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Abstract: Developing dialogue services for robots has been promoted nowadays for providing natural
human–robot interactions to enhance user experiences. In this study, we adopted a service-oriented
framework to develop emotion-aware dialogues for service robots. Considering the importance of
the contexts and contents of dialogues in delivering robot services, our framework employed deep
learning methods to develop emotion classifiers and two types of dialogue models of dialogue services.
In the first type of dialogue service, the robot works as a consultant, able to provide domain-specific
knowledge to users. We trained different neural models for mapping questions and answering
sentences, tracking the human emotion during the human–robot dialogue, and using the emotion
information to decide the responses. In the second type of dialogue service, the robot continuously
asks the user questions related to a task with a specific goal, tracks the user’s intention through
the interactions and provides suggestions accordingly. A series of experiments and performance
comparisons were conducted to evaluate the major components of the presented framework and the
results showed the promise of our approach.

Keywords: human–machine interaction; service robot; emotion recognition; dialogue modeling;
deep learning

1. Introduction

Researchers and engineers have been building service robots that can interact with people and
achieve given tasks. To deploy practical service robots, two major concerns need to be seriously
considered, including the system architecture for launching the services and the creation of the service
functions. At present, the services are mostly laboring services, in which robots take actions in the
physical environment to assist people. However, robots are now expected to play more important roles
in providing domain-specific knowledge services and task-oriented services. To deliver these services,
robots communicate with users through a natural way of spoken language because conversation is a
key instrument for developing and maintaining mutual relationships. Following our previous studies
that adopted a service-oriented architecture to develop action-oriented robot services, in this work we
presented a trainable framework for modeling emotion-aware human–robot dialogues to provide the
aforementioned services.

Regarding the many choices of supportive software architecture, some researchers have proposed
to adopt cloud-based service-oriented architecture (SOA). SOA is an architectural style based on
interacting software components, providing services as fundamental units to design, build and compose
the service-oriented software systems [1]. A service is a function made available by a service provider
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in order to deliver results to a consumer. Moreover, services are autonomous platform-independent
entities that can be described, published, discovered and loosely coupled. To effectively and efficiently
deploy different kinds of services, researchers have proposed to link SOA to a cloud computing
environment. With this way, the robots are no longer limited by onboard computation, memory
and programming, leading to a more intelligent robotic network. Our former work implemented a
cloud-based system to support a variety of user-created services [2,3]. To ensure its expandability and
shareability, we constructed a service configuration mechanism and deployed the system on the ROS
(robot operating system, [4]) computing nodes in practice.

The most common way for achieving natural language-based human–robot interaction is to build
a dialogue system to be a vocal interactive interface. Essentially, the dialogue system includes a
knowledge base (i.e., dataset) with organized domain questions and their corresponding answers and
the dialogue service is to design an accurate mapping mechanism that can correctly retrieve answers in
response to the users’ questions. The system is performed in a question-answering manner, and most
traditional approaches are based on hand-crafted rules or templates. Recently, the deep learning-based
methods have been successfully employed to infer neural models for question and answer sentences.
These neural systems mainly use a sequence to sequence (seq2seq) model as a backbone to perform
mappings from entire sequences of words or characters to other sequences, for example [5,6]. In addition
to the dialoguing content, emotion plays a significant role in determining the relevance of the answer
to a specific question. By integrating emotion information into the applications, a service system
can enable its services to automatically adapt to changes in the operational environment, leading to
enhanced user experience.

To enhance the service performance and equip the robot with social competences, in this work,
we developed an emotion-aware human–robot dialogue framework extended from our previous
research presented in [7], with a series of additional experiments and newly developed dialogue services.
To this end, this extended framework included two types of dialogue services. One was to enable the
robot to work as a consultant to provide domain-specific knowledge services. The main focus was on
constructing a deep learning model for mapping questions and answer sentences, tracking the human
emotion during the process of the human–robot dialoguing and using this additional information to
determine the relevance of the sentences obtained by the model. The other was to provide task-oriented
dialogue services which raised considerable interests due to its broad applicability for assisting users in
achieving specific goals (e.g., for booking flight tickets or scheduling meetings). To verify the presented
approach, we conducted a series of experiments as described below to evaluate the major system
components. The results showed the effectiveness and efficiency of the presented approach.

The remaining part of this paper is arranged as follows. Section 2 provides the research background
and reviews the dialogue-related research work. Section 3 describes the framework, including the
functional modules of emotion classification and dialogue response selection, and the deep learning
techniques used for modeling. Section 4 presents the experimental outcomes and the performance
comparisons of the different methods. Finally, Section 5 concludes the paper.

2. Related Works

As mentioned previously, at present most of the service robot frameworks have been connected to
various cloud-computing environments to exploit their large amounts of resources. Among others, the
most representative work is RoboEarth [8], driven by an open-source cloud robotics platform [9]. With
this platform, the robots can distribute highly loaded computation to the cloud and access the RoboEarth
knowledge repository to download required resources. There are also other platforms developed for
cloud robotic systems. For example, Pereira et al. proposed the ROSRemote framework [10], which
enabled users to work with ROS remotely to create several applications. More extensive surveys
were found in [11,12]. More recently, due to the rapid advances of the Internet of Things (IoT),
researchers proposed the concept of the Internet of Robot Things (IoRT) to describe a new approach
to robotics [13,14]. In this way, smart devices can monitor events, fuse sensor data from a variety of
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sources and use local and distributed intelligence to determine a best course of action. This expands the
ability of service robots, improves a robot’s understanding during the human–machine interaction and
leads to a more intelligent robotic network. Moreover, to deal with the scalability problem, researchers
have started to extend the cloud computing concept for service robots to edge or fog computing to
utilize the resources in a more efficient way [15,16].

Instead of investigating issues related to resource allocation and utilization, this work aimed to
develop emotion-aware dialogues for a service robot, in which the most important issues were to
recognize the emotions from the user utterances and to generate appropriate machine responses. Many
methods have been proposed to solve these problems from different perspectives. Because this work
adopted deep learning models to address the above two issues, in the following we discuss the most
relevant studies with similar computational methods.

In general, using a deep learning-based approach to develop dialogues, responses are generated
based on sequence-to-sequence (seq2seq) neural network models, with an objective function of the
maximum-likelihood estimation [17]. This model is to take dialogue modeling as learning a mapping
between human utterances and machine responses. The focus is on how to generate a suitable response
from a corpus to a human utterance. For the training of dialogue models, generative and retrieval-based
methods are often used. Although generative methods have the potential to generate sentences of rich
content, current generative models often have the disadvantages of lacking coherence and producing
unnatural responses. In contrast, though retrieval-based methods are more restricted, they have the
advantage of producing informative and fluent responses. Thus, the retrieval-based methods are
more practical. As can be observed, retrieval-based methods rely on the exploitation of a large and
varied corpus (human–human or human–machine interactions) [18] and deep learning models have
been employed to derive mappings (that is, a selection mechanism) between questions and answers
(e.g., [5,19]).

The basic seq2seq model consists of two recurrent neural networks (RNNs): one works as an
encoder to process the input; the other, a decoder to generate the output. With the characteristic of
making predictions based on running texts of varying lengths, the long short-term memory networks
(LSTMs) are often adopted to train the answer selection mechanism. This model has now been widely
applied to conversation generation and most existing works have mainly focused on developing more
advanced techniques (such as decoding strategies or network models) to improve the content quality
of the responses. Many neural dialogue systems have been constructed based on this design principle.
For example, Serban et al. used a hierarchical LSTM network for a conversation application [20], and
Wen et al. proposed a task-oriented model to generate the correct answers in response to the needs
of the given dialogue [21]. To overcome the problem of overly general (i.e., safe) responses, Wu et al.
proposed a hybrid-level encoder–decoder model, which utilized both word-level and character-level
features [22]. Although these models, in theory, are better at maintaining the dialogue state using
memory components, they require longer training time and excessive searching for hyper-parameters.

In contrast to the above domain-specific dialogue systems that aim to generate fluent and
engaging responses, the other type of neural dialogue systems that has attracted a lot of attention
is task-oriented [23,24]. Task-oriented dialogue systems need to complete a specific task (to achieve
a goal), for example, restaurant reservation, by interacting with users (i.e., a response generation
process). Existing task-oriented systems can be divided into two categories: the modularized pipeline
and the end-to-end single-module systems. The former decomposes the task-oriented dialogue task
into modularized pipelines to be solved separately, while the latter proposes to use an end-to-end
model to produce a sequence of output tokens directly to solve the overall task. End-to-end systems
are often more superior than pipeline systems, due to their unique characteristics, such as global
optimization and easier adaptation to new domains. In the task-oriented dialogue systems, the most
critical component is the goal tracker [25]. The system must update the state of the dialogue according
to each user’s query and their intent. Given the current dialogue state, the system can then decide how
to respond best to the user to accomplish the desired task.
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In addition to employing more sophisticated models and advanced tuning mechanisms towards
proper response generation, some recent works attempted to augment the emotional information of
the neural dialoguing models to generate more meaningful and humanized machine responses. For
example, Zhou et al. presented a model that assumed the emotion category of human utterance was
known and taken as an additional input to train a model of responses [26]. Sun et al. adopted a LSTM
neural network for conversation modeling [27] in which an emotional category label was added to the
encoder, which regarded emotional information as an additional source to the conversational model.
Moreover, Asghar et al. discussed the feasibility of employing emotion information to help generate
diverse responses [28]. They proposed a model of affective response generation to generate sentences
conditioned on emotional word embeddings, affective objective functions and diverse beam search.
However, these methods only focused on emotional factors while ignoring content relevance, possibly
resulting in a decline in the quality and diversity of a response. The integration of emotion and content
is still a challenging task for several reasons. The first is that high-quality emotion-labeled data are
difficult to obtain in a large-scale corpus because emotions are subjective and difficult to annotate.
Moreover, it is difficult to deal with emotions coherently because balancing grammaticality and the
expressions of emotions is needed [29].

3. Developing Human–Robot Dialogues

3.1. The Framework

In this work, we adopted a service-oriented robotic framework that could provide various services
and resources and develop emotion-aware dialoguing services. This computing platform included
two parts: the on-board processors mounted on the robot side (to handle robot functions requiring fast
responses, such as those related to perception and actuation) and the computing nodes located on the
cloud side to perform highly loaded computing services (such as service planning and deep learning).
To realize the proposed design in practice, we configured the framework with ROS to deliver different
types of services. Figure 1 illustrates our robotic system architecture and its ROS configuration. As
shown, the Graphics Processing Unit (GPU) acceleration virtual machine (VM) and the cloud parallel
computing virtual machine are used to support computation. To provide different services on the
cloud, we defined different types of computing nodes in the framework. Through the ROS frame
protocol, where the management of data interchange is between nodes, the framework could easily
combine different services to launch new functions. The module of service planning was described in
our previous work [2,3]. Here, we focused on the dialogue module, in which the major functional
components were indicated.

Robotics 2020, 9, x FOR PEER REVIEW 5 of 20 

 

emotion-aware services. The same approach can also be applied to the task-oriented dialogue 
service. The major components of our framework are described in the following subsections. 

 
Figure 1. Overview of the proposed framework for the human–robot dialogues. 

3.2. Learning Emotion Recognition 

3.2.1. Text Processing 

In addition to the traditional text processing steps to clean and purify texts, we apply semantic 
rules to perform sentence segmentation. For example, if there is a disjunctive such as “but” or 
“although” in the sentence, the emotion of the entire sentence is usually biased toward the former or 
the latter clause. To tackle such a problem, this study adopted a set of five semantic rules (selected 
from those proposed in [30]) to perform more precise sentence segmentation. For example, using one 
of the rules: “If a sentence contains but, disregard all previous sentiment and only take the sentiment 
of the part after but,” the sentence “I really, really, really wanna go, but I can't.” is simplified to be “I 
can’t”. The details of the rules refer to [30]. 

