracy, and computational efficiency of con-

trol methods for articulated robotic arms, focusing specifically on a six-degree-of-freedom 

robotic manipulator. By integrating quantum principles into the conventional sliding-

mode control framework, the research addressed persistent issues such as chattering, 

computational complexity, and robustness against disturbances. The methodology in-

volved the development of a comprehensive kinematic and dynamic model of the robotic 

arm, followed by the implementation and comparison of both classic SMC and Q-SMC 

through extensive simulations. The findings provide valuable insights into the potential 

of quantum-inspired approaches in advancing robotic control systems. 

The results revealed several significant findings. Most notably, Q-SMC outperformed 

the classic SMC in key areas such as precision, robustness, and energy efficiency. Q-SMC 

effectively mitigated the chattering phenomenon, a common issue in classic SMC, result-

ing in smoother and more precise control of the robotic arm. Additionally, Q-SMC con-

firmed quicker response times and lower steady-state errors, showcasing its improved 

capability to handle the nonlinear dynamics and external disturbances inherent in robotic 

systems. The torque profile and energy consumption analysis further highlighted the ef-

ficiency of Q-SMC, with the robotic arm consuming approximately 3.79% less energy un-

der Q-SMC compared to classic SMC. 

These findings have important implications for both theoretical and practical appli-

cations in the field of robotics and control systems. Theoretically, this study contributes to 

the existing body of knowledge by introducing a novel application of quantum principles 

to sliding-mode control, advancing our understanding of how quantum computing tech-

niques can enhance control system performance. This opens new avenues for the design 

and optimization of robust controllers. Practically, implementing Q-SMC could lead to 

technological advancements in robotic systems, particularly in applications requiring 

high precision and reliability, such as industrial automation, medical robotics, and aero-

space. Furthermore, the reduced energy consumption associated with Q-SMC suggests 

potential benefits for developing more sustainable and efficient robotic systems. 

However, it is important to acknowledge certain limitations of the study, primarily 

due to its execution in a simulated environment. While the models employed were com-

prehensive, they may not fully capture the complexities of real-world scenarios. Addition-

ally, the application of quantum-inspired algorithms was constrained by current compu-

tational capabilities, which may limit the generalizability of the findings to other types of 

robotic systems or more complex environments. These limitations suggest that further 

validation through experimental setups is necessary to confirm the effectiveness and rel-

evance of Q-SMC in real-world applications. 

Recognizing the crucial importance of experimental validation, we are committed to 

bridging the gap between simulations and real-world applications. According to the 

promising simulation results presented in this study, our future work will focus on incor-

porating other advanced strategies; we prioritized depth over breadth in this initial study, 

validating Q-SMC for high-precision tasks such as trajectory tracking and energy-efficient 

path execution under varying loads and disturbances. To ensure comparability, we will 

replicate simulation conditions and evaluate real-world performance using a hybrid clas-

sical–quantum framework, where computationally intensive components are executed on 

available quantum platforms. Performance metrics include chattering reduction, trajec-

tory tracking accuracy, and energy efficiency. Beyond the specific case study examined 

here, we aim to expand Q-SMC’s applicability to diverse robotic platforms and tasks, in-

cluding industrial applications like assembly and welding, to explore scalability and ver-

satility. 
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In conclusion, the findings underscore the robust control capabilities of both conven-

tional sliding-mode control and quantum-inspired sliding-mode control for robotic arms. 

While SMC is well known for its robustness, the proposed Q-SMC demonstrates superior 

accuracy, precision, and an enhanced ability to address common challenges like chatter-

ing. Q-SMC significantly improves the stability and precision of the control system, par-

ticularly in dynamic, disturbance-prone environments. Its smoother control actions con-

tribute to the overall better performance of the robotic arm, resulting in faster response 

times, reduced steady-state errors, and lower energy consumption, making it a more prac-

tical and effective technique for achieving high-performance robotic control. 
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