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Abstract: Under special circumstances, a cable-driven parallel robot (CDPR) may leave its
wrench-feasible-workspace. Standard approaches for the computation of set-point cable forces
are likely to fail in this case. The novel nearest corner method for calculating appropriate cable
forces when the CDPR is outside of its wrench-feasible-workspace was introduced in former work of
the authors. The obtained cable force distributions aim at continuity and generate wrenches close to
the desired values. The method employs geometrical operations in the cable force space and promises
real-time usability because of its non-iterative structure. In a simplified simulation, a cable break
scenario was used to carry out more detailed testing of the method regarding different parameters,
a higher number of cables, and the numerical efficiency. A brief discussion about the continuity of
the method when entering the wrench-feasible-workspace is presented.

Keywords: cable-driven parallel robot; cable force calculation; force distribution; nearest corner
method; cable failure; puncture method; wrench-feasible workspace

1. Introduction

Cable-driven parallel robots (CDPR) are in the focus of current research [1,2] and are also starting
to make their way into industrial applications, see e.g., [3]. Such a robot is driven by cables, which are
coiled on computerized winches and attached to an end-effector, following the kinematic structure
of a Stewart–Gough platform. This allows for immensely large workspaces, as the cables can be
prolonged easily.

As a cable is a unilateral constraint and can exert forces only in pulling direction, the workspace
cannot be determined adequately by using purely kinematic models. Therefore, the cable tensions
play an essential role in typical workspace criteria for CDPRs. The wrench-feasible workspaceWFW
includes all end-effector poses, where a desired wrench w at the platform can be produced by a set of
cable forces f within defined boundaries [4].

In typical applications, all planned maneuvers take place in theWFW and therefore plenty of
well-known methods exist to determine suitable cable forces, see e.g., [5].

However, in special situations, the end-effector can get outside of theWFW and no cable forces
f can be found that generate the desired wrench w. This might occur e.g., in haptic interaction,
when the imprinted external forces and torques exceed the adjustable values. Furthermore, it can occur
in the critical situation of a cable-break, when a cable is suddenly absent and the robot cannot generate
the desired wrench. These situations have been further discussed e.g., in [6,7].

To operate the robot outside of itsWFW and—in the example of a cable break—guide it back
into theWFW , methods are required, that find reasonable forces which produce the possibly closest
wrench with respect to the desired values.
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In [8], a strategy for moving the cable robot safely after cable failure is proposed, using motion
planning along a straight line path. The authors of [9,10] propose three methods to recover the platform
wrench after a cable failure. The first methodology is based on the projection of a lost wire force onto
the orthogonal complement of the null space of the Jacobian. Both remaining methods minimize
the norm of the overall and the correctional cable force vectors, respectively, based on a Lagrange
multiplier method. Note that Notash only refers to applications in the wrench-closure workspace,
which is defined as in [11]. In [12], an optimization based method is presented to compute suitable
forces outside theWFW using a so-called slack variable. However, as the solution of the resulting
problem is iterative, the method might have computation time issues regarding the operation
in a real-time control system.

To close the gap between the proposed methods, the nearest corner method was developed and
introduced in former work of the authors [6]. It is a real-time suitable method that allows for operation
outside theWFW and also the consideration of path-planning and collision avoidance.

The method is based on geometrical calculations inside the cable force space. It offers a defined
and predictable number of non-iterative calculation steps, which promises a high suitability for
real-time applications.

In [6], an example of a rescue scenario after a cable break was used for testing the nearest corner
method. More details regarding the scenario and robot model can be found in [7]. The simulation
model possessed three cables and two degrees of freedom and a redundancy of r = 1. Simulation
results have been shown in [6], comparing different parameters, which will be briefly discussed
in Section 4.2.

However, as the the results of former work have been promising, there are open questions left
that need to be discussed in this paper. First, broader testing with different parameters and tests
in a model with a higher redundancy of r = 2 need to be carried out. Second, a detailed investigation
on the computation time as well as on real-time suitability is needed. Finally, the continuity of
the method when leaving or entering theWFW needs to be discussed.

