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Abstract: Passive dynamic locomotion, which relies solely on the interaction between the 
body and the environment, is being explored as an energy-efficient method of movement. 
The authors’ laboratory investigates passive hopping mechanisms that do not require ac-
tuators or sensors. In previous studies, it was demonstrated that an asymptotically stable 
limit cycle exists in the leg dynamics of a passive hopping model with constrained torso 
posture. In this study, a monopedal passive hopping robot with constrained torso posture 
was constructed to validate the existence of the limit cycle. The leg dynamics were evalu-
ated by comparing the trajectories of the model and robot. The results revealed that the 
leg dynamics of the simulation model represent those of the physical robot. Furthermore, 
robustness to step disturbances confirmed the validity of leg dynamics. 
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1. Introduction 
Animals that move using their legs, such as humans, can move at high speed on level 

ground but continue to move without losing their posture even on uneven ground. Be-
cause such leg-based locomotion is characterized by the ability to continue moving for-
ward while overcoming obstacles, the development of moving robots designed to mimic 
the structure and movement of legs is underway. Various robots have been developed, 
including multi-legged robots inspired by animals [1–3] and bipedal robots modeled after 
human locomotion [4–6]. Such robots mostly use active control with sensors and actua-
tors. These robots can perform high-precision movements through precise control. On the 
other hand, legged robots utilizing passive locomotion without active control have also 
been developed. 

Passive locomotion refers to a type of movement that does not require active control 
of the body, relying solely on the interaction between the body and the surrounding en-
vironment for motion. Passive locomotion is natural movement method that is uncon-
sciously used by humans and animals, in which elastic elements inside the legs, such as 
muscles and tendons, store kinetic energy as elastic energy during the stance phase. This 
energy can be used for the next leg swing, improving energy efficiency during movement. 
Thus, by adding animal-like elastic elements to a robotic leg, it is possible to create a robot 
that can move with high energy efficiency while achieving natural animal-like dynamics, 
without active control [7–9]. In fact, when comparing the energy efficiency of an actively 
controlled quadruped robot (MIT Cheetah 3), which has been studied by Bledt et al. [10], 
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and a robot utilizing passive locomotion developed by Collins et al. (Cornell Biped) [11] 
using the Cost of Transport ((energy used)/(weight∙distance)), MIT Cheetah 3 had a value 
of approximately 0.45 to 1.6, whereas Cornell Biped had a value of 0.2. From the perspec-
tive of energy efficiency, this indicates that robots utilizing passive locomotion are supe-
rior. 

Passive locomotion has been the subject of various studies since its proposal by 
McGeer [12]. Bipedal passive walking robots [13–15] and bipedal passive running robots 
[16], including Raibert [17], have been investigated and developed. However, this study 
focused on monopedal passive leaping. The method of locomotion by hopping has been 
investigated extensively owing to its superior robustness against obstacles compared with 
walking and running [18–20]. Research on monopedal hopping robots utilizing highly 
energy-efficient passive locomotion has also been progressing [21–23]. 

Posture control of the body is a crucial factor for legged mobile robots. For example, 
by properly controlling the body during movement to prevent vibrations, it is possible to 
avoid the robot from toppling over or losing its posture, allowing it to continue moving 
even when external disturbances are applied [24]. Moreover, posture control helps sup-
press posture collapse, preventing unnecessary energy consumption of the leg actuators 
and enabling highly energy-efficient locomotion [25,26]. In this way, posture control con-
tributes to improving locomotion stability, robustness against disturbances, and energy 
efficiency. For posture control of monopedal robots, methods utilizing reaction wheels 
[27] and Mode-Reactive Template-Based Control [28] have been proposed. However, in 
this study, the posture of the body in the monopedal robot is constrained to eliminate its 
influence, allowing for an in-depth investigation of the dynamics of the leg itself. 

The previous study by the authors [29] found that, in a monopedal passive hopping 
model with a constrained body posture, the leg dynamics exhibited an asymptotically sta-
ble limit cycle. In this study, a similar monopedal passive hopping robot with a con-
strained body posture was developed to demonstrate the existence of an asymptotically 
stable limit cycle in leg dynamics. Furthermore, the validity of leg dynamics was verified 
by comparing the hopping trajectories of the model and robot. 

The Spring-Loaded Inverted Pendulum (SLIP) model [30] is a representative leg 
model that does not consider torso posture. The SLIP model enables continuous periodic 
hopping by fixing the landing angle and controlling the torso posture during the stance 
phase. Since this model exhibits the natural characteristics of animal legs, it has also been 
applied to the design of robotic legs [31,32]. In this study, we perform parameter selection 
and design through simulations for a leg model that, like the SLIP model, does not con-
sider torso posture. By demonstrating the existence of an asymptotically stable limit cycle, 
we consider that this approach can be applied to the design of legged robots based on the 
SLIP model. 

