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Abstract: The leaf area is an important plant parameter for plant status and crop yield. In this paper,
a low-cost time-of-flight camera, the Kinect v2, was mounted on a robotic platform to acquire 3-D data
of maize plants in a greenhouse. The robotic platform drove through the maize rows and acquired 3-D
images that were later registered and stitched. Three different maize row reconstruction approaches
were compared: reconstruct a crop row by merging point clouds generated from both sides of the
row in both directions, merging point clouds scanned just from one side, and merging point clouds
scanned from opposite directions of the row. The resulted point cloud was subsampled and rasterized,
the normals were computed and re-oriented with a Fast Marching algorithm. The Poisson surface
reconstruction was applied to the point cloud, and new vertices and faces generated by the algorithm
were removed. The results showed that the approach of aligning and merging four point clouds
per row and two point clouds scanned from the same side generated very similar average mean
absolute percentage error of 8.8% and 7.8%, respectively. The worst error resulted from the two point
clouds scanned from both sides in opposite directions with 32.3%.

Keywords: 3-D sensors; crop characterization; agricultural robotics; precision farming; plant phenotyping

1. Introduction

Information such as stem diameter, plant height, leaf angle, leaf area (LA), number of leaves,
and biomass are of particular interest for agricultural applications such as precision farming,
agricultural robotics, and automatic phenotyping for plant breeding purposes. A very important plant
parameter is the LA because it provides important information about the plant status and is closely
related to the crop yield [1] and its quality [2]. However, LA is one of the most difficult parameters to
measure [3] since manual methods are time-consuming and the 2-D image-based ones are not very
accurate because of leaf occlusion and color variation due to sunlight [4]. A commonly used index
describing the LA is the leaf area index (LAI), which is the total one-sided area of leaf tissue per unit
ground surface area [5].

In general, 3-D imaging could be a good method for a fast and more accurate LA measurement,
compared to the 2-D approach, since it does not depend on the position of the leaves (of the plant)
in space relative to the image acquisition system [6]. However, 3-D scanning systems are normally
very expensive for sensing or monitoring applications. Therefore, economically affordable 3-D sensors
are a key factor for the successful implementation of 3-D imaging systems in agriculture. A low-cost
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time-of-flight (TOF) camera, like the Kinect v2 (Microsoft, Redmond, WA, USA), has proven to
have sufficient technical capabilities for 3-D plant reconstruction [7], stem position, and height
determination [8] for agricultural applications that require precise sensing such as precision agriculture
and agricultural robotics, among others.

Previous research has been done using the Kinect v2 for weed volume estimation [9] in the open
field on a sunny day (40,000 lux), without mentioning sensing problems, as well as high-throughput
phenotyping of cotton in open field [10]. The former did not rely on a shadowing device, whereas
the latter did; it could therefore be also expected to work under outdoor conditions. Hämmerle and
Höfle [11] measured the maize crop height in open field under real conditions including wind and
sunlight, and the measurements were slightly below the results presented in other studies due to the
challenging field conditions and the complex architecture of the maize plant at late stage. Hue et al. [12]
measured the LA and the projected LA, among other parameters, of 63 pots of lettuce by subsampling
the generated point cloud and using a triangular mesh to reconstruct the surface. The LA measurement
was calculated by adding the area of all triangles in the mesh, and the projected LA was the area
projected onto the x–y plane along the z-axis. The total LA measurement had an R2 determination
coefficient of 0.94 and the projected LA, 0.94. However, while the projected LA followed a linear
distribution, the total LA measurements followed a power-law distribution due to occlusion when the
plant had more leaves.

Paulus et al. [13] measured the LA of sugar beet leaves, relying on the structured light-based
Kinect v1. They mentioned the importance of acquiring 3-D data of above-ground plant organs, such
as plant leaves and stems, in order to extract 3-D plant parameters. The R2 determination coefficients
were 0.43 and 0.93 for LA and projected LA measurement, respectively. They explained that the
high error in the LA estimation was due to strong smoothing effects that produced overestimated
measurements. However, the projected LA measurements, defined as ground cover, reduced those
effects. They stated that the projected LA can be used as a proxy for agricultural productivity because
the photosynthetic activity was linked to the LA directed to sunlight. Nakarmi and Tang [14] developed
an automatic inter-plant spacing sensing system for early stage maize plants. They placed the TOF
camera in a side-view position since the purpose was to measure the distance between maize stems,
and that camera position was optimal. In [15], a TOF camera was also used to extract the stem
diameter, leaf length, leaf area, and leaf angle of individual maize plants, whereas in [16], a TOF
camera was mounted on a robotic arm to explore its possibilities for chlorophyll measurements.
Another publication by Colaço et al. [17] focused on canopy reconstruction, using a light detection and
ranging sensor, for high-throughput phenotyping.