The paper is structured as follows: In the second chapter, an introduction of the underlying
robot-modeling is given and the computation of cable forces is explained. The third chapter outlines
two methods for calculation cable forces outside of the WFW . In chapter four, open questions
regarding the nearest corner method are addressed via the results of the simulation. Chapter five
summarizes the results and gives an outlook on future work.

2. Modeling and Cable-Robot Basics

The robot, as shown in Figure 1, is referenced in the inertial coordinate-system 6-B ,
where the mobile platform carries the platform-fixed coordinate-system 6-P . The robot possesses
n degrees-of-freedom and m cables. Therefore, the redundancy of the platform is r = m − n.
The posture of the platform—which here is the end-effector of the robot—referenced in coordinates
of the inertial frame is defined as BxP = [BrP Φ]T. Herein, BrP is the position vector and Φ

the orientation of the end-effector, both defined as row vectors. The orientation with respect to
the inertial coordinate-system is described in the means of roll-pitch-yaw angles by the rotation matrix
BRP. Assuming a point-shaped guidance of the cable at the point where the cable is leaving into
the workspace, the modeling of pulleys is neglected in the following. Using inverse kinematics,
the cable vectors Bli, as shown in Figure 1, can be obtained by:

Bli =
Bbi − (BrP + BRP

P pi)︸ ︷︷ ︸
B pBi

, 1 ≤ i ≤ m (1)

Herein, Bbi are the base vectors of the robot and describe the points, where the cables enter
the robot’s workspace. P pi describe the points where the cables are connected to the platform.
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In the following, all vectors are decomposed and referenced in coordinate system 6-B , whereas for
simplicity, the top-left index is left out.
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Figure 1. Model parameters of the Cable-robotFigure 1. Model parameters of the cable-robot.

Every cable is tensioned by a force fi in direction of the unit vector νi. All cable tensions are
merged into the cable force vector f ∈ Rm×1. The ith cable exerts the force f i on the platform, that is

f i = fi ·
li
‖li‖2

= fi · νi, 1 ≤ i ≤ m. (2)

AT is the structure matrix of the robot. All forces and torques acting on the end-effector except for
the cable forces are summarized in −w. This might include gravity, process forces and torques as well
as inertia. Accordingly, in force equilibrium it holds

−w =

[
f p
τp

]
=

[
ν1 . . . νm

p1 × ν1 . . . pm × νm

] 


f1
...

fm


 = AT f . (3)

Setting up Newton–Euler equations, it is assumed that the center of gravity is identical to the origin
of the end-effector coordinate system [13]. Considering a simplified model for force equilibrium
(assumptions see Section 4), it holds that

[
mpE 0

0 IK

]

︸ ︷︷ ︸
Mp(xp)

[
B r̈P
Φ̈

]

︸ ︷︷ ︸
ẍp

+

[
0

I(K̇Φ̇) + (KΦ̇)×
(

I(KΦ̇)
)
]

︸ ︷︷ ︸
wC(xp ,ẋp)

−
[

f E
τE

]

︸ ︷︷ ︸
wE

︸ ︷︷ ︸
−w

= AT f . (4)

The wrench −w must be generated by the cables, e.g., to follow a certain motion. The platform
mass mp and the inertia tensor I are used to obtain the mass matrix of the platform Mp. ẋp and ẍp

are the first and second time derivative of the end-effector pose xp. The inertia tensor needs to be
expressed in the inertial system 6-B and depends on the orientation of the platform. E is an 3× 3 identity
matrix. Matrix K and its time derivative can be obtained from the kinematic Kardan equations [14].
wC contains the Coriolis and centrifugal forces and torques, while wE is the vector of external forces
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and torques acting on the platform. The presented cable-robot model and the underlying equations
are based on [15].

2.1. Wire Force Distribution

Solving Equation (4), considering limited cable forces, is a known problem in the field of
cable-robots. The cable forces are limited by a maximum force fmax and a minimum force fmin.
These parameters limit both the maximum motor torque to prevent damages to the system, and the
minimum cable tension to avoid sagging cables. The geometrical interpretation of the problem is one
suitable way to determine force distributions [16]. A m-dimensional hypercube C ⊂ Rm is formed by
the cable force limits inside the space of the cable forces. The delimiting hyperplanes of the cube are
defined by fi = fmin ∨ fi = fmax, 1 ≤ i ≤ m. For n equations and m unknown variables, assuming
n < m and a given w according to Equation (4), Equation (3) is an under-determined linear system
of equations. The dimension of the solution space is therefore equal to the redundancy r of the robot.
Solving Equation (4) for f , one has to consider:

f = −A+Tw︸ ︷︷ ︸
f 0

+Hλ. (5)