2. Simulation Model 
2.1. Monopedal Passive Hopping Model 

Figure 1 shows the monopedal passive hopping model used in this study. To inves-
tigate the passive dynamics of legs, it is necessary to constrain the body posture of the 
model. To this end, supporting devices are added to the model to prevent torso rotation 
and tipping to the left or right. The legs are considered as rigid bodies with a moment of 
inertia 𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙, and the centers of gravity of the torso and legs are set at different locations. 
Compression springs are placed at the legs’ tips; therefore, the leg length changes during 
movement. Torsion springs are placed between the legs and the torso, allowing the legs 
to swing freely during hopping. The variables used in this simulation are listed in Table 
1. 
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Figure 1. Monopedal passive hopping model with restrained body rotation. 

Table 1. Variables in simulation model. 

Symbol Description 
𝑚𝑚𝑏𝑏[kg] Body mass 
𝑚𝑚𝑙𝑙[kg] Leg mass 
𝑚𝑚𝑒𝑒[kg] Supporting device mass 
𝑘𝑘𝑙𝑙[N/m] Spring constant of leg 

𝑘𝑘ℎ[Nm/rad] Spring constant of hip 
𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙[Nm2] Leg moment of inertia 
𝑐𝑐𝑙𝑙[Ns/m] Damping constant of leg 
𝑐𝑐ℎ[Ns/rad] Damping constant of hip 
𝑐𝑐𝑒𝑒𝑒𝑒[Ns/m] Horizontal Damping constant of Supporting device 
𝑐𝑐𝑒𝑒𝑒𝑒[Ns/m] Vertical Damping constant of Supporting device 
𝑎𝑎[m] Distance from the center of mass of the leg to the center of arc of the toes 
𝑏𝑏[m] Distance from hip joint to center of mass of leg 
𝑟𝑟0[m] Natural leg length (𝑎𝑎 + 𝑏𝑏) 
𝑟𝑟[m] Leg length 

𝑟𝑟𝑓𝑓[Nm2] Arc radius of the toe 
𝛼𝛼[deg] Angle of inclination 
𝑥𝑥[m] Horizontal displacement of the hip joint 
𝑦𝑦[m] Vertical displacement of the hip joint 
𝑥𝑥𝑙𝑙[m] Horizontal displacement of leg center of mass 
𝑦𝑦𝑙𝑙[m] Vertical displacement of leg center of mass 

2.2. Methods of Model Analysis 

The model hops by repeating the stance and flight phases, as shown in Figure 2. The 
model in the stance and flight phases moves according to the equations of motion, and the 
state of each phase transitions by lift-off and touchdown. The equations of motion, lift-off, 
and touchdown in each phase are presented in the following sections. 
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Figure 2. One-period hops of model. Each phase transitions with lift-off and touchdown. 

2.2.1. Equation of Motion for Stance Phase 

The equations of motion for the stance phase were derived from the Euler–Lagrange 
equations. The Lagrangian used in the derivation is expressed by Equation (1) and the 
dissipation function is expressed by Equation (2). 

𝐿𝐿 =
1
2
𝑚𝑚𝑏𝑏(𝑥̇𝑥2 + 𝑦̇𝑦2) +

1
2
𝐽𝐽𝜃̇𝜃2 −

1
2
𝑘𝑘𝑙𝑙(𝑟𝑟 − 𝑟𝑟0)2 −

1
2
𝑘𝑘ℎ𝜃𝜃2 − 𝑚𝑚𝑏𝑏𝑔𝑔𝑔𝑔 +

1
2
𝑚𝑚𝑙𝑙�𝑥̇𝑥𝑙𝑙2 + 𝑦̇𝑦𝑙𝑙2� +

1
2
𝑚𝑚𝑙𝑙𝑏𝑏2𝜃̇𝜃2 − 𝑚𝑚𝑙𝑙𝑔𝑔𝑦𝑦𝑙𝑙

−
1
2
𝑚𝑚𝑒𝑒𝑥̇𝑥2, 

(1) 

𝐷𝐷 =
1
2
𝑐𝑐ℎ𝜃̇𝜃2 +

1
2
𝑐𝑐𝑙𝑙𝑟̇𝑟2 +

1
2
𝑐𝑐𝑒𝑒𝑒𝑒𝑥̇𝑥2 +

1
2
𝑐𝑐𝑒𝑒𝑒𝑒𝑦̇𝑦2. (2) 

In the stance phase, the coordinates of the hip joint (𝑥𝑥,𝑦𝑦) and those of the leg center 
of mass (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙) can be expressed as 𝑟𝑟, 𝑟𝑟𝑓𝑓 , 𝑎𝑎,𝛼𝛼,𝜃𝜃 by taking the point where the toes touch 
the ground as the origin. The equations for (𝑥𝑥,𝑦𝑦) and (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙) are expressed by Equations 
(3)–(6). 

𝑥𝑥 = 𝑟𝑟𝑓𝑓(𝜃𝜃𝑡𝑡𝑡𝑡 − 𝜃𝜃) cos𝛼𝛼 + 𝑟𝑟𝑓𝑓 sin𝛼𝛼 − 𝑟𝑟 sin(𝜃𝜃 − 𝛼𝛼), (3) 

𝑦𝑦 = 𝑟𝑟𝑓𝑓 cos𝛼𝛼 − 𝑟𝑟𝑓𝑓(𝜃𝜃𝑡𝑡𝑡𝑡 − 𝜃𝜃) sin𝛼𝛼 + 𝑟𝑟 cos(𝜃𝜃 − 𝛼𝛼) , (4) 

𝑥𝑥𝑙𝑙 = 𝑟𝑟𝑓𝑓(𝜃𝜃𝑡𝑡𝑡𝑡 − 𝜃𝜃) cos𝛼𝛼 + 𝑟𝑟𝑓𝑓 sin𝛼𝛼 − 𝑎𝑎 sin(𝜃𝜃 − 𝛼𝛼) , (5) 

𝑦𝑦𝑙𝑙 = 𝑟𝑟𝑓𝑓 cos𝛼𝛼 − 𝑟𝑟𝑓𝑓(𝜃𝜃𝑡𝑡𝑡𝑡 − 𝜃𝜃) sin𝛼𝛼 + 𝑎𝑎 cos(𝜃𝜃 − 𝛼𝛼) . (6) 

Hence, the equations of motion for the stance phase are expressed by Equations (7) 
and (8) with the generalized coordinates denoted as [𝜃𝜃, 𝑟𝑟]. Here, the leg length 𝑟𝑟 changes 
during the stance phase, and the leg velocity 𝑟̇𝑟 is positive in the direction of leg extension. 
The definitions of 𝑀𝑀,𝑅𝑅𝑐𝑐, and 𝑅𝑅𝑠𝑠 used in Equations (7) and (8) are given in Equations (9)–
(11). 

�𝑀𝑀𝑟𝑟𝑓𝑓2 + 𝑚𝑚𝑏𝑏𝑟𝑟2 + 𝑚𝑚𝑙𝑙(𝑟𝑟 − 𝑏𝑏)2 + 𝑗𝑗𝑙𝑙 − 𝑚𝑚𝑙𝑙𝑏𝑏2 + 2(𝑀𝑀𝑀𝑀 −𝑚𝑚𝑙𝑙𝑏𝑏)𝑟𝑟𝑓𝑓 cos 𝜃𝜃�𝜃̈𝜃, 

= �(𝑀𝑀𝑀𝑀 −𝑚𝑚𝑙𝑙𝑏𝑏)𝑟𝑟𝑓𝑓 sin𝜃𝜃 − 𝑚𝑚𝑒𝑒𝑟𝑟 sin(𝜃𝜃 − 𝛼𝛼)𝑅𝑅𝑐𝑐�𝜃̇𝜃2 

−2��𝑀𝑀𝑟𝑟𝑓𝑓 cos 𝜃𝜃 + 𝑀𝑀𝑏𝑏� −𝑚𝑚𝑒𝑒 cos(𝜃𝜃 − 𝛼𝛼)𝑅𝑅𝑐𝑐�𝑟̇𝑟𝜃̇𝜃 

−�𝑀𝑀𝑟𝑟𝑓𝑓 sin𝜃𝜃 − 𝑚𝑚𝑒𝑒 sin(𝜃𝜃 − 𝛼𝛼)𝑅𝑅𝑐𝑐�𝑟̈𝑟 

(7) 

 

Stance Phase Flight Phase 

Lift-off Touchdown 
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−𝑘𝑘ℎ𝜃𝜃 − 𝑀𝑀𝑟𝑟𝑓𝑓𝑔𝑔 sin𝛼𝛼 + (𝑀𝑀𝑀𝑀 −𝑚𝑚𝑙𝑙𝑏𝑏)𝑔𝑔 sin(𝜃𝜃 − 𝛼𝛼) 

−𝑐𝑐ℎ𝜃̇𝜃 − 𝑐𝑐𝑒𝑒𝑒𝑒𝑅𝑅𝑐𝑐�𝑅𝑅𝑐𝑐𝜃̇𝜃 + 𝑟̇𝑟 sin(𝜃𝜃 − 𝛼𝛼)� − 𝑐𝑐𝑒𝑒𝑒𝑒𝑅𝑅𝑠𝑠�𝑅𝑅𝑠𝑠𝜃̇𝜃 + 𝑟̇𝑟 cos(𝜃𝜃 − 𝛼𝛼)� 

