
robotics

Article

Globally Optimal Inverse Kinematics Method for a
Redundant Robot Manipulator with Linear and
Nonlinear Constraints

Alessandro Tringali 1,* and Silvio Cocuzza 2

1 Department of Design, Manufacturing and Engineering Management, University of Strathclyde,
Glasgow G1 1XJ, UK

2 Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; silvio.cocuzza@unipd.it
* Correspondence: alessandro.tringali@strath.ac.uk or a.tringali@archangel.works

Received: 8 July 2020; Accepted: 30 July 2020; Published: 31 July 2020
����������
�������

Abstract: This paper presents a novel inverse kinematics global method for a redundant robot
manipulator performing a tracking maneuver. The proposed method, based on the choice of
appropriate initial joint trajectories that satisfy the kinematic constraints to be used as inputs for a
multi-start optimization algorithm, allows for the optimization of different integral cost functions,
such as kinetic energy and joint torques norm, and can provide solutions with a variety of constraints,
both linear and nonlinear. Furthermore, it is suitable for multi-objective optimization, and it is able to
find multiple optima with minimal input from the user, and to solve cyclic trajectories. Problems with
a high number of parameters have been addressed providing a sequential version of the method based
on successive stages of interpolation. The results of simulations with a three-Degrees-of-Freedom
(DOF) redundant manipulator have been compared with a solution available in the literature based
on the calculus of variations, thus leading to the validation of the method. Moreover, the effectiveness
of the presented method has been shown when used to solve problems with constraints on joint
displacement, velocity, torque, and power.

Keywords: redundant manipulators; inverse kinematics; multi-objective optimization; global solution

1. Introduction

Redundant manipulators are extensively used for their ability to perform a prescribed end-effector
motion (tracking problem) while taking into account extra goals, such as obstacle avoidance or the
minimization of energy consumption, or other cost functions. This is particularly important for
manufacturing tasks, which often require robots to perform a repetitive task while keeping energy and
time requirements as low as possible. Since this type of application does not require joint motion to be
computed in real time, the tracking problem is usually solved globally in this case. That is, the cost
function is minimized over the whole trajectory at once rather than one step at a time. The complexity
of this problem lies in its nonlinearity and high number of parameters. Furthermore, the physical
limits of the manipulator (joint displacement, velocity, torque, power) are difficult to take into account,
and the complexity is further increased when the manipulator is required to perform a task cyclically
(i.e., reaching the initial joint configuration again at the end of the task).

Several solutions have been proposed in the literature for the global optimal solution of the
tracking problem, mostly based on integral cost functions. Early attempts focus on either the Pontryagin
Maximum Principle, as proposed by Nakamura et al. [1], or on the calculus of variations, as proposed
by Kazerouinian et al. [2]. Both of them use the integral of pseudo-kinetic energy along the trajectory
as a cost function, and both their approaches are limited by the fact that they formulate the global

Robotics 2020, 9, 61; doi:10.3390/robotics9030061 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0001-9746-4642
http://dx.doi.org/10.3390/robotics9030061
http://www.mdpi.com/journal/robotics
https://www.mdpi.com/2218-6581/9/3/61?type=check_update&version=4

Robotics 2020, 9, 61 2 of 24

tracking problem as a Two-Point Boundary Value Problem (TPBVP). Nedungadi et al. [3] exploited the
calculus of variations to provide an analytical solution for the global minimization of kinetic energy,
which, however, still required them to solve a TPBVP. In order to overcome issues related to Jacobian
inversion, a variational Jacobian-free approach was sought by Hirakawa et al. [4], who proposed an
algorithm to find the minimum electrical energy consumption along a trajectory by using a spline
approximation of joints trajectory. Martin et al. [5] exploited a B-spline approximation to optimize the
joint torques norm while tracking an end-effector trajectory, also limiting joint displacements.