After the above sentence segmentation, we employed the Natural Language Processing Toolkit 
(NLTK,[31]) to build a dictionary, consisting of more than 7000 words, of which the most frequent 
stop words were removed. However, because the dialogue dataset used for building classifiers 
contained some short responses (such as “He?” and “You?”), the list of stop words was thus not 
fully applied to filter them out. In addition, adverbs such as “more”, “most” and “very” are tone 
aggravation in conversation, therefore, they were retained. Then, a procedure of stemming was 
performed to strip off word endings, reducing them to a common core or stem. 

As indicated above, our framework adopted deep learning for model training and an encoding 
(embedding) scheme was needed to transfer the natural language sentences into vector 
representations. Therefore, once the word processing procedure was completed, the GloVe method 
(Global Vectors for Word Representation) was employed to map the words into vectors, due to its 
high training efficiency [32]. The training process was performed on aggregated global word–word 
co-occurrence statistics from a corpus. Through the mapping, the words were represented by real 
numbers and words with similar meanings which could have similar representations. In this study, 
the words were mapped into vectors of 300 dimensions. GloVe provides pre-training word vectors, 
which contain 400 k vocabularies trained from a corpus of 6 billion token words. The vectors were 
used as the input of the training algorithm to build the model. 

3.2.2. Learning Emotion Classifiers 

In this work, we trained a deep learning network to recognize emotions from the utterances in 
dialogues. Figure 2 illustrates the model that includes a convolutional neural network (CNN) 
followed by a long short-term memory network (LSTM). As shown, the inputs are the dialoguing 

Figure 1. Overview of the proposed framework for the human–robot dialogues.



Robotics 2020, 9, 31 5 of 20

Our framework included two types of dialogue services, one for domain-specific dialogues and
the other for task-specific (task-oriented) dialogues. In contrast to the open-domain conversation
performed by the general purpose chatbots, the domain-specific dialogue presented here aims to provide
knowledge services of a certain domain (e.g., finance or insurance) through a question-answering
manner between the user and the robot. In contrast, the task-oriented dialogue service was to achieve
the specific goal for a certain task (e.g., restaurant recommendation) by conducting the iterative
human–robot dialogue to adapt to the user’s intention or preference related to the task goal. This type
of service is especially important in the coming conversational commerce.

At present, the functions of user identification and emotion recognition are constructed
independently from the dialogue model, mainly because of the lack of a dataset containing complete
information of a human face, utterance emotion and dialoguing content. The current strategy was that
the identified user was assigned to a certain type of user group and the corresponding model was
retrieved to perform dialoguing. Then, the candidate sentences produced by the model were re-ranked
(based on the recognized emotion) following a set of hand-crafted rules and the sentence with the
highest rank was selected as the robot’s response. In this work, we only applied the emotion mechanism
to the first type of dialogue (i.e., domain-specific) as a representative example of emotion-aware services.
The same approach can also be applied to the task-oriented dialogue service. The major components of
our framework are described in the following subsections.

3.2. Learning Emotion Recognition

3.2.1. Text Processing

In addition to the traditional text processing steps to clean and purify texts, we apply semantic
rules to perform sentence segmentation. For example, if there is a disjunctive such as “but” or
“although” in the sentence, the emotion of the entire sentence is usually biased toward the former or
the latter clause. To tackle such a problem, this study adopted a set of five semantic rules (selected from
those proposed in [30]) to perform more precise sentence segmentation. For example, using one of the
rules: “If a sentence contains but, disregard all previous sentiment and only take the sentiment of the
part after but,” the sentence “I really, really, really wanna go, but I can’t.” is simplified to be “I can’t”.
The details of the rules refer to [30].

After the above sentence segmentation, we employed the Natural Language Processing Toolkit
(NLTK, [31]) to build a dictionary, consisting of more than 7000 words, of which the most frequent stop
words were removed. However, because the dialogue dataset used for building classifiers contained
some short responses (such as “He?” and “You?”), the list of stop words was thus not fully applied
to filter them out. In addition, adverbs such as “more”, “most” and “very” are tone aggravation in
conversation, therefore, they were retained. Then, a procedure of stemming was performed to strip off

word endings, reducing them to a common core or stem.
As indicated above, our framework adopted deep learning for model training and an encoding

(embedding) scheme was needed to transfer the natural language sentences into vector representations.
Therefore, once the word processing procedure was completed, the GloVe method (Global Vectors
for Word Representation) was employed to map the words into vectors, due to its high training
efficiency [32]. The training process was performed on aggregated global word–word co-occurrence
statistics from a corpus. Through the mapping, the words were represented by real numbers and
words with similar meanings which could have similar representations. In this study, the words were
mapped into vectors of 300 dimensions. GloVe provides pre-training word vectors, which contain
400 k vocabularies trained from a corpus of 6 billion token words. The vectors were used as the input
of the training algorithm to build the model.
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3.2.2. Learning Emotion Classifiers

In this work, we trained a deep learning network to recognize emotions from the utterances in
dialogues. Figure 2 illustrates the model that includes a convolutional neural network (CNN) followed
by a long short-term memory network (LSTM). As shown, the inputs are the dialoguing sentences
processed and converted to the vectors by the procedure described above. In this network, three
convolutional layers with lengths of three, four and five were arranged to extract the local features of
the sentences. Then, the features were combined and served as the input of the next learning layer
(i.e., LSTM).
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It has been well known that LSTM can overcome the vanishing gradient problem in gradient-based
machine learning methods. However, this situation still occurs when the sentence length is too long
and the network needs to be deepened. In this work, we adopted LSTM with ReLU (Rectified Linear
Unit [33]) to train a better model, as ReLU was proved to be effective in overcoming the vanishing
gradient problem. Moreover, ReLU has the property of sparse activation, making the neural network
sparse to alleviate the problem of over-fitting. In the above learning process, the widely adopted
gradient descent optimization algorithm Adam [34] was used as an optimizer.

As shown in Figure 2, we used the activation function widely used in deep learning model,
“Softmax”, to map the outputs of the neurons into the interval of (0–1). In this way, a probability
distribution over the possible classes could be obtained and the node with the highest probability
was selected as our prediction emotion class. To calculate the error between the prediction class
and the actual class, a loss function was used and the weight update of the deep neural network
was performed accordingly. Here, the function “LabelEncoder” of the machine learning tool
sciki-learn (https://scikit-learn.org/) and the loss function “categorical_crossentropy” of the deep
learning framework Keras (https://keras.io/) were employed to normalize the class label and convert it
into a one-hot code of the binary matrix to perform the numerical calculation.

3.3. Domain-Specific Dialogue Modeling

3.3.1. Learning Dialogue Models

To develop dialogues for the robot, we adopted the neural language model from our previous
works [3,35] for training the answer selection mechanism. Figure 3 illustrates our model that included
a LSTM network with a CNN network. The LSTM contained memory blocks in the recurrent hidden
layer that could store the temporal state of the network. With this characteristic, this model could
better capture information over longer time steps to meet our goal.

For training the deep learning model, the sentences were organized as the question-answering
pairs. The question sentence Q was the input question encoded into an internal vector form QV by
the word-embedding procedure described above. To enhance the performance, we established the
word2vec [36] weights for the entire corpus and used them as the pretrained model of the embedding
layer. The output then flows to the LSTM and CNN layers. In this procedure, for each question Q
there was a corresponding positive answer A+ with a very high probability to be the correct answer
among all the answers in the dataset (i.e., the confirmed correct answer). As shown in Figure 3, after

https://scikit-learn.org/
https://keras.io/
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the embedding layer, an output vector E was obtained and then calculated through the LSTM function
to derive a hidden vector L as the following:

E = EMBED(x1, . . . , xn; We) (1)

L = LSTM(E; WL) (2)

In the above equations, E can be represented as {e1, e2, . . . , en}, E ∈ Rn×d in which n is the
maximal sentence length and d is the dimension of embedding. We is the weight matrix W ∈ Rv×d

(v is the number of words in the dictionary), e is the vector embedded for word x and WL is the LSTM
weight matrix.
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For performance enhancement, we used the genism package [37] to establish the weights for
the entire corpus and used them as the pretrained model of the embedding layer. Though the
LSTM layer described above, one can extract the features of word sequences in the sentences of our
network. Furthermore, we connected the tensor L (Equation (2)) to a convolutional layer to extract
more complicated features for performance enhancement. As indicated in Figure 3, the “MaxPooling”
function was performed and the “tanh” function was used to transfer and output the decoding result.
The above two functions have been widely used in deep learning models for language processing [38].

In the model training procedure, the question Q, the correct answer A+ and the wrong answer
A−(sampled from the answer space) are encoded into vector representations VQ, VA+ and VA−,
respectively, and the similarities between the question and the two answers are calculated separately.
Here, the similarity of the two vectors is defined as

Similarity(VQ, VA) =
1

1 + ‖VQ −VA‖
×

1

1 + exp
(
−γ

(
dot

(
VQ, VA

)
+ c

)) (3)

This equation was adopted from [38], and it has been shown to offer good performance. In the
above equation, the parameter γ is 1.0 and c is 1. VA is a positive or negative answer (i.e., VA+ or
VA−). Then, the distance between the two similarities is compared (meaning the difference between an
answer and the ground truth) to a pre-defined margin m (a maximum number of steps often used to
reduce the running time). If the distance is less than m, the network parameters are updated; otherwise
another negative example is sampled until the distance is less than m. The above operations were to
ensure that the similarity distance (to be minimized) could reach a certain level. As defined in [38],
the loss function corresponding to the above similarity is:

Loss = max{0, m−Similarity(VQ,VA+) + Similarity(VQ,VA-))} (4)
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During the human–robot dialoguing period (i.e., the test phase), this dialogue service calculates
the similarity between a question sentence (asked by the user) and each answer sentence (in the
knowledge base). A set of answers with the highest similarity scores is selected and they are re-ranked
by the pre-defined rules. The first-ranking sentence is then used as the robot’s response.

3.3.2. Knowledge Enrichment

In addition to the learning model and method, the dataset with the domain questions and the
corresponding answers also played a critical role in dialogue modeling, because a rich dataset represents
abundant knowledge for a system to interact with human users. It was thus important to include
more knowledge resources to enrich the dataset (meaning better conversation comprehension) for a
dialogue system equipped with a service robot. Many strategies can be developed to include more
knowledge resources (e.g., external knowledge resources) for dialogue modeling. In this work, we used
a language translation system to translate a dataset to achieve knowledge sharing between different
languages. This method was especially important for developing human–machine dialogues with a
resource-restricted language (very few data are available for model training). Here, we translated a
dataset from English to Chinese as an example to investigate the corresponding effect.

Word segmentation was a very important sentence preprocessing step in the dialogue modeling
with the dataset in Chinese. This step was to determine word boundaries for a Chinese sentence. That
is, a sentence can be segmented into different combinations of words and therefore the ambiguity exists
for Chinese word segmentation. Several segmentation systems have been proposed for Chinese text.
Among others, the most often used segmentation systems are the CKIP (http://ckipsvr.iis.sinica.edu.tw/),
Stanford Pars (http://nlp.stanford.edu/software/lex-parser.shtml ) and the JIEBA (https://github.com/

ldkrsi/jieba-zh_TW) system. Following a preliminary evaluation, we chose to use the JIEBA system to
perform the word segmentation. Then, the word embedding procedure was performed in which the
Wiki Chinese text documents were used to pre-train the corpus for performance enhancement, and the
same type of dialogue model can be trained by the deep learning method as in the above section.

3.4. Developing Task-Oriented Dialogues

In addition to the above domain-specific dialogue modeling, this section presents the task-oriented
subsystem we developed for the service robot to achieve practical applications with specific goals. As
mentioned previously, existing task-oriented dialogue methods can be divided into two categories:
modularized pipeline and end-to-end single-module systems. Among others, the hybrid code network
(HCN, [24]) is a popular and useful end-to-end framework for developing practical task-oriented
dialogue applications. It allows a developer to hybrid the data-driven learning method and
knowledge-based hand-coded rules. This approach can learn an RNN with considerably less training
data and express domain knowledge via software and action templates. Therefore, in this work,
we adopted a simplified HCN framework with some enhanced functions to develop task-oriented
dialogue services for the robot. Figure 4 presents our revised framework for the task-oriented dialogues.
We also implemented a restaurant recommendation application as an illustrative example. The goal
was to request the robot to make a restaurant reservation for a user, given all his constraints on the
location, cuisine, price range, atmosphere and party size, which were derived iteratively from the
human–robot dialogue.

The operational flow of our revised HCN included four major phases as illustrated in Figure 4.
The first phase, which was mainly for text processing, included three steps to extract different types of
features from a user utterance. The first step was to extract the context features (entities to be traced).
Since we used the DSTC dataset (Dialog State Tracking Challenge dataset [39]) for network training,
the context features here were the same as the original dataset: atmosphere, cuisine, location, party
size and price, each with a value of 0 or 1 (as a placeholder in the entity tracking slot). The second step
was to extract the words (bag of words) to be representatives and the one-hot encoding scheme was
used to form a word vector. The third step was to perform word embedding and here the word2vec

http://ckipsvr.iis.sinica.edu.tw/
http://nlp.stanford.edu/software/lex-parser.shtml
https://github.com/ldkrsi/jieba-zh_TW
https://github.com/ldkrsi/jieba-zh_TW
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was employed. As shown in the figure, in the second phase the text and entities mentioned were then
passed to a module of dialogue state tracking, which grounds and maintains entities. In contrast to the
original HCN work, we adopted a deep CNN network and defined label ontology to further improve
the state tracking performance (described in Section 3.4.1).
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In the third phase, the results obtained from the above phases were then concatenated to be a
feature vector and a traditional LSTM was adopted for training. As shown in Figure 4, the output of
the LSTM model was passed to a dense layer with a Softmax activation, in which the output dimension
was equal to the number of distinct action templates. The output was a distribution over the action
templates. In the fourth phase, the action mask was applied and an action was selected accordingly.
Then, the selected action was used to produce a fully formed action. Following the above phases, a
recommendation module was developed to revise some entities according to the user’s preferences.
The details are described in Section 3.4.2.

3.4.1. Belief Tracker

The belief tracker (i.e., the dialogue state tracking) is an important component in a dialogue
system in which a dialogue state is a full and temporal representation of each participant’s intention.
A belief tracker can track what has happened with the system outputs, user utterances and context
from previous turns. It provides a direct way to validate the system’s understanding of the user’s goal
at each dialogue step through the intention estimation.

Traditionally, the rule-based systems were built for state tracking, but they hardly model uncertainty.
Recently, researchers have turned to develop neural models to overcome the uncertainty in tracking
dialogue states. In task-oriented dialogue systems, the end-to-end neural networks have been
successfully employed for state tracking via interacting with an external knowledge base. However, in
task-oriented dialogues, a state tracker is usually trained from a large amount of manually annotated
corpora. Considering the huge efforts required for human annotation, we used the available dataset
for model training and focused on the model performance.

As indicated above, we adopted a simplified HCN model with a dialogue state tracker. However,
in some situations the original state tracker could misjudge the ambiguous user utterances or wrongly
spell words and produce incorrect answers. For example, using the original HCN tracker to analyze
the user utterance “I’m asking my friend if she wants to do Rome”, the word “Rome” (entity value) is
wrongly taken as the final location, but in fact the decision has not yet been made. This was because the
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original tracker uses a string-matching method for entity identification so the mismatches cannot be
corrected. As the neural belief tracker was able to deliver a better performance [40], we thus adopted
this method and used a deep CNN model to solve this problem. In addition, a small ontology was
established to ensure the semantic correctness of the mentioned entities (i.e., slot values).

3.4.2. Autoencoder

Following the above dialogue flow, we developed a recommender (as shown in Figure 4) to enhance
the system performance and user experience. This module was to refine some entities from the selected
response according to the user preferences. In this work, we used a deep learning-based method and
adopted the deep neural network and autoencoder [41,42] to realize collaborative recommendation.

Autoencoder is a superior tool for dimensionality reduction and it can be regarded as a strict
generalization of principle component analysis. It is a network with implementations of two
transformations (encoder and decoder), aiming to reconstruct inputs in the output layer via a
low-dimensional latent space to predict the missing ratings. Then, the learning goal is to minimize
the error between the original vector (input) and the transformed vector (output). One of the popular
autoencoder-based recommendation models is AutoRec [42]. In this model, denoising techniques
are used to discover more robust representations and to avoid learning an identity function. These
techniques mean to learn the latent representations of the corrupted user-item preferences and they
can be used to reconstruct the users’ full preferences and reduce the overfitting situations. In this work,
our recommender was developed based on AutoRec. The overall architecture is illustrated in Figure 5,
in which the encoder, code-layer and decoder are the major parts of the model (included in the dotted
line rectangle). Both the encoder and the decoder consist of feed-forward neural networks with fully
connected layers and the depth of the model was increased (marked as the deep stack) to enhance the
corresponding performance.
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4. Experiments and Results

To evaluate the presented emotion-aware dialoguing service for human–robot interaction, several
sets of experimental trials were conducted. As mentioned previously, due to the lack of a dataset with
full information on the human face, utterance emotion and dialoguing content, in the experiments
we used four datasets to evaluate these modules separately. The evaluations are described in the
following subsections.

4.1. Performance Metrics

In the experiments, we employed the criteria often used in data classification for performance
evaluation and a five-fold cross-validation strategy was also used. We first measured the numbers of
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true positives (TP), false positives (FP), true negatives (TN), false negatives (FN) and then used them to
calculate the metrics of accuracy (proportion of correctly predicted instances relative to all predicted
instances), precision (proportion of retrieved instances that were relevant), recall (proportion of relevant
instances that were retrieved) and F-measure (the combined effect of precision and recall that often
conflict in nature) [43]. The metrics are defined as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(5)

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F-measure =
2× precision× recall

precision + recall
(8)

In addition to accuracy, to evaluate the performance of the answer selection in the dialogue
modeling, we adopted a statistical measure MRR (mean reciprocal rank, the average of the reciprocal
ranks of results for a sample of n queries). It is defined as

MRR =
1
n
·

n∑
i=1

1
ranki

(9)

where ranki refers to the rank position of the first relevant document for the i-th query.

4.2. User Identification

In this work, a cloud-based system was built for a service robot and we configured a ROS
framework on top of a Linux OS to connect the sensing camera nodes. Often, a system built with ROS
consists of a number of processes on a set of hosts, which are connected at runtime in a peer-to-peer
topology. Here, the ROS master was a PC running the roscore and serving as the resource center for all
the other ROS nodes connected to the network. The cloud parallel computing virtual machine had
eight CPUs and eight GB memory, and the GPU acceleration virtual machine had eight CPUs, 32 GB
memory and a NVIDIA Tesla K80 GPU.

For user identification, the experiments were conducted to evaluate the performance of face
recognition. The goal was to train the robot to recognize human faces in a static manner and we
adopted OpenCV (https://opcv.org, an open source computer vision library) to train the classifiers.
An online face dataset [44] was used. It included 90 image sets of different persons, in which each
set included face images taken from different viewpoints, from 90 to −90 degrees (stepping by 5).
The results showed that the trained classifiers performed the best in the recognition of the front face
images. The faces in the images could be detected correctly with a reasonable rate of accuracy when
the variation of the rotating angle was less than 30 degrees, and the faces could be recognized with a
good accuracy if the view angle was within the range of 10 to −10 degrees.

4.3. Performance of Emotion Recognition

4.3.1. Performance Evaluation

To assess the performance of the emotion recognition module, we adopted the dataset used in [45],
which was derived from the Movie Dialog Corpus. The sentences in this dataset were categorized into
six classes of emotions: fear, disgust, joy, sadness, anticipation and none (neutral). The deep learning
approach described in Section 3.2.2 was employed to train a model for multi-class emotion recognition.
In addition, two popular learning methods, the random forest (RF) and the support vector machine
(SVM) methods, were used for performance comparison.

https://opcv.org
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For RF and SVM, we used the n-gram method to extract more text features from the original data
for building classifiers to enhance their performance, in addition to the word features extracted from
the text-processing procedure. N-gram can express the sequence relationships between the words,
and the unigram, bigram and trigram (n is 1, 2 and 3, respectively) models are often used. After a
preliminary test, in this work we used the above three models to extract more text features, and the
combined feature vectors were used as the input of the above two machine learning methods (RF and
SVM) to enhance their performance.

Figure 6a illustrates the accuracy, precision, recall and F-score for each of the three methods. As
can be seen, RF performed the best in all the metrics. The main reason could be that RF is a type of
ensemble machine learning algorithm and the way it handled (samples) data for the grouped multiple
classifiers made it perform better than the others for the imbalanced dataset here.
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Figure 6. Results of the three machine learning methods; (a) without and (b) with the enhanced
techniques of the semantic rules and data balance.

After comparing the three aforementioned methods, we applied two data processing techniques to
the dataset, including semantic rules and data balance, with the above learning methods to investigate
their effects in performance. For the semantic rules, the five rules mentioned in Section 3.2.1 were
used to perform more precise sentence segmentation; for data balance, we adopted the sciki-learn
tool to produce a set of specific class weights for different types of emotions. The results for accuracy,
precision, recall and F-score are illustrated in Figure 6b. As can be seen, in general our CNN-LSTM
method obtained the best results on all performance metrics. In addition to the data balance effect,
the reason for the performance improvement could be that the semantic rules removed the irrelevant
words and filtered out their effects on the sentence emotions. Thus, the learning methods were able to
focus on the emotions delivered by the most related parts of the sentences to be predicted.

4.3.2. Comparisons with IBM Tone Analyzer

In addition to comparing the different machine learning methods, we evaluated a well known
emotion detection system, the IBM Watson’s Tone Analyzer (https://natural-language-understanding-
demo.ng.bluemix.net/), for further comparison. Interestingly, the emotions the Tone Analyzer
considered were slightly different from what we defined in this work, and it gave degrees (values) of
multiple emotions for an input sentence (also different from our work). To conduct the performance
comparison, we projected the two sets of emotions (one for our work and one for the Tone Analyzer)
into the well known emotional valence and arousal space (i.e., V-A space, [46]). In this space, valence
indicates the hedonic value (positive or negative), ranging from inactive to active; and arousal indicates
the emotional intensity, ranging from unpleasant to pleasant. The valence and arousal dimensions can
be projected onto Euclidean space, where emotions are represented as point-vectors. In this way, the
user’s emotion can be located in this space to be a tuple of valence and arousal values.

https://natural-language-understanding-demo.ng.bluemix.net/
https://natural-language-understanding-demo.ng.bluemix.net/
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In the experiments, we first projected the five classes (annotated in the dataset) into the V-A space
to retrieve the corresponding valence and arousal values (based on the emotion positions defined
in [46]). For the data of each (sentence), we took the positions of the actual (correct) class and the
predicted classes in the space and obtained the set of V-A values. Then, the emotion values produced
by the trained model were taken as class weights and the weighted sum was derived for these specific
data. Consequently, our method and the Tone Analyzer were compared.

For the data of each, we chose the two closest classes (with the largest weights) and calculated
their weighted distance to represent the distance between the predicted and the actual classes. To
compare the performances, we divided the distance into eight intervals and counted the numbers of
data within each interval. Table 1 presents the results, in which x is the weighted distance. As can be
seen, in general the results obtained by the presented method were better than those obtained by the
Tone Analyzer for the dataset used.

Table 1. Performance comparison for the two methods.

Distance CNN-LSTM Tone Analyzer

x = 0 861 692
0 < x <= 0.1 160 156

0.1 < x <= 0.3 68 101
0.3 < x <= 0.5 73 95
0.5 < x <= 0.7 61 107
0.7 < x <= 0.9 125 169
0.0 < x <= 1.0 51 68

1.0 < x 104 115

4.4. Performance of Training a Dialogue Model

The next set of experiments was to examine the system performance of model training in retrieving
(selecting) answers. In this series of experiments, a large dataset was adopted [38]. It was collected
from the Insurance Library website that included 12,889 questions and 21,325 answers, after a data
preprocessing procedure was performed. This procedure was to remove unsuitable data that could not
form the proper input question−answer pairs, to clean the irrelevant terms (such as html tags) and to
transfer the text context into internal identifiers (to form the vectors). In the experiments, the above
dataset was divided into two parts, in which a part of 2000 questions and a part of 3308 answers were
used for testing. The complete experiments of dialoguing were described in our previous work [35], and
here we focused on reporting the results most related to the model training for human–robot interaction.

As described in Section 3.3, in the model training phase, for each question sentence a positive and
a negative answer were needed to constitute a training instance. However, in a real-world application,
the correct answer A+ for a question Q can be determined easily (by the confirmation of the person
asking the question), while the wrong answers are often not explicitly specified. Therefore, in the
experiments here, all other answers in the dataset were considered candidates of wrong answers to Q.
To find the most suitable wrong answer A− for each question in the dataset, we used the above model
training procedure to perform the preprocessing procedure of the wrong answer selection. Due to
the large amount of answers, in this work we randomly chose ten (instead of all) answers for each
question to perform training to reduce computational time.

In the learning process, the random shuffling strategy was used to combine the correct and
wrong answers for each question to work as the training data. The model and method presented in
Section 3.3 were used for training. Figure 7a illustrates the results of the two performance metrics
often used in retrieval-based dialogue modeling, accuracy and MRR. Here, the accuracy was in fact the
top-one precision mentioned in the other relevant studies. It means that the model’s predictive result
(i.e., the top score answer) must be exactly the expected one as recorded in the dataset. As shown,
the LSTM-CNN model could achieve the best performance with a correct prediction rate of 0.61 and
the MRR was 0.70. The results were similar to those presented in the related study [38], whereas the
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presented method involved a smaller set of parameters and was more efficient in learning. In addition
to the LSTM-CNN model, a traditional embedding model (using only word embedding technique)
was also implemented for performance comparison. The results are shown in Figure 7b. As presented,
the accuracy of the embedding model is 0.12 and for the MRR is 0.21. These results indicated that the
LSTM-CNN model was more efficient; it obtained a better result within less iterations.Robotics 2020, 9, x FOR PEER REVIEW 14 of 20 
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In addition to the performance evaluation of the dialogue modeling, we performed another set of
trials to examine the performance of the shared knowledge translated by a dataset from a different
language. In the experiments, the dataset used in the above set of experiments was translated according
to the steps described in Section 3.3, and the same deep learning model and method were used for
the training. As mentioned previously, in contrast to English sentences, a Chinese sentence could be
segmented into various combinations of words by different segmentation methods and this often led
to different modeling results. Therefore, before evaluating the performance of the model training,
we conducted a set of trails to investigate the effect of two popular segmentation methods: the Jiaba
and the HanLP, and the results showed that the Jiaba performed better than the HanLP. We thus chose
Jiaba segmentation to continue the experiments of model training.

The results (i.e., accuracy and MRR) are presented in Figure 8a. As shown in the figure,
the LSTM-CNN model can achieve a best performance (accuracy) of 0.54 and an MRR of 0.64. Moreover,
the traditional embedding model was implemented for comparison and the results are shown in
Figure 8b. Similar to the experiments conducted for the original (untranslated) dataset, the results here
indicated that the LSTM-CNN model was more efficient than the traditional embedding method.
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Compared to the results obtained from the original dataset, the accuracy declined from 0.61 to
0.54. This indicated that the model built from the translated knowledge (i.e., dataset) could not keep
the modeling performance at the same level; nevertheless, the results showed that the translated
knowledge was learnable with an acceptable performance and was thus useful in building models for
the resource-restricted language. The performance could be further improved when more advanced
text translation techniques are applied.

4.5. Evaluation of Training Task-Oriented Dialogues

4.5.1. Performance Evaluation of Neural Belief Tracker

As mentioned previously, the belief tracker plays an important role in a goal-oriented dialogue
system; it can be used to track each participant’s intention from the continuous dialoguing utterances
between the participant and the robot. In this work, we implemented a deep CNN model to work as a
neural belief tracker. The application task was to perform restaurant recommendation through the
user−robot dialogue. A set of entities were pre-defined and the robot iteratively interacted with the
user to derive all the missing entity values. The DSTC6 dataset was used for training the tracker. In
this task (dataset), five entities were tracked, namely cuisine, location, price range, atmosphere and
party size, and the system had to infer their corresponding slot values for making an appropriate
recommendation. Table 2 lists the values defined for the entities.

Table 2. Values for all the tracked entities.

Task Entity Values

cuisine Italian, British, Indian, French, Spanish
location Rome, London, Bombay, Paris, Madrid

price range cheap, moderate, expensive
atmosphere casual, business, romantic
seat number two, four, six, eight

To achieve the task, a state tracker was trained for each entity. In the experiments, the performance
metrics were the accuracy (the number of correct responses divided by the number of turns) and the
loss (here, root mean square error). The training performance for all the entities is presented in Figure 9,
in which (a) shows how the accuracy was improved during the training process, and (b) illustrates the
reduced loss. As is shown in Figure 9, an accuracy of 0.9 can be obtained after 200 epochs and the loss
converged to a small value after 75 epochs and approximated toward zero in the end of the training
(200 epochs).
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4.5.2. Performance Evaluation of Autoencoder

The DSTC6 dataset used in the above section for training the neural belief tracker contained only
dialogue information which cannot be used for making a recommendation. Therefore, in this section
we adopted another public dataset (i.e., Yelp [47]) to evaluate the recommendation performance of the
presented model. The original dataset contained a large amount of users and their ratings of a set of
shops. This dataset had a very high sparsity. To achieve our task of restaurant recommendation and to
connect the recommendation module to the dialogue system, we chose the relevant data (69,634 users,
41,019 restaurants and 1,817,955 ratings) to evaluate our approach.

As mentioned above, we revised the autoencoder model through a set of experimental
investigations to enhance the corresponding performance. The first phase was to investigate the effect
of the code size (the number of nodes in the code layer). A set of code sizes (32, 64, 128 and 256) were
evaluated and the results showed that with a size of 32, the model could obtain its best performance.
After the preliminary test for code size, in the second phase we evaluated the performance of the
different activation functions, including ELU, SeLU, ReLU, Sigmoid and tanh, which were often used
in deep learning models. The loss (root mean squared error) was employed to measure the prediction
performance and the results are shown in Figure 10, in which (a) is the training process and (b) is
the corresponding test process. Figure 10 indicates that the overfitting situation occurred in all cases
and the case of ELU obtained the best result. We then performed an additional set of trials on the
dropout (the dropping out unit in a neural network) and chose a dropout value of 0.8 to alleviate the
overfitting. The third phase was to investigate the effect of the number of hidden layers arranged in
the deep network. In this set of experiments, we evaluated five different numbers of layers: 2, 4, 6,
8 and 10, and the results are shown in Figure 11. As shown in Figure 11, though with more hidden
layers the model can obtain better training performance, it caused overfitting. We thus chose to use six
hidden layers in the final experiments for performance comparison.
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After conducting the above evaluation steps for the determination of the network parameters,
we then compared our enhanced approach to other popular collaborative filtering methods, including
the well known autoencoder AutoRec, and the latent factor model NNMF (non-negative matrix
factorization [48]) which is one of the best models in the relevant studies. In the experiments, for all
three methods, the number of epochs was 100, the code size (for our model and AutoRec) and the
latent factor (for NNMF) was 32, and the learning rate (for our model and AutoRec) was 0.005. As a
result, the loss (error) for the proposed model, the AutoRec model and the NNMF method were 1.0868,
1.4758 and 1.1293, respectively. Such results showed that the proposed method outperformed other
methods and can provide better recommendation performance.
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4.6. Discussion

The above experiments evaluated our approach for a service robot to provide knowledge services.
As presented, in our current design, the emotion recognition was constructed separately from the
dialogue modeling. The model was trained by a data-driven process with a static dataset. The
emotion classifier was then used to re-rank the sentences selected by the model. The separation of
emotion recognition and dialogue modeling has several advantages. The first is that the modules of
emotion recognition and response generation can be constructed by any effective methods if available;
the system thus operates more flexibly. Meanwhile, the reasons why the system generated these
responses can be interpretable to users for further analysis. The two subsystems can be integrated
into one model to optimize the corresponding structure and performance, for example, to adopt a
monolithic model with an attention mechanism to capture emotion as a special context. However, the
integrated system may thus become relatively difficult to understand and computationally expensive.

Considering the dialogue modeling, this work trained models by a data-driven process with a
static dataset. Therefore, in addition to the learning method, the quality and quantity of the dataset also
had influences on the overall performance. It was thus important to strengthen the role of knowledge
(i.e., dataset) to infer an enriched domain-specific model. Different strategies can be developed to
exploit more knowledge resources, ranging from directly linking the dataset to the up-to-date external
knowledge bases, reorganizing the dataset to obtain an optimized data use and to a complicated
procedure of transferring knowledge between different domains. For a resource-restricted language,
a straightforward way is to take the translated datasets as shared knowledge for modeling. We showed
the effect of using translated knowledge. Our application case revealed that the translated knowledge
was learnable and the modeling performance could be kept at a similar level as when using the
original data. More advanced language translation techniques can be developed to further improve
the performance.

In contrast to the non-task-oriented dialogues, a task-oriented dialogue has a specific goal to
achieve. The dataset is more focused and thus relatively smaller. In such a system, the most critical
component is the goal tracker that is used to track the user’s intent during the dialogue to infer
the dialogue state. The system can then decide the best response accordingly to achieve the goal
(e.g., the recommendations in our experiments). Through the application presented in this work,
we have demonstrated that task-oriented dialogues can be practically launched for a manageable task
with a clear goal and a constrained dataset. During such dialogues, a fine-tuning procedure for the
model parameters needs to be carefully performed to find the best results. When the task becomes
complicated or has a high-level (or abstract) goal to achieve, more advanced state tracking and an
inferring mechanism is needed to better understand the users’ intentions.
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5. Conclusions

In this work, we presented an emotion-aware dialogue framework for a service robot to achieve
natural human–robot communication. To deploy this framework, we adopted a cloud-based
service-oriented architecture and developed the emotion recognition and two types of dialogue
modeling modules on it. In the first type of service, the robot worked as a consultant to deliver
domain-specific knowledge to users. We employed a deep learning method to train different neural
models for mapping questions and answer sentences, tracking the human emotion during the process
of the human–robot dialoguing and using this additional information to determine the relevance of the
sentences obtained by the model. In the second type of dialogue service, task-oriented dialogues were
provided for assisting users to achieve specific goals. The robot continuously asked the user questions
related to the task, tracked the user’s intention through the interactions and provided suggestions
accordingly. To verify our framework, we conducted a series of experiments to evaluate the major
system components. The results confirmed the effectiveness and efficiency of the presented approach.
Currently, we are developing techniques of knowledge transfer that can extract pairs of questions and
answers from the text documents of different domains, in order to automatically enrich the dataset
for retrieval-based model training. Moreover, we plan to investigate the use of Kansei engineering
with hedge algebras to improve the granularity of the semantic and linguistic analysis in the dialogue
sentences. We also plan to integrate the characteristics and preferences of the users into the learning
model to achieve personalized dialogues.
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