�𝑀𝑀𝑟𝑟𝑓𝑓 sin𝜃𝜃 − 𝑚𝑚𝑒𝑒 sin(𝜃𝜃 − 𝛼𝛼)𝑅𝑅𝑐𝑐�𝜃̈𝜃 

= {(𝑀𝑀𝑀𝑀 −𝑚𝑚𝑙𝑙𝑏𝑏) −𝑚𝑚𝑒𝑒𝑟𝑟 sin2(𝜃𝜃 − 𝛼𝛼)}𝜃̇𝜃2 

+(𝑚𝑚𝑒𝑒 sin 2𝜃𝜃)𝑟̇𝑟𝜃̇𝜃 

−{𝑀𝑀 −𝑚𝑚𝑒𝑒 sin2(𝜃𝜃 − 𝛼𝛼)}𝑟̈𝑟 

−𝑘𝑘𝑙𝑙(𝑟𝑟 − 𝑟𝑟0) −𝑀𝑀𝑀𝑀 cos(𝜃𝜃 − 𝛼𝛼) − 𝑐𝑐𝑙𝑙𝑟̇𝑟 

−𝑐𝑐𝑒𝑒𝑒𝑒 sin(𝜃𝜃 − 𝛼𝛼) �𝑟̇𝑟 sin(𝜃𝜃 − 𝛼𝛼) + 𝑅𝑅𝑐𝑐𝜃̇𝜃� − 𝑐𝑐𝑒𝑒𝑒𝑒 cos(𝜃𝜃 − 𝛼𝛼) �𝑟̇𝑟 cos(𝜃𝜃 − 𝛼𝛼) + 𝑅𝑅𝑠𝑠𝜃̇𝜃�, 

(8) 

𝑀𝑀 = 𝑚𝑚𝑏𝑏 + 𝑚𝑚𝑙𝑙, (9) 

𝑅𝑅𝑐𝑐 = 𝑟𝑟𝑓𝑓 cos𝛼𝛼 + 𝑟𝑟 cos(𝜃𝜃 − 𝛼𝛼) , (10) 

𝑅𝑅𝑠𝑠 = 𝑟𝑟𝑓𝑓 sin𝛼𝛼 − 𝑟𝑟 sin(𝜃𝜃 − 𝛼𝛼) . (11) 

2.2.2. Equation of Motion for Flight Phase 

Similarly, the equations of motion for the flight phase were derived from the Euler–
Lagrange equations. The Lagrangian used in the derivation is expressed by Equation (12) 
and the dissipation function is expressed by Equation (13). 

𝐿𝐿 =
1
2
𝑚𝑚𝑏𝑏(𝑥̇𝑥2 + 𝑦̇𝑦2) +

1
2
𝐽𝐽𝜃̇𝜃2 −

1
2
𝑘𝑘𝑙𝑙(𝑟𝑟 − 𝑟𝑟0)2 −

1
2
𝑘𝑘ℎ𝜃𝜃2 − 𝑚𝑚𝑏𝑏𝑔𝑔𝑔𝑔 +

1
2
𝑚𝑚𝑙𝑙�𝑥̇𝑥𝑙𝑙2 + 𝑦̇𝑦𝑙𝑙2�

+
1
2
𝑚𝑚𝑙𝑙𝑏𝑏2𝜃̇𝜃2 − 𝑚𝑚𝑙𝑙𝑔𝑔𝑦𝑦𝑙𝑙 −

1
2
𝑚𝑚𝑒𝑒𝑥̇𝑥2, 

(12) 

𝐷𝐷 =
1
2
𝑐𝑐ℎ𝜃̇𝜃2 +

1
2
𝑐𝑐𝑙𝑙𝑟̇𝑟2 +

1
2
𝑐𝑐𝑒𝑒𝑒𝑒𝑥̇𝑥2 +

1
2
𝑐𝑐𝑒𝑒𝑒𝑒𝑦̇𝑦2. (13) 

The equations of motion for the flight phase are defined in Equations (14)–(16) with 
the generalized coordinates [𝑥𝑥, 𝑦𝑦,𝜃𝜃]. 

(𝑀𝑀 −𝑚𝑚𝑒𝑒)𝑥̈𝑥 = −𝑚𝑚𝑙𝑙𝑏𝑏 cos(𝜃𝜃 − 𝛼𝛼) 𝜃̈𝜃 + 𝑚𝑚𝑙𝑙𝑏𝑏 sin(𝜃𝜃 − 𝛼𝛼) 𝜃̇𝜃2 − 𝑐𝑐𝑒𝑒𝑒𝑒𝑥̇𝑥, (14) 

𝑀𝑀𝑦̈𝑦 = −𝑚𝑚𝑙𝑙𝑏𝑏 sin(𝜃𝜃 − 𝛼𝛼) 𝜃̈𝜃 − 𝑚𝑚𝑙𝑙𝑏𝑏 cos(𝜃𝜃 − 𝛼𝛼) 𝜃̇𝜃2 − 𝑀𝑀𝑀𝑀 − 𝑐𝑐𝑒𝑒𝑒𝑒𝑦̇𝑦, (15) 

𝑗𝑗𝑙𝑙𝜃̈𝜃 + 𝑚𝑚𝑙𝑙𝑏𝑏 cos(𝜃𝜃 − 𝛼𝛼) 𝑥̈𝑥 + 𝑚𝑚𝑙𝑙𝑏𝑏 sin(𝜃𝜃 − 𝛼𝛼) 𝑦̈𝑦 = −𝑘𝑘ℎ𝜃𝜃 − 𝑚𝑚𝑙𝑙𝑏𝑏𝑏𝑏 sin(𝜃𝜃 − 𝛼𝛼) − 𝑐𝑐ℎ𝜃̇𝜃. (16) 

2.2.3. Lift-Off 

The model performs lift-off when transitioning from the stance phase to the flight 
phase. Lift-off occurs when the leg length 𝑟𝑟 returns to its natural leg length 𝑟𝑟0 during 
the stance phase and the leg velocity 𝑟̇𝑟 is positive, as follows: 

𝑟𝑟 = 𝑟𝑟0, (17) 

𝑟̇𝑟 > 0. (18) 
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2.2.4. Touchdown 

1. When the model deviates from the flight phase to the stance phase, a collision occurs 
between the model’s feet and the ground. During this collision, the leg tips do not 
slide and the collision is assumed to be fully inelastic. 

2. The following equations can be considered, based on the law of momentum conser-
vation in the legs and the law of angular momentum conservation around the hip 
joint and touchdown point before and after collision: 

𝑸𝑸−�𝜃̇𝜃−, 𝑥̇𝑥−, 𝑦̇𝑦−�𝑇𝑇 = 𝑸𝑸+�𝜃̇𝜃+, 𝑟̇𝑟+�𝑇𝑇 , (19) 

where �𝜃̇𝜃−, 𝑥̇𝑥−, 𝑦̇𝑦−�𝑇𝑇and �𝜃̇𝜃+, 𝑟̇𝑟+�𝑇𝑇 represent the state vector immediately before and after 
touchdown, respectively. Therefore, the states immediately before and after touchdown 
are derived by Equations (19), (20), and (21). 

�𝜃̇𝜃+, 𝑟̇𝑟+�𝑇𝑇 = (𝑸𝑸+)−𝟏𝟏𝑸𝑸−�𝜃̇𝜃−, 𝑥̇𝑥−, 𝑦̇𝑦−�𝑇𝑇 , (20) 

𝑸𝑸− =

⎣
⎢
⎢
⎡ 𝐽𝐽𝑙𝑙 + 𝐽𝐽𝑙𝑙

𝑟𝑟𝑓𝑓
𝑟𝑟0

cos 𝜃𝜃𝑠𝑠− − 𝑚𝑚𝑙𝑙𝑏𝑏�𝑎𝑎 + 𝑟𝑟𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑠𝑠+� 0

−{𝑚𝑚𝑏𝑏𝑟𝑟0 + 𝑚𝑚𝑙𝑙𝑎𝑎} cos(𝜃𝜃𝑠𝑠− − 𝛼𝛼) −𝑀𝑀𝑟𝑟𝑓𝑓 cos𝛼𝛼 + 𝑚𝑚𝑒𝑒𝑅𝑅𝑐𝑐 −(𝑀𝑀 −𝑚𝑚𝑒𝑒)sin(𝜃𝜃𝑠𝑠− − 𝛼𝛼)
−{𝑚𝑚𝑏𝑏𝑟𝑟0 + 𝑚𝑚𝑙𝑙𝑎𝑎} sin(𝜃𝜃𝑠𝑠− − 𝛼𝛼) + 𝑀𝑀𝑟𝑟𝑓𝑓 sin𝛼𝛼 𝑀𝑀cos(𝜃𝜃𝑠𝑠− − 𝛼𝛼) ⎦

⎥
⎥
⎤
𝑇𝑇

, (21) 

𝑸𝑸+ =

⎣
⎢
⎢
⎢
⎡�𝑚𝑚𝑏𝑏 +

𝐽𝐽𝑙𝑙
𝑟𝑟02
� �𝑟𝑟 + 𝑟𝑟𝑓𝑓 cos 𝜃𝜃𝑠𝑠+�𝑟𝑟 + 𝑚𝑚𝑙𝑙𝑎𝑎�𝑎𝑎 + 𝑟𝑟𝑓𝑓 cos𝜃𝜃𝑠𝑠+� 0

�𝑀𝑀 +
𝐽𝐽𝑙𝑙
𝑟𝑟02
� 𝑟𝑟𝑓𝑓 sin 𝜃𝜃𝑠𝑠+ 𝑀𝑀

⎦
⎥
⎥
⎥
⎤
𝑇𝑇

. (22) 

2.2.5. Stability Analysis 

The Poincaré map was used to analyze hopping stability. When a periodic orbit exists 
in an n-dimensional state space with n ≥ 2, the (n − 1)-dimensional plane S, which is set 
up to be traversed by the orbit, is called a Poincaré section. 

In this study, the Poincaré section was assumed to be immediately after touchdown. 
The Newton–Raphson method was used to investigate the fixed point where the differ-
ence between the initial value in the stance phase of the 𝑘𝑘 step and the initial value in the 
stance phase of the 𝑘𝑘 + 1 step approaches zero. The following Poincaré map derives the 
initial value 𝑥𝑥𝑘𝑘 = [𝜃𝜃 𝜃̇𝜃 𝑟𝑟 𝑟̇𝑟]𝑘𝑘𝑇𝑇   in the 𝑘𝑘 + 1  step phase from the initial value 𝑥𝑥𝑘𝑘 =
[𝜃𝜃 𝜃̇𝜃 𝑟𝑟 𝑟̇𝑟]𝑘𝑘𝑇𝑇 in the 𝑘𝑘 step phase. 

𝑥𝑥𝑘𝑘+1 = 𝑷𝑷(𝑥𝑥𝑘𝑘), (23) 

where 𝑥𝑥𝑓𝑓 is a fixed point: 

𝑥𝑥𝑓𝑓 = 𝑷𝑷�𝑥𝑥𝑓𝑓�. (24) 

By linearizing around this fixed point, the Jacobian 𝑱𝑱𝒇𝒇 of the Poincaré map is derived. 

∆𝑥𝑥𝑘𝑘+1 = 𝑱𝑱𝒇𝒇∆𝑥𝑥𝑘𝑘. (25) 

In this study, the initial value is the fixed point when the difference between all var-
iables within 𝑥𝑥𝑘𝑘 and 𝑥𝑥𝑘𝑘+1 is less than 10−6. A hop is considered stable when the eigen-
value of the Jacobian 𝑱𝑱𝒇𝒇 is less than 1. 
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3. Monopedal Passive Hopping Robot 
3.1. Monopedal Passive Hopping Robot Concept 

This section describes the concept of the actual passive hopping robot. The robot is 
shown in Figure 3. The main body of the robot has a torsion spring attached to the hip 
joint, Figure 3a, and a compression spring attached to the leg, Figure 3b. Linear bushings, 
Figure 3c, and ball splines, Figure 3d, were used to connect the supporting devices to each 
other and to the hopping robot, respectively. These supporting devices allow the hopping 
robot to move up and down and back and forth, but the devices are constrained to prevent 
the robot from falling over and rotating. Without considering the supporting device fixed 
to the ground, the mass of the robot is 4.33 kg, its height is 0.5 m, and its width is 0.68 m. 

 

Figure 3. Monopedal passive hopping robot with mass of 4.33 kg, height of 0.5 m, and width of 0.68 
m; (a) Hip Spring. (b) Leg Spring. (c) Linear bushings. (d) Ball splines. 

3.2. Hip Spring 

Hip springs are used to connect the leg and body at the hip joint. During the stance 
phase and flight phase, the leg oscillates like a pendulum under the influence of force, as 
shown in Figure 4a. By changing the spring constant 𝑘𝑘ℎ of the hip spring, the period of 
leg oscillation can be changed, and the hopping speed and period can be adjusted. In this 
study, the spring has 𝑘𝑘ℎ = 3.17 Nm/rad and is connected in parallel to two crotch nodes. 
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Figure 4. (a,b) Torsion springs installed in hip joints; the leg moves like a pendulum by generating 
a restoring force in the direction opposite to that of the external force. (c) Compression spring in-
stalled in leg; external forces cause the springs to shrink and store energy for hopping. (d) Linear 
bushings connecting supporting devices, assisting the robot to move only in vertical direction when 
external forces are applied. (e) Ball splines connecting supporting devices to hopping robot, assist-
ing the robot to move only in the forward and backward direction owing to external forces. (f) 
Movement of legs during hopping. 

3.3. Leg Spring 

A compression spring is attached to the leg tip. During the stance phase, as shown in 
Figure 4b, an external force acts on the springs to store energy inside the leg springs, ena-
bling the robot to hop. In this study, the leg springs have 𝑘𝑘𝑙𝑙   = 2.04 N/mm and are con-
nected in parallel to the leg tips. 

3.4. Linear Bushing 

The supporting device fixed to the ground and the supporting device connected to 
the main body of the hopping robot are connected to each other using a linear bush 
(MISUMI from Japan, model number: SC16UU) as shown in Figure 4c. The linear bush 
uses the rolling motion of the balls inside the bearing, which are in point contact with the 
shaft to achieve low-friction, high-precision linear motion. The linear bushes are attached 
to the left and right sides of the supporting device to enable the smooth vertical movement 
of the hopping robot’s main body. 
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3.5. Ball Splines 

A ball spline (MISUMI from Japan, model number: BSJM10-600-F20-E20-P8-Q8-
NTW) is used for the connection between the supporting device and the body of the hop-
ping robot, as shown in Figure 4d. When an external force is applied to the ball spline, the 
ball inside the outer cylinder, called the spline nut, rolls along the ball groove of the spline 
shaft, enabling high-precision linear motion. The ball spline enables the main body to 
move freely in the forward and backward directions while maintaining constant body 
posture. 

3.6. Hopping Mechanism 

Figures 4e and 5 show the robot’s movements during hopping. After lift-off, the robot 
stores energy by contracting the leg springs during the stance phase and simultaneously 
pushes the body forward by swinging the legs backward. The robot takes off when the 
contracted leg springs return to their natural length, and the legs are swung forward by 
the hip springs during the flight phase. The legs swing forward to contact the ground, 
returning the hopping to its initial state. The robot continues to hop by repeating this ac-
tion. 

 
(a) (b) (c) 

Figure 5. (a) Hopping robot in absence of external forces. (b) Hopping robot during touchdown; 
after touchdown, in stance phase, the legs swing backward (direction (c)) owing to the restoring 
force of the hip springs. (c) Hopping robot during lift-off. After lift-off, in the flight phase, the legs 
swing forward ((b) direction) owing to the restorative force of the hip springs. 

The model and robot developed in this study are based on limit cycle walking/hop-
ping for the locomotion of legged robots [33]. Limit cycle walking/hopping has higher 
energy efficiency during locomotion compared to actively controlled robots. In fact, the 
legged robot developed by Longchuan et al. [34] was able to improve energy efficiency 
during locomotion by utilizing passive walking/hopping based on a limit cycle. Similarly, 
in this study’s model, the inherent limit cycle of leg dynamics suggests the possibility of 
addressing the challenge of energetic efficiency during locomotion. 

Moreover, even if the model and robot in this study deviate from the periodic trajec-
tory due to external disturbances during hopping, the asymptotically stable limit cycle 
inherent in the leg dynamics allows them to return to the original trajectory without any 
external control. In actively controlled robots, a high feedback gain is required to bring 
the system back to the trajectory when it deviates, leading to increased energy consump-
tion. In contrast, robots based on limit cycle walking/hopping do not require feedback 
gain, enabling them to continue hopping while maintaining high energy efficiency even 
when disturbances are applied [33] (p. 288).  

 

Touchdown to lift-off 

Lift-off to Touchdown 

External force 
 

Spring force 
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3.7. Passive Hopping Robot Analysis Method 

The movement of the hopping robot was analyzed using two-dimensional video 
analysis software (PV studio 2D, ver. 2; L.A.B. Co). In this study, markers were placed at 
the hip joint and leg tips, as shown in Figure 6a. The hopping robot was tested by per-
forming hops on a treadmill, and the leg angle and movement amount were measured by 
detecting the marker coordinates at the time of the hop. The leg angle 𝜃𝜃 was set to 0° 
when the leg was perpendicular to the ground. When the legs are forward, as shown in 
Figure 6b, 𝜃𝜃 takes a positive value; when the legs are swinging backward, 𝜃𝜃 takes a neg-
ative value. 

  
(a) (b) 

Figure 6. Analysis methods for hopping robot: (a) marker position used in PV studio 2D. (b) Meth-
ods for determining leg angle 𝜃𝜃. The leg angle 𝜃𝜃 is positive when it is in front of the body. 

4. Comparison Between Measurement Results for Hopping Robot  
and Simulation Results 
4.1. Comparison of Actual and Simulated Trajectories 

In this section, the results obtained from the numerical simulation are compared with 
the trajectories of the hopping robot. The hopping physical parameters obtained from the 
simulation are shown in Table 2, and one cycle of the hopping motion on a treadmill with 
a speed of 5.4 m/s is illustrated in Figure 7. The physical parameters in this study were 
selected to ensure that the eigenvalue of the Poincaré map is 0.87, indicating the presence 
of an asymptotically stable limit cycle. The red dots in Figure 7 represent the marker po-
sitions used in PV Studio 2D. The hopping trajectory derived from these marker positions 
and the simulation’s hopping trajectory are presented in Figure 8. Comparisons of the 
temporal variations of the leg angle 𝜃𝜃 and the vertical displacement y during hopping 
are shown in Figures 9 and 10, respectively. 

Table 2. Physical parameters of simulation model and hopping robot. 

Symbol Description Value 
𝑚𝑚𝑏𝑏[kg] Body mass 3.5 
𝑚𝑚𝑙𝑙[kg] Leg mass 0.83 
𝑚𝑚𝑒𝑒[kg] Supporting device mass 1.49 
𝑘𝑘𝑙𝑙[N/m] Spring constant of leg 4080 
𝑘𝑘ℎ[N/rad] Spring constant of hip 6.34 
𝑗𝑗𝑙𝑙[Nm2] Leg moment of inertia 9.36 × 10−3 

 

Marker position 
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𝑐𝑐𝑙𝑙[Ns/m] Damping constant of leg 5.0 
𝑐𝑐ℎ[Ns/rad] Damping constant of hip 0.04 
𝑐𝑐𝑒𝑒𝑒𝑒[Ns/m] Horizontal Damping constant of Supporting device 2.0 
𝑐𝑐𝑒𝑒𝑒𝑒[Ns/m] Vertical Damping constant of Supporting device 0.1 

𝑎𝑎[m] 
Distance from the center of mass of the leg to the center of 

arc of the toes 0.100 

𝑏𝑏[m] Distance from hip joint to center of mass of leg 0.085 
𝑟𝑟0[m] Natural leg length (𝑎𝑎 + 𝑏𝑏) 0.185 
𝑟𝑟𝑓𝑓[Nm2] Arc radius of the toe 0.12 
𝛼𝛼[deg] Angle of inclination 7 
 

  

  

  

  

Figure 7. One period of a monopedal passive hopper. The treadmill speed is 5.4 m/s, and the robot’s 
hopping period is 0.3 s. The red points indicate marker positions in PV studio 2D. 
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(a) 

 
(b) 

Figure 8. Animation of hopping robot and simulation model. The trajectories of the hopping robot 
and simulation are very similar in terms of leg angle phase and vertical body displacement: (a) 
measured results of monopedal passive hopper; (b) analysis results for simulation model. 

 

Figure 9. Time variation of leg angle 𝜃𝜃. Hopping robot and simulation model oscillate with approx-
imately the same amplitude and period. 

 
Horizontal displacement [m] 

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

] 

 

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

] 
 

Horizontal displacement [m] 
 

 

 

− 

− 

− 

 
0 1 2 3

 
 

 

  

  

Hopping robot 

Simulation model 



Robotics 2025, 14, 18 13 of 16 
 

 

 

Figure 10. Time variation of vertical body displacement. The hopping robot and simulation model 
oscillate with approximately the same amplitude and same period 

Figure 9 shows that the hopping cycles of the simulation and robot are similar. Over 
20 hops, the difference in the cycle duration per step reveals that the simulation hops are 
marginally shorter by 3.21 ×  10−3 s. The amount of change in the angle shows that, in the 
simulation, the legs are more forward compared with those of the robot. When averaged 
over 20 steps, the simulated leg swung forward by 5.37°. As shown in Figure 10, the ver-
tical displacements of the hip joints of the actual and simulated robot are close. By com-
paring the values for 10 steps, it can be found that the average simulation displacement is 
0.012 m greater than that of the robot. Figure 11 is a phase portrait with the leg angle on 
the horizontal axis and the leg angular velocity on the vertical axis. From this phase por-
trait, closed orbits were observed in both the simulation model and the hopping machine, 
confirming the presence of a limit cycle in both systems. 

 

Figure 11. A phase portrait with the leg angle on the horizontal axis and the leg angular velocity on 
the vertical axis illustrates the dynamic behavior of the leg during hopping. This visualization helps 
confirm the existence of a limit cycle, indicating stable periodic motion. 

These results confirm that the differences between the simulation and the hopping 
robot in both the leg angle and the vertical displacement are small, and that the hopping 
trajectories of the hopping robot and simulation are qualitatively identical. 
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4.2. Comparison of Robustness to Steps Between Hopping Robot and Simulated Model 

During hopping, a 20 mm step was prepared on the ground. The trajectory after hop-
ping over the step was investigated in both the simulation and the actual machine to com-
pare robustness against the step. 

Figure 12 shows the change in the leg angle 𝜃𝜃 when a step was introduced during 
the hop at the time indicated by the dashed line in Figure 12. 

Hence, both in the robot and simulation model, the leg angle 𝜃𝜃 converged to a con-
stant period after overcoming the step. This result suggests that if a step can be success-
fully hopped over in the simulation, the hopping robot is also capable of overcoming a 
step of the same height. 

 

Figure 12. Time variation of leg angle when subjected to 20 mm step at time indicated by dashed 
line. 

5. Discussion 
In this study, we developed a one-legged passive hopping mechanism based on nu-

merically simulated physical parameters that enable asymptotically stable hopping in a 
model where the torso’s posture and movement direction are constrained. By comparing 
the trajectories of the actual mechanism and the simulation in terms of displacement and 
leg angle, we demonstrated that the hopping trajectories qualitatively match. This finding 
supports the accuracy of the simulation model in representing the dynamics of the phys-
ical mechanism. Furthermore, even when steps were introduced during hopping for both 
the model and the physical prototype, the robot continued hopping without losing stabil-
ity. The fact that the robustness against steps observed in the simulation model was con-
firmed in the physical prototype validates the existence of asymptotically stable limit cy-
cles in the leg dynamics, as suggested in prior research [26]. 

Thus, this study demonstrates the reliability of the simulation and provides evidence 
that the model parameters and the hopping robot developed in this research can be uti-
lized to further investigate the design of legs with asymptotically stable limit cycles and 
their mechanical dynamics. Since this model successfully obtained a periodic trajectory 
through the limit cycle in a manner similar to the SLIP model [27], which constrains the 
torso, our findings suggest the possibility of applying the simple leg model developed in 
this study to the legs of SLIP-based legged robots. 

Additionally, the simulation model and hopping mechanism developed in this study 
share a similar structure with the hopping model studied by Maximilian Raff et al. [21]. 
However, unlike their model, the torso posture in our model is constrained, and no control 
inputs are applied to the robot’s leg, resulting in a simpler leg design. This distinction 
emphasizes the dynamics of the leg itself more strongly compared to Raff’s model. Since 

 

− 

− 

− 
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the leg dynamics exhibit asymptotically stable limit cycles, the proposed simulation 
model suggests the potential for simplifying and reducing the weight of robotic leg de-
signs with periodic trajectories. 

While this study successfully demonstrated the dynamics and stability of the leg in a 
one-legged hopping mechanism, the dynamics and stability of legs in torso-equipped ro-
bots remain unexplored. Future research will investigate the differences between the leg 
dynamics identified in this study and those of torso-equipped legged robots, aiming to 
verify the existence of asymptotically stable limit cycles in such robots. 

Additionally, although sensitivity analyses of the spring constant and damping are 
important, the primary objective of this study was to validate the asymptotically stable 
limit cycles observed in the passive leg dynamics demonstrated in previous research [29]. 
The sensitivity analyses regarding spring constant and damping will be reported in a sub-
sequent study. 
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