Several solutions have been proposed to compute global inverse kinematics solutions while
respecting limits on joint variables or performing cyclic tasks. Zhou and Guyen [6,7] presented an
algorithm based on the Pontryagin Maximum Principle and state space augmentation method to
either handle joint limits or the periodicity of the trajectory. Nurmi et al. [8] used instead a penalty
in the integral cost function to solve the problem of minimizing energy while tracking a trajectory
with limits on joint displacements, velocities, and accelerations. Lyu et al. [9] exploited Sequential
Quadratic Programming (SQP) to minimize time and energy consumption with constraints on joints
displacement, velocity, acceleration, and jerk.

Some researchers also developed dynamic programming approaches to solve the global inverse
kinematics problem. In particular, Ferrentino et al. [10] showed the flexibility of dynamic programming
for multi-objective optimization and for finding solutions in different homotopy classes and with
different type of constraints. The dynamic programming approach, however, has the drawback of the
discretization of inputs and the very high dimensionality, although it can be suited for simple planar
robots. Dynamic programming approaches were also sought by Guigue et al. [11], who proposed
an algorithm to solve multi-objective optimization problems for a seven-Degrees-of-Freedom
(DOF) manipulator.

Nonlinear optimization methods have been extensively used for robotic path planning as well,
with plenty of attention being focused on evolutionary algorithms, especially Genetic Algorithms
(GA), for point-to-point trajectories. This is due to several advantages they have over other methods:
they allow for finding a global solution, do not imply the use of derivatives or gradients, and are
suitable for a wide range of problems. The first author who extensively described the possibility to use
these methods in robotics, to the best of our knowledge, was Davidor [12]. Since then, many different
works have been published on the topic, mostly focused on point-to-point trajectories. Shintaku [13]
proposed a GA-based solution to find the minimum energy solution for an underwater manipulator,
based on solving the optimal control problem as a TPBVP, by searching the solution with a GA.
McAvoy et al. [14] proposed to combine B-splines and GAs to obtain an optimal trajectory for a
redundant manipulator in a pick-and-place operation. Tian et al. [15] presented a floating point
GA-based solution able to avoid obstacles and minimize joint displacements. On the other hand,
other research works focused on partially-constrained motion planning or fully-constrained motion
planning (as alternatives to point-to-point motion planning). For example, Baba et al. [16] proposed
a GA-based path planning algorithm, which included collision avoidance with moving obstacles in
the robot workspace thanks to the introduction of the concept of pseudo-potential. Kazem et al. [17]
developed a GA to carry out the point-to-point trajectory planning of a three-DOF redundant robot
arm minimizing traveling time and space, while not exceeding maximum joint torque, and avoiding
singularities and collision with obstacles in the robot workspace. In addition, Ferrentino et al. [18]
designed a GA to perform time-optimal control of robotic manipulators along specified paths, subject
to torque constraints. Another type of evolutionary algorithm is Particle Swarm Optimization (PSO),
which has also been exploited to solve robotics problems. Worth mentioning are Stevo et al. [19],
who used it to calculate a point-to-point trajectory optimized with respect to different objectives
(minimum time, energy consumption, joint displacement), Hansen et al. [20], who used it to minimize
electrical energy consumption with a realistic model of actuators and related losses, and Doan et al. [21],
who presented a PSO-based inverse kinematics solution for robotic arc welding. To a small degree,
Simulated Annealing (SA) has also received attention by the robotic community, for example by Garg

Robotics 2020, 9, 61 3 of 24

and Kumar [22], who used an adaptive version of the algorithm for non-redundant manipulators,
comparing the results with those obtained with a GA. The conclusions were that both reached the same
solution, but SA was computationally faster.