λ ∈ Rr is a vector of multipliers. The projection of the desired wrench onto the solution space is
f 0. The Moore–Penrose pseudo inverse of the structure matrix is denoted by A+T. The kernel or null
space H ∈ Rm×r of the structure matrix AT is defined by

H =
[

h1, . . . , hr

]
(6)

with the vectors hk solving the equation:

AThk = 0, 1 ≤ k ≤ r. (7)

The solution space S ⊂ Rm, defined by the columns of the kernel H, is r-dimensional and contains
all solutions of Equation (4). As shown in Figure 2, if the hyperplane intersects the solution space,
all feasible wire force distributions which lie inside the force limits are included in the manifold

F = C ∩ S 6= ∅. (8)

If F is nonempty for the given wrench, the pose is called wrench-feasible and F forms a convex
polyhedron [16]. As shown in Figure 2, the polyhedron Λ is formed by all multipliers λ leading to
wrench-feasible solutions. The kernel H is used as a transformation between Rr and Rm. Considering
the given force limits when solving the problem in Equation (5), it holds that

f min ≤ f 0 + Hλ ≤ f max

⇔ f min − f 0 ≤ Hλ ≤ f max − f 0.
(9)

The basis for the solution space S is being formed by the kernel H of the structure matrix.
If a feasible wire-force-distribution is existing, the inner tension of the system can be adjusted by
scaling the force-distribution within the limits using λ ∈ Λ. There are several methods for computing
force-distributions, which differ in computation time, workspace coverage, continuity, force level,
maximum possible redundancy, and real-time capability [5]. The forces can e.g., be calculated as
an optimization problem [17] or by applying the barycentric method [18].
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3. Force Calculation Outside the Wrench-Feasible Workspace

As described in the introduction, scenarios with a non-feasible wrench might occur,
e.g., when moving the end-effector outside of the static workspace using a haptic device or after
a cable break [6,7]. In this particular case, the given common methods fail to operate and a solution of
Equation (4) cannot be found as there is no intersection F . Therefore in the following, approaches to
generate approximated, but still reasonable force distributions are given.

3.1. Optimization

In [12], a method to calculate force distributions as an optimization problem considering
the constraints was proposed. Assuming the robot is outside its WFW . Simply changing
the constraints of minimum and maximum cable forces in order to find an appropriate wire force
distribution is no option. Therefore, to relax Equation (4), a so called slack variable s is added to
the left side of the equation. In [12], a way to solve the resulting problem via quadratic programming
is suggested. The optimization problem is given as

minimize sTD1s + ( f − f̃ )TD2( f − f̃ )

with AT f + w + s = 0

f min ≤ f ≤ f max.

(10)

To adjust the solution, the diagonal weighting matrices D1 and D2 can be used. The solution
forces will more likely generate the desired wrench by choosing D2 < D1. Otherwise, the solution
will tend more to follow the target forces f̃ . By choosing the target forces properly, the solution can
be adjusted e.g., for maximum stiffness or minimum force. The iterative approach of the proposed
solution method might be a problem within industrial real-time applications, even though a solution of
the problem can be carried out computationally efficient as shown in [12]. Therefore it can be advisable
to use a method with a preferably low and—most importantly—defined number of calculation steps.

3.2. Nearest Corner Method

In general, an optimizing algorithm as explained beforehand is applicable. But due to the fact
that such optimization schemes usually employ iterative solvers, their usability in a real-time control
systems might be a problem. As proposed in former work of the authors [6], an approach based on
geometrical analysis within the cable force space can be used, which is briefly explained in the following.
As discussed in Section 2.1, the space of cable forces f can be represented by an orthogonal coordinate
system. Note, the corners of C are denoted as FE,j, j = 1, . . . , 2m. In the following, it is assumed that
r = 1 or r = 2. Assuming a CDPR is within its WFW , a set of cable force solutions F exists and
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a continuous solution along a trajectory can be found. The methods as discussed in Section 2.1 can be
applied. Still, these methods will fail, if the CDPR is outside itsWFW and F is empty. Given the fact
that there is no intersection of the hypercube C and the solution space S , yet both of them exist.

Now there is at least one corner of C which has the closest distance to the hyper straight line
(for r = 1) or hyperplane (for r = 2) representing S , using Euclidean norm. Therein, the orthogonal
projections of FE,j onto S are denoted FP,j, as shown in Figure 3. The force distribution f at the corner
that has the closest distance is no solution to Equation (5). Still, it is an approximation in terms of
the motion inducing parts of f , i.e., f 0, and compliant with the force boundaries. It can be used
e.g., for control purposes, accordingly.
Version May 15, 2020 submitted to Robotics 6 of 12
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Note, that depending on the motion of the system, this closest corner might switch instantaneously.
Accordingly, instead of only using the closest corner, all corners are considered to ensure continuity of
the resulting cable forces during a motion. They are weighted by the distance to S using Euclidean
norm, where the distances between the projected forces onto S , namely FP,j and the corners FE,j are
given by

dj = ||FP,j − FE,j||, 1 ≤ j ≤ 2m. (11)

To obtain proper weighting gj for each corner of C, the summarized distance L = ∑2m

j=1 dj is needed.

gj =
( L

dj

)p
(12)

With higher exponential weights p, the corner closest to S will dominate all others the closer
it gets. If C and S are about to intersect, this ensures continuous transition between force distributions
outside and within theWFW , i.e., if a corner is about to become a valid force distribution according
to Equation (5).

G = ∑2m

i=j gj is the sum of all weights and the resulting force distribution yields

f =
2m

∑
j=1

(
FE,j

gj

G
)
, 1 ≤ j ≤ 2m. (13)

In general, finding a feasible cable force distribution according to Section 2.1 is always attempted
beforehand. The proposed method is used if these algorithms fail to determine a feasible solution and
a cable force distribution will be found, which has minimal distance to the solution space S .
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4. Simulation and Results

4.1. Evaluation for Redundancy r = 1

In former work of the authors, an example of a post cable break rescue scenario for testing
the proposed method was used, which was also applied in the following. More details to the scenario
and robot model can be found in [6,7]. As the results in this work extend the discussion presented there
and for comparability of the results in this work, the parameters remained the same as in the cited
sources. The model possessed three cables and two degrees of freedom and therefore a redundancy of
r = 1. The employed dynamic model was planar and had two degrees-of-freedom. The end-effector
was subject to gravity in negative direction of the y-axis and approximated as a point mass with
mp = 1 kg. The minimum force was fmin = 5 N and the maximum force was fmax = 150 N,
respectively. The cables cannot sag and were assumed to be massless. The numbering of the cables was
done in a clockwise direction, beginning with cable 1 at the bottom left and the pulley positions B are
shown in Figure 4. The simulation was carried out with a numerical integration using the Euler–Cromer
method and a fixed time step of ∆t = 1 ms. Based on the current cable and gravitational forces,
the actual platform acceleration was computed each time step. The modeling of electric motors,
gears, friction, and disturbances was neglected.

Now, a situation after a cable break was conceived. The platform was placed with zero velocity at

rp =
[
0.35 0.5

]T
m, at the start of the simulation. This position was outside of the static workspace

of the robot model [7]. Inside the workspace at r f =
[
0.65 0.5

]T
m, a goal position was defined,

which could be a rescue position after a cable break. An attractive potential field, as introduced in [19],
was placed with its origin at the goal position, to generate a desired wrench. The resulting attractive
force was given by the gradient of the potential field U:

Fatt(rp) = ∇Uatt(rp) =





−ζ(rp − r f ) : ρ f (rp) ≤ ρ0

−
ρ0ζ(rp − r f )

ρ f (rp)
: ρ f (rp) > ρ0.

(14)

To adjust the field strength, the scaling parameter ζ = 400 can be used. The Euclidean distance
between goal and actual position was ρ f (rp). The field was shifted between a quadratic and a conic
potential at distance ρ0 = 0.2 m. Additionally, a virtual damping was applied, which was proportional
to the robot velocity with factor DP = 110 Ns/m. Including the external forces, the resulting
wrench was

w =
[

FE

]
−
[

Fatt(rp) + FDP(ṙp)
]

. (15)

This desired wrench might be infeasible within the given cable force limits. Note, that repulsive
fields can also be used to avoid collisions [7], but this is not discussed further in this work. As described
in Section 3.2, a force calculation method is needed to check for a feasible solution of Equation (4).
In the following, the puncture method [20] was used for this purpose. If this method found a feasible
solution, the according cable forces were set in the next simulation step. If not, the nearest corner
method from Section 3.2 was applied to find forces which result in a wrench close to the desired one.

4.2. The Effect of Different Exponential Weights

In [6], simulation results were shown, comparing exponential weights of p = 8 and p = 20
in terms of forces and platform movement. In the following, the effect of different exponential
weights p on the platform movement was investigated in more detail. The simulation was carried
out with the parameters given beforehand, and the exponential weights varied between p = 4 and
p = 200. The results are shown in Figure 4. In general, it can be observed that an overshooting
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of the end-effector over the goal is reduced with increasing exponential weights. This is due to
the fact, that higher exponential weights p allow for a stronger intervention with cable forces nearer
the dominating edge of the hypercube.

Moreover, the time to reach the goal position tend is also reduced with higher weights p. The values
in Figure 4 show a significant reduction of tend in low values of p. In comparison of p = 4 and
p = 10, tend is reduced by more than a fifth. With rising p, the reduction of tend declines sharply.
For p ≥ 25, the reduction is barely noticeable. This is consistent with the changes in the movement of
the end-effector, which is also barely effected by weights p ≥ 25.
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cable break scenario is still being investigated. At the start of the simulation, the platform is placed at228

rp =
[
0.35 0.8

]T
m with zero velocity, which is outside of the static workspace of the robot model,229

Figure 4. Situation after break of cable associated with upper left winch. Movement of end-effector
with comparison of different exponential weights p, numbering of winches clockwise, starting at
bottom left. tend specifies the time to reach the goal position.

Note that exponential weights significant higher than p = 200 are not shown in Figure 4, as they
caused numerical instabilities due to very high numbers. Therefore, very high exponential weights
of p may be attractive in terms of continuity when entering theWFW , but are not viable or useful
in a real system.

4.3. Evaluation for Redundancy r = 2

In this section, the application of the nearest corner method in an example with a redundancy
of r = 2 is presented. The simulation parameters remain the same as in the example beforehand.
The number of cables is increased to m = 4 and the positions of the pulleys B are shown in Figure 5.
A cable break scenario is still being investigated. At the start of the simulation, the platform was placed

at rp =
[
0.35 0.8

]T
m with zero velocity, which was outside of the static workspace of the robot

model, see Figure 5. The goal position inside the workspace, which also possesses an attractive

potential field, was set at r f =
[
0.75 0.75

]T
m. The exponential weight was set to p = 20.

The static equilibrium workspace can be obtained neglecting dynamic effects. An approximation
of the static workspace was then generated by using a point grid and solving Equation (4) for each
point. A comparison of the workspace before and after a break of the top left cable is shown in Figure 5.
Clearly, the robot might be outside the workspace after a cable break.



Robotics 2020, 9, 41 9 of 12Version May 15, 2020 submitted to Robotics 9 of 12

y-
ax

is
[m

]

x-axis [m]

0

0

1

1

0.5

0.5

1.5

1.5

(a) Workspace of simulation model

y-
ax

is
[m

]

x-axis [m]

0

0

1

1

0.5

0.5

1.5

1.5

(b) Failure of upper cable

Figure 5. Static workspace of a model with r = 2 before and after cable failure, black dots indicate the
winch positions

see Fig. 5. The goal position inside the workspace, which also possesses an attractive potential field,230

is set at r f =
[
0.75 0.75

]T
m. The exponential weight is set to p = 20.231

The static equilibrium workspace can be obtained neglecting dynamic effects. An approximation232

of the static workspace is now generated by using a point grid and solving Eq. 4 for each point. A233

comparison of the workspace before and after a break of the top left cable is shown in Fig. 5. Clearly,234

the robot might be outside the workspace after a cable break.235

Carrying out the simulation, the results as shown in Fig. 6 can be obtained. The end-effector236

is pulled into the goal position after about 0.07 s, but overshoots in direction of the x-axis, since a237

maximum speed of 7 m/s is built up. At 0.015 s a first feasible solution is found by the Puncture238

Method and the algorithm switches. At 0.04 s the end-effector leaves the WFW again and the239

algorithm switches back to the Nearest Corner Method until 0.14 s. In this example it can be observed240

that the forces are continuous whenever the solution space and the hypercube begin to intersect or241

separate, respectively. Cable force limits are reached but not exceeded by the algorithm throughout242

the whole trajectory. The robot is successfully guided into the goal position after 0.2 s. At about 0.22 s243

it is completely stopped and the cable forces are settled. Concluding, the method works for examples244

with r = 1 and r = 2 while higher redundancies need to be investigated.245

4.4. Computational Efficiency246

To test the computational efficiency, the algorithm was compiled as a MEX-file, using Matlab Coder247

in Matlab R2019a. The execution was carried using an Intel CPU i7-3770 with 3.4 GHz on a Windows248

10 System. The scenario as described in Sec. 4.2 with an exponential weight of p = 8, see [6], was249

used to measure the computation time.250

Fig. 7 displays the resulting computation time per cycle step of the simulation throughout the251

trajectory. Note, that the calculation time of the algorithm in the first few steps is incomparably252

higher due to initialization and memory preallocation. After that, in the first phase, where the Nearest253

Corner Method is active, the average computation time is 54.5 µs.254

In the second phase, the algorithm switches. Now, the robot is inside the WFW and feasible255

solutions can be found by the Puncture Method, which is represented by a mean calculation time of256

48.8 µs.257

(a) Workspace of simulation model

Version May 15, 2020 submitted to Robotics 9 of 12

y-
ax

is
[m

]

x-axis [m]

0

0

1

1

0.5

0.5

1.5

1.5

(a) Workspace of simulation model

y-
ax

is
[m

]

x-axis [m]

0

0

1

1

0.5

0.5

1.5

1.5

(b) Failure of upper cable

Figure 5. Static workspace of a model with r = 2 before and after cable failure, black dots indicate the
winch positions

see Fig. 5. The goal position inside the workspace, which also possesses an attractive potential field,230

is set at r f =
[
0.75 0.75

]T
m. The exponential weight is set to p = 20.231

The static equilibrium workspace can be obtained neglecting dynamic effects. An approximation232

of the static workspace is now generated by using a point grid and solving Eq. 4 for each point. A233

comparison of the workspace before and after a break of the top left cable is shown in Fig. 5. Clearly,234

the robot might be outside the workspace after a cable break.235

Carrying out the simulation, the results as shown in Fig. 6 can be obtained. The end-effector236

is pulled into the goal position after about 0.07 s, but overshoots in direction of the x-axis, since a237

maximum speed of 7 m/s is built up. At 0.015 s a first feasible solution is found by the Puncture238

Method and the algorithm switches. At 0.04 s the end-effector leaves the WFW again and the239

algorithm switches back to the Nearest Corner Method until 0.14 s. In this example it can be observed240

that the forces are continuous whenever the solution space and the hypercube begin to intersect or241

separate, respectively. Cable force limits are reached but not exceeded by the algorithm throughout242

the whole trajectory. The robot is successfully guided into the goal position after 0.2 s. At about 0.22 s243

it is completely stopped and the cable forces are settled. Concluding, the method works for examples244

with r = 1 and r = 2 while higher redundancies need to be investigated.245

4.4. Computational Efficiency246

To test the computational efficiency, the algorithm was compiled as a MEX-file, using Matlab Coder247

in Matlab R2019a. The execution was carried using an Intel CPU i7-3770 with 3.4 GHz on a Windows248

10 System. The scenario as described in Sec. 4.2 with an exponential weight of p = 8, see [6], was249

used to measure the computation time.250

Fig. 7 displays the resulting computation time per cycle step of the simulation throughout the251

trajectory. Note, that the calculation time of the algorithm in the first few steps is incomparably252

higher due to initialization and memory preallocation. After that, in the first phase, where the Nearest253

Corner Method is active, the average computation time is 54.5 µs.254

In the second phase, the algorithm switches. Now, the robot is inside the WFW and feasible255

solutions can be found by the Puncture Method, which is represented by a mean calculation time of256

48.8 µs.257
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Figure 5. Static workspace of a model with r = 2 before and after cable failure, black dots indicate
the winch positions.

Carrying out the simulation, the results as shown in Figure 6 can be obtained. The end-effector
was pulled into the goal position after about 0.07 s, but overshoots in direction of the x-axis,
since a maximum speed of 7 m/s was built up. At 0.015 s a first feasible solution was found by
the puncture method and the algorithm switches. At 0.04 s the end-effector leaves theWFW again
and the algorithm switches back to the nearest corner method until 0.14 s. In this example it can be
observed that the forces were continuous whenever the solution space and the hypercube begin to
intersect or separate, respectively. Cable force limits were reached but not exceeded by the algorithm
throughout the whole trajectory. The robot was successfully guided into the goal position after 0.2 s.
At about 0.22 s it came to a complete stop and the cable forces were settled. Concluding, the method
works for examples with r = 1 and r = 2 with higher redundancies need to be investigated.
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4.4. Computational Efficiency

To test the computational efficiency, the algorithm was compiled as a MEX-file, using Matlab
Coder in Matlab R2019a. The execution was carried using an Intel CPU i7-3770 with 3.4 GHz on
a Windows 10 System. The scenario as described in Section 4.2 with an exponential weight of p = 8,
see [6], was used to measure the computation time.

Figure 7 displays the resulting computation time per cycle step of the simulation throughout
the trajectory. Note, that the calculation time of the algorithm in the first few steps is incomparably
higher due to initialization and memory preallocation. After that, in the first phase, where the nearest
corner method was active, the average computation time is 54.5 µs.

In the second phase, the algorithm switches. Now, the robot was inside theWFW and feasible
solutions can be found by the puncture method, which was represented by a mean calculation time of
48.8 µs.

The difference of 5.7 µs in mean computation time between both phases exemplifies how small
the calculation time of the nearest corner method itself is. Considering a 2 kHz control frequency which
leads to 500 µs cycle time, the Nearest Corner Method in combination with the Puncture Method for
a first feasibility check, needs roughly 10% of the cycle time. All in all, this makes the method highly
applicable in real-time control systems.
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4.5. Continuity

To ensure a stable system operation and to avoid vibrations in the system, a continuity in the cable
forces and therefore in the commanded motor torques is essential. In general, for a continuously
moving solution space, the resulting cable forces are continuous. The crucial point occurs, when the
solution space S starts or stops to intersect the hypercube C and the robot is entering or leaving
the WFW . For exponential weights p → ∞, the solution of the nearest corner method converges
against the edges of the hypercube. If the preceding feasibility check is carried out using a cable force
calculation method that covers the full workspace as e.g., the barycentric method [18] or the improved
closed form [21], a solution is found as long as it exists. In this case, the transition between the two
methods is continuous. But as an exponential weight of p → ∞ is not necessarily viable or useful
in a real system as discussed in Section 4.2, there can always be a small discontinuity in the solution.
Nevertheless, for time-discretized and sampled real-time systems, the effect is minor.
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5. Conclusions and Outlook

A new real-time capable method for cable force calculation of CDPRs outside theWFW was
discussed in this work. The method is based on geometric calculation in the cable force space. Based on
former work of the authors, several open questions are addressed in this work.

Starting from the experiments in [6], a broader view to the effect of different exponential weights
p was given. Also, the method was shown to work for a higher redundancy of r = 2 in an extended
example simulation. As the algorithm works on geometric calculations in the cable force space and is
non-iterative, it possesses superior real-time-behavior which was shown in Section 4.4. Furthermore,
a brief discussion about the continuity of the method was given, when the end-effector is entering or
leaving theWFW . The properties of the algorithm indicate a high relevance for situations like cable
breaks or emergency stops.

Next steps involve the testing in a complex physical environment simulation and finally practical
testing on a real-time system. Lastly, an implementation of the method for arbitrary redundancies
needs to be done and tested.

In the future, the presented method can be a contribution to ensure the safety and reliability of
cable-driven parallel robots operating beyond theirWFW , e.g., after a cable break. This is highly
relevant in industrial applications, such as warehousing or automated construction [1,3].
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