The aim of this research was to estimate the LA of maize plants by merging point clouds
obtained from different 3-D perspective views. Three approaches were evaluated by three different
methodologies: (a) aligning and merging point clouds from two paths and two directions; (b) aligning
point clouds scanned from the same side of the crop row; and (c) aligning point clouds scanned from
opposite directions and different paths. In order to estimate the LA, a methodology was proposed
for reconstructing the surface of a rasterized point cloud after the alignment and merge. The main
contribution of this research was to reconstruct the surface and to estimate the LA of entire maize crop
rows. Previous research papers focused only on reconstructing the LA of single plants. Therefore,
this research sets a new milestone for high-throughput LA estimation.

2. Materials and Methods

2.1. Hardware and Sensors

A TOF camera mounted on a robotic platform, the technical details of which are described by
Reiser et al. [18], was used to acquire 3-D data of maize plants in a greenhouse as shown in Figure 1.
The TOF camera was mounted at the front of the robotic platform at a height of 0.94 m with a downward
angle of 45 degrees. The SPS930 robotic total station (Trimble Navigation Limited, Sunnyvale, CA,
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USA) tracked the position of the robot, with sub-centimeter accuracy [19], by aiming at the MT900
Target Prism. In order to measure the orientation of the robot while driving, an Inertial Measurement
Unit (IMU) (VectorNAV, Dallas, TX, USA) VN-100 was used.

Robotics 2018, 7, x FOR PEER REVIEW  3 of 12 

 

Sunnyvale, CA, USA) tracked the position of the robot, with sub-centimeter accuracy [19], by aiming 
at the MT900 Target Prism. In order to measure the orientation of the robot while driving, an Inertial 
Measurement Unit (IMU) (VectorNAV, Dallas, TX, USA) VN-100 was used. 

 
Figure 1. The robotic platform in the greenhouse, depicting the total station with the prism for 
positioning, the IMU for orientation, and the TOF camera and embedded computer for 3-D data 
acquisition. 

2.2. Experimental Setup 

The 3-D data acquisition was done in a greenhouse at the University of Hohenheim (see Figure 1). 
The seeding was performed in five rows (see Figure 2); the row spacing (inter-row) was 0.75 m and the 
plant spacing (intra-row) was 0.13 m. Every row had 41 plants with a length of 5.2 m, and the plant 
growth stage was between V1 and V4. The LA was measured by hand using a measurement tape. 
The robotic platform was driven, using a joystick, at a maximum driving speed of 0.8 m·s−1 through 
every path in the go and return direction to obtain 2.5-D images that were later transformed to 3-D 
images. At every headland, the robot was turning 180 degrees; therefore, the 3-D perspective view 
was different in the go and return directions of every path. A viewpoint was established (camera plot 
in Figure 2), to avoid confusion between the left and right side of the crop row. Every single plant 
was manually measured and parameters such as plant height, number of leaves, stem diameter, and 
LA were registered. The hardware and sensors used during the experiment are explained in detail 
by Vázquez-Arellano et al. [7]. 

 
Figure 2. Maize seeding positions (+) and viewpoint represented by the camera plot. The viewpoint 
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Figure 1. The robotic platform in the greenhouse, depicting the total station with the prism
for positioning, the IMU for orientation, and the TOF camera and embedded computer for 3-D
data acquisition.

2.2. Experimental Setup

The 3-D data acquisition was done in a greenhouse at the University of Hohenheim (see Figure 1).
The seeding was performed in five rows (see Figure 2); the row spacing (inter-row) was 0.75 m and the
plant spacing (intra-row) was 0.13 m. Every row had 41 plants with a length of 5.2 m, and the plant
growth stage was between V1 and V4. The LA was measured by hand using a measurement tape.
The robotic platform was driven, using a joystick, at a maximum driving speed of 0.8 m·s−1 through
every path in the go and return direction to obtain 2.5-D images that were later transformed to 3-D
images. At every headland, the robot was turning 180 degrees; therefore, the 3-D perspective view
was different in the go and return directions of every path. A viewpoint was established (camera plot
in Figure 2), to avoid confusion between the left and right side of the crop row. Every single plant was
manually measured and parameters such as plant height, number of leaves, stem diameter, and LA
were registered. The hardware and sensors used during the experiment are explained in detail by
Vázquez-Arellano et al. [7].
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2.3. Data Processing

The raw data of this research consisted of the maize point clouds generated by using the
registration and stitching process methodology developed by Vázquez-Arellano et al. [7]. The point
clouds were processed using the Computer Vision System Toolbox of MATLAB R2016b (MathWorks,
Natick, MA, USA). Additionally, CloudCompare [20] was used for point cloud rasterization and
surface reconstruction and for assembling the individual 3-D images, using the Iterative Closes Point
(ICP) [21], which constituted the generated maize crop rows. In this research, three different maize
row point cloud alignments were done to investigate the trade-off of merging all four point clouds
(Path 1 go, Path 1 return, Path 2 go, and Path 2 return), two point clouds from the same side of the crop
row, such as Row 2 from the left side (i.e., Path 1 go and Path 1 return), and from both sides scanned
from opposite directions (i.e., Path 1 go and Path 2 return).

2.4. Leaf Area Estimation

The methodology for LA estimation in this investigation (depicted in Figure 3) was based on
the generated maize row point clouds generated in a previous research, as previously mentioned.
These point clouds were initially imported pairwise, and each of the point clouds was filtered using a
radius outlier removal (ROR) filter and a statistical outlier removal (SOR) filter. The ROR filter was
set to a radius of 5 cm with a minimum number of required neighbors of 800. The SOR filter was set
to 20 points for the mean distance estimation with a standard deviation multiplier threshold nsigma
equal to 1. Then, the Random Sample Consensus (RANSAC) algorithm [22] was applied for each point
cloud pair with the maximum distance from an inlier to the plane set to half the theoretical intra-row
distance between plants of 17 cm, resulting in 6.5 cm.
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Figure 3. Methodology for plan point cloud alignment and merge for LA estimation.

The point cloud pair was registered and aligned using the ICP (see Figure 4a). This process was
performed one time for two point cloud alignment and three times for four point cloud alignment.
After all the point clouds of every dataset were aligned, the next step was to merge them together.
The merging process could produce duplicate points; therefore, a subsampling was applied using a
voxel grid (3 mm × 3 mm × 3 mm) filter (see Figure 4b) to reduce the high point cloud density and
remove duplicate points without losing important plant information. The next step was to rasterize
the point cloud, following the same previously mentioned hypothesis, in order to obtain a point
cloud generated with a projection in the z-axis with a grid step (cell) of 1 cm. Every point inside
the cell was the one with the maximum height, in the case that more than one point was falling
in each cell (see Figure 4c). After the rasterized point cloud was generated, the next step was to
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compute the normal. This computation was done using a triangulation local surface model for surface
approximation with a preferred orientation in the z-axis.
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Figure 4. Point cloud (a) registered and aligned, (b) merged, and (c) rasterized.

Then, the normals were re-oriented in a fast and consistent way using the Fast Marching
algorithm [23] with 11 octrees. A larger value would not be needed due to the sensing limitations
of the TOF camera. This method attempts to re-orient all the normals of a cloud in a consistent way:
starting from a random point, then propagating the normal orientation from one neighbor to the other.
The main difficulty of this method is to find the right level of subdivision (cloud octree), because if the
cells are too big, the propagation would be not accurate, and if they are too small, empty cells would
appear and the propagation would not be possible in one sweep [20].

Finally, in order to estimate the LA, a mesh was generated by using the Poisson reconstruction
method. The Poisson surface reconstruction is a global solution that considers all the data at once,
and creates smooth surfaces that robustly approximate noisy data [24]. The octree depth was the
main parameter to be set; the deeper the octree the finer the result, with the drawback of taking more
processing time and memory. Although in this research an octree value of 11 was set for a more
detailed reconstruction, a smaller value would not affect much the leaf area measurement. After a
triangular mesh was generated with the Poisson surface reconstruction, the LA was calculated by
simply adding the area of all the individual triangles.

A characteristic of the Poisson reconstruction (see Figure 5a) is that it produces a watertight
surface, which was not suitable for this study’s dataset where leaves were separated [25]. In order to
trim the reconstructed surface to fit the point cloud (see Figure 5b), a surface trimming algorithm was
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applied [26]. This method pruned the surface according to the sampling density of the point cloud.
The disadvantage of this algorithm was that, for non-watertight surfaces such as the leaves in this
dataset, it was difficult to find the right parameters to trim the mesh. This problem was approached by
identifying the biggest leaves in this point cloud and manually trimming them until the reconstructed
surface fit the silhouette of the biggest leaves of the row point cloud. This parameter value was
interactively found by removing the triangles with vertices having the lowest density values, which
corresponded to the triangles that were the farthest from the input point cloud. If the trimming was
done beyond the point cloud limits, the reconstructed surface started to shift the leaf border beyond the
real one, thus producing overestimated values as reported by Paulus et al. [13]. In addition, the density
value was reduced if a mesh membrane was generated between leaves with close spatial proximity,
because this effect would generate an overestimated LA value.
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Figure 5. 3-D surface reconstruction of plant point clouds using (a) Poisson surface reconstruction and
(b) resulting mesh after trimming.

The LA reference measurements were obtained by measuring the length and width of every leaf
in the plants; if the leaf was touching the ground, it was not considered. In order to correct the LA
measurements, a factor was used as in Montgomery [27]:

LA = 0.75 × L × W, (1)

where L and W are the length and width of the maize leaf, respectively. In order to evaluate the
error in the estimated measurements, the root mean square error (RMSE) was calculated with the
following formula:

RMSE =

√
mean(t − a)2, (2)

where t represents the target measurement and a the actual measurement. Additionally, the mean
absolute percentage error (MAPE) was also considered. The MAPE was calculated using the
following formula:
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MAPE = mean
(∣∣∣∣ t − a

t
∗ 100

∣∣∣∣). (3)

3. Results and Discussion

As previously mentioned, three different approaches were considered: (a) merging all four point
clouds; (b) two point clouds scanned from the same side of the crop row; and (c) scanned from both
sides in opposite directions. The result of the Poisson surface reconstruction generated from the
rasterized point cloud projected in the z direction is shown in Figure 6a. Since the Poisson algorithm
generated new meshes, it was required to trim them by adjusting the density value, which removed
low-density meshes until they fit inside the boundaries of the point cloud that generated it first
(see Figure 6b).
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Figure 6. (a) Rasterized point cloud used to generate the Poisson surface reconstruction (black mesh)
and (b) the same point cloud with the manually trimmed surface.

Table 1 shows that the RMSE and MAPE were 231 cm2 and 8.8%, respectively. This error was
relatively small because the rasterized point clouds were well defined and they also had a relative
continuity without duplicate points in the z-axis. In Figure 7a, the plants are thicker than they are in
reality due to the error accumulated during the reconstruction of the maize row and the alignment and
merging of the four point clouds. The rasterized point cloud and its meshed representation are shown
in Figure 7b. With the mesh, it is possible to add the area of the all the triangles to know the total LA.

Table 1. Alignment and merge of four point clouds scanned from both sides and directions.

Direction Crop Row
Rasterized Crop
Height (10 mm)

[cm2]

Poisson Surface
Reconstruction

[cm2]

Ground Truth LA
[cm2]

RMSE
[cm2] MAPE

Go left side, return
left side, go right side,
and return right side

2 4713 4580 4191 389 9.2%

Go left side, return
left side, go right side,
and return right side

3 1781 1895 1634 263 16%

Go left side, return
left side, go right side,
and return right side

4 2179 2777 2819 42 1,4%

Average 2891 3084 2881 231 8.8%
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By merging two point clouds reconstructed from scans taken from the same side (see Figure 8a),
meaning that the robotic platform drove in the same path going and then returning, the advantage is
that the maize plants are well defined in their 3-D morphology, as seen in Figure 8b, but leaves from
the other side are theoretically incomplete. However, the results of Table 2 showed that the RMSE and
MAPE were 203 cm2 and 7.8%, respectively. These errors in the estimation of the LA were not very
different from the ones obtained by merging four point clouds. One explanation could be related to
the optimal position of the TOF camera and its inherent light volume technique that acquires dense
information in a single shot. Vázquez et al. [8], in their previous research, emphasized the need to test
the data acquisition by placing the camera in a side-view position in order to obtain more data about
the plant stem due to occlusion. However, for the purpose of this research, the side-view position
would not provide enough data of the leaf surface; therefore, the camera pose used was the most
appropriate for estimating the leaf area. The relatively high variability of Tables 1 and 2 could be
explained by a mixture of different factors such as hand measurement errors, complex architecture of
maize plants, occlusion, plant movement during data acquisition, assembly errors that produced small
differences when the reconstructed crop rows were merged, and manual trimming.

Table 2. Alignment and merge of two point clouds scanned from the same side of the crop row.

Direction Crop Row
Rasterized Crop
Height (10 mm)

[cm2]

Poisson Surface
Reconstruction

[cm2]

Ground Truth LA
[cm2]

RMSE
[cm2] MAPE

Go right side and
return right side 1 2685 2611 2824 213 7.5%

Go left side and
return left side 2 2680 4091 4191 100 2.3%

Go left side and
return left side 3 1077 1733 1634 99 6%

Go left side and
return left side 4 1611 2332 2819 487 17.2%

Go left side and
return left side 5 1433 1762 1879 117 6.2%

Average 1897 2505 2669 203 7.8%
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The other reconstruction was done by merging two maize row point clouds reconstructed when
the robotic platform scanned the left side of the row while going, and the right side of the row while
returning (see Figure 9a). In this case, the robotic platform turned to the adjacent path in the headland.
The theoretical advantage of this approach was that there were fewer hidden leaves that were not hit
by the active sensing system of the TOF, camera compared to the previous one scanned from the same
side. However, as seen in Table 3, the average RMSE and MAPE were 1059 cm2 and 32.3%, respectively.
This high error could be explained by the poor continuity on the leaf point clouds due to the different
3-D perspective views of the opposing scans. This pattern can be seen in Figure 9a,b, where the leaf of
the plant (x = −6.6, y = 2.7, z = 0.4) has some discontinuities.
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Table 3. Alignment and merge of two point clouds scanned from both sides with opposite directions.

Direction Crop Row
Rasterized Crop
Height (10 mm)

[cm2]

Poisson Surface
Reconstruction

[cm2]

Ground Truth LA
[cm2]

RMSE
[cm2] MAPE

Go left side and
return right side 2 3047 3156 4750 1594 33.5%

Go left side and
return right side 3 1191 2479 1852 627 33.8%

Go left side and
return right side 4 1560 4150 3195 955 29.8%

Average 1932 3261 3265 1059 32.3%

4. Conclusions

A low-cost 3-D TOF camera was used to acquire 3-D data with the use of sensor fusion that
tracked the pose of the camera with high precision. The results demonstrated that it was possible to
estimate the LA based on the reconstructed surface (meshes) of maize rows by merging point clouds
generated from different 3-D perspective views. The difference between generating the point clouds
by scanning the crop row from two sides was very apparent in the resulting average MAPE of 7.8%
and 29.8%, respectively. Therefore, even if two point clouds were aligned and merged in both cases,
the continuity of the point cloud made a considerable difference in the LA estimation. The alignment
and merge of four point clouds resulted in an average MAPE of 8.8% which was not very different from
the one scanned from one side of the crop row. Therefore, although more information was obtained by
merging the four point clouds, the one-side scanned provided a simpler approach for LA estimation.
A future research direction should go into automating the manual estimations by automatically setting
the point density parameter in order to avoid the manual trimming. Additionally, more research needs
to be done with the LAI parameter estimation. High-throughput phenotyping for large greenhouses
and open field (if the measurements are performed on cloudy or low sunlight intensity days) is a
future application for this system. Potential environmental difficulties during the data acquisition
campaign such as dust, rain, direct sunlight, etc., can be avoided by embedding the TOF camera into a
protective casing, properly designed to protect the sensor without interfering with its operation.

The current limitation of the system is that it relies on a relatively expensive robotic platform
and positioning system; however, a less expensive robotic platform and positioning system are
already feasible. Commercial robotic systems for agricultural applications such as weeding are already
available (NAIO, Deepfield Robotics), even though their energy consumption is high and thus their
working-time limited. The commercial possibilities of a scout robot are better since the robot’s task can
be executed while navigating, when the automatic data processing can be carried out.

Author Contributions: M.V.-A. and D.R. conducted the data analysis supported by D.S.P. and M.G.-I. M.V.-A.,
D.R., and M.G.-I. conducted all the field experiments supervised and guided by H.W.G.

Funding: The project was conducted at the Max-Eyth Endowed Chair (Instrumentation & Test Engineering) at
Hohenheim University (Stuttgart, Germany), which is partly grant funded by the Deutsche Landwirtschafts-
Gesellschaft e.V. (DLG).

Acknowledgments: The authors gratefully acknowledge Hiroshi Okamoto and Marlowe Edgar C. Burce for
contributing with helpful comments on this research paper. In addition, the authors would like to thank
the Deutscher Akademischer Austauschdienst (DAAD) and the Mexican Council of Science and Technology
(CONACYT) for providing a scholarship for M.V.-A.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lambert, R.J.; Mansfield, B.D.; Mumm, R.H. Effect of leaf area on maize productivity. Maydica 2014, 59, 58–64.



Robotics 2018, 7, 63 11 of 12

2. Diago, M.P.; Correa, C.; Millán, B.; Barreiro, P.; Valero, C.; Tardaguila, J. Grapevine yield and leaf area
estimation using supervised classification methodology on RGB images taken under field conditions. Sensors
2012, 12, 16988–17006. [CrossRef] [PubMed]

3. Hosoi, F.; Nakabayashi, K.; Omasa, K. 3-D modeling of tomato canopies using a high-resolution portable
scanning lidar for extracting structural information. Sensors 2011, 11, 2166–2174. [CrossRef] [PubMed]

4. Kazmi, W.; Bisgaard, M.; Garcia-Ruiz, F.; Hansen, K.D.; la Cour-Harbo, A. Adaptive Surveying and Early
Treatment of Crops with a Team of Autonomous Vehicles. In Proceedings of the 5th European Conference on
Mobile Robots ECMR, Orebro, Sweden, 7–9 September 2011; pp. 253–258.

5. Bréda, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current
controversies. J. Exp. Bot. 2003, 54, 2403–2417. [CrossRef] [PubMed]

6. Vázquez-Arellano, M.; Griepentrog, H.W.; Reiser, D.; Paraforos, D.S. 3-D imaging systems for agricultural
applications—A review. Sensors 2016, 16, 618. [CrossRef] [PubMed]

7. Vázquez-Arellano, M.; Reiser, D.; Paraforos, D.S.; Garrido-Izard, M.; Burce, M.E.C.; Griepentrog, H.W. 3-D
reconstruction of maize plants using a time-of-flight camera. Comput. Electron. Agric. 2018, 145, 235–247.
[CrossRef]

8. Vázquez-Arellano, M.; Paraforos, D.S.; Reiser, D.; Garrido-Izard, M.; Griepentrog, H.W. Determination of
stem position and height of reconstructed maize plants using a time-of-flight camera. Comput. Electron. Agric.
2018, 154, 276–288. [CrossRef]

9. Andújar, D.; Dorado, J.; Fernández-Quintanilla, C.; Ribeiro, A. An approach to the use of depth cameras for
weed volume estimation. Sensors 2016, 16, 972. [CrossRef] [PubMed]

10. Jiang, Y.; Li, C.; Paterson, A.H. High throughput phenotyping of cotton plant height using depth images
under field conditions. Comput. Electron. Agric. 2016, 130, 57–68. [CrossRef]

11. Hämmerle, M.; Höfle, B. Mobile low-cost 3D camera maize crop height measurements under field conditions.
Precis. Agric. 2017, 19, 630–647. [CrossRef]

12. Hu, Y.; Wang, L.; Xiang, L.; Wu, Q.; Jiang, H. Automatic non-destructive growth measurement of leafy
vegetables based on kinect. Sensors 2018, 18, 806. [CrossRef] [PubMed]

13. Paulus, S.; Behmann, J.; Mahlein, A.K.; Plümer, L.; Kuhlmann, H. Low-cost 3D systems: Suitable tools for
plant phenotyping. Sensors 2014, 14, 3001–3018. [CrossRef] [PubMed]

14. Nakarmi, A.D.; Tang, L. Automatic inter-plant spacing sensing at early growth stages using a 3D vision
sensor. Comput. Electron. Agric. 2012, 82, 23–31. [CrossRef]

15. Chaivivatrakul, S.; Tang, L.; Dailey, M.N.; Nakarmi, A.D. Automatic morphological trait characterization for
corn plants via 3D holographic reconstruction. Comput. Electron. Agric. 2014, 109, 109–123. [CrossRef]

16. Alenyà, G.; Foix, S.; Torras, C. ToF cameras for active vision in robotics. Sens. Actuators A Phys. 2014,
218, 10–22. [CrossRef]

17. Colaço, A.F.; Molin, J.P.; Rosell-Polo, J.R.; Escolà, A. Application of light detection and ranging and
ultrasonic sensors to high-throughput phenotyping and precision horticulture: Current status and challenges.
Hortic. Res. 2018, 5. [CrossRef] [PubMed]

18. Reiser, D.; Garrido-Izard, M.; Vázquez-Arellano, M.; Paraforos, D.S.; Griepentrog, H.W. Crop row detection
in maize for developing navigation algorithms under changing plant growth stages. In Proceedings of the
Robot 2015, Second Iberian Robotics Conference, Lisbon, Portugal, 19–21 November 2015; pp. 371–382.

19. Paraforos, D.S.; Reutemann, M.; Sharipov, G.; Werner, R.; Griepentrog, H.W. Total station data assessment
using an industrial robotic arm for dynamic 3D in-field positioning with sub-centimetre accuracy.
Comput. Electron. Agric. 2017, 136, 166–175. [CrossRef]

20. EDF R&D, T. P. CloudCompare (Version 2.9.1) [GPL Software]. Available online: https://www.danielgm.
net/cc/ (accessed on 15 August 2018).

21. Besl, P.; McKay, N. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992,
14, 239–256. [CrossRef]

22. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

23. Dewez, T.J.B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J. Facets: A cloudcompare plugin to extract
geological planes from unstructured 3d point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
ISPRS Arch. 2016, 41, 799–804. [CrossRef]

http://dx.doi.org/10.3390/s121216988
http://www.ncbi.nlm.nih.gov/pubmed/23235443
http://dx.doi.org/10.3390/s110202166
http://www.ncbi.nlm.nih.gov/pubmed/22319403
http://dx.doi.org/10.1093/jxb/erg263
http://www.ncbi.nlm.nih.gov/pubmed/14565947
http://dx.doi.org/10.3390/s16050618
http://www.ncbi.nlm.nih.gov/pubmed/27136560
http://dx.doi.org/10.1016/j.compag.2018.01.002
http://dx.doi.org/10.1016/j.compag.2018.09.006
http://dx.doi.org/10.3390/s16070972
http://www.ncbi.nlm.nih.gov/pubmed/27347972
http://dx.doi.org/10.1016/j.compag.2016.09.017
http://dx.doi.org/10.1007/s11119-017-9544-3
http://dx.doi.org/10.3390/s18030806
http://www.ncbi.nlm.nih.gov/pubmed/29518958
http://dx.doi.org/10.3390/s140203001
http://www.ncbi.nlm.nih.gov/pubmed/24534920
http://dx.doi.org/10.1016/j.compag.2011.12.011
http://dx.doi.org/10.1016/j.compag.2014.09.005
http://dx.doi.org/10.1016/j.sna.2014.07.014
http://dx.doi.org/10.1038/s41438-018-0043-0
http://www.ncbi.nlm.nih.gov/pubmed/29977571
http://dx.doi.org/10.1016/j.compag.2017.03.009
https://www.danielgm.net/cc/
https://www.danielgm.net/cc/
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.5194/isprsarchives-XLI-B5-799-2016


Robotics 2018, 7, 63 12 of 12

24. Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson Surface Reconstruction. In Proceedings of the International
Conference on Scale Space and Variational Methods in Computer Vision, Lège-Cap Ferret, France,
31 May–4 June 2015; pp. 525–537.

25. Li, X.; Zaragoza, J.; Kuffner, P.; Ansell, P.; Nguyen, C.; Daily, H. Growth Measurement of Arabidopsis in
2.5D from a High Throughput Phenotyping Platform. In Proceedings of the 21st International Congress on
Modelling and Simulation, Gold Coast, Australia, 29 November–4 December 2015; pp. 517–523.

26. Kazhdan, M.; Hoppe, H. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 2013, 32, 1–13.
[CrossRef]

27. Montgomery, E.G. Correlation studies in corn. Neb. Agric. Exp. Stn. Annu. Rep. 1911, 24, 108–159.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2487228.2487237
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Hardware and Sensors 
	Experimental Setup 
	Data Processing 
	Leaf Area Estimation 

	Results and Discussion 
	Conclusions 
	References