Trajectory tracking problems of redundant manipulators—i.e., motion planning problems where
the end-effector desired position and velocity of a redundant manipulator are defined along the whole
length of the trajectory—are frequent in manufacturing (e.g., robotic machining, laser cutting, paint
spraying, arc welding, sand blasting, etc.), and traditional methods that have been mentioned above
feature important limitations in tackling these problems. It has already been mentioned that the
Pontryagin Maximum Principle and the calculus of variations require the solution of a TPBVP, and that
they are not particularly flexible concerning the inclusion of constraints. In addition, some researchers,
such as Martin et al. [23], also highlighted that, under certain conditions, optimal control methods may
fail to find the global optimum, as two solutions might be in different homotopy classes: this means
that the most expensive one cannot be deformed continuously into the less costly one. In such cases,
optimization algorithms might fail to find the best optimum if their initial conditions are not in the
right homotopy class. On the other hand, Pashkevich et al. proposed multi-objective optimization
algorithms [24,25] via a graph representation of the search space and dynamic programming procedures,
which allowed for generating smooth manipulator trajectories within acceptable time, simultaneously
considering kinematic, collision, and singularities constraints. Moreover, Gao et al. [26] proposed
a methodology based on dynamic programming to optimize the robot and positioner motions in
redundant robotic systems for the fiber placement process, which allows users to find time-optimal
smooth profiles for the joint variables while taking into account maximum joint velocities/accelerations
and collision constraints. Nevertheless, none of these works considers quadratic cost functions, which
are necessary for the minimization of kinetic energy, joint torques, or reaction forces/torques.

On the other hand, using general nonconvex optimization techniques in trajectory tracking
problems can be computationally intensive, as the dimensionality of this problem turns out to be very
high. Indeed, the end-effector trajectory has to be divided in several steps, or path points, which need to
be as small as possible in order to allow precise tracking and, moreover, each step adds n parameters to
the optimization, where n is the number of DOF of the manipulator. Furthermore, only small portions
of the search space are relevant to the problem: most of the possible solutions feature excessive errors on
trajectory tracking, to the point they are not worth being considered. Even if it was possible to restrict
the search space only to solutions with no tracking error, the redundant nature of the manipulator
means there is still an infinite amount of them. In this context, Reiter et al. [27] proposed a solution
for the time-optimal path tracking problem of kinematically redundant manipulators that takes into
account the technological limits of the robot, which is formulated as a nonlinear programming (NLP)
problem solved with a multiple shooting method. In [28], the same authors presented a contribution to
the solution of the time-optimal trajectory planning problem for kinematically redundant manipulators.
In the proposed approach, the problem is divided into the trajectory optimization and an underlying
inverse kinematics problem. The former is solved using a numerical computation scheme, augmented
to fully exploit redundancy in an optimal way, such that the latter problem yields optimal results.

In this paper, a new optimization method for the solution of the global tracking problem of
a redundant manipulator is presented and validated through simulations. The proposed solution
overcomes the limitations of optimal control techniques applied to the trajectory tracking problem of
redundant manipulators in several ways. First of all, it searches for multiple optima, and thus has
an increased chance to find solutions in different homotopy classes, and allows to take into account
linear and nonlinear constraints and to tackle cyclic trajectories. Furthermore, the new method is
very flexible in optimizing different cost functions, and it is suitable for multi-objective optimization.
The presented approach is based on a multi-start optimization method, and it relies on the generation
of a population of candidate solutions and choice of the most promising ones as initial conditions
for the optimization. All candidate solutions respect the kinematic constraints—i.e., the end-effector
trajectory is exactly tracked, although in a non-optimal way. This prevents the proposed method from

Robotics 2020, 9, 61 4 of 24

having initial conditions with high tracking error, and thus allows for lower computational time and
increased chance of convergence. In order to extend the method ability to solve problems with very
high dimensionality, a sequential procedure is proposed, based on a relaxed problem with a limited
number of end-effector path points. The solution of this problem is progressively extended to the full
set of path points through interpolation.

Simulation results are presented for the optimization of the integral of kinetic energy and of joint
torques norm of a three-DOF planar manipulator, showing that the method hereby presented is able to
provide the solution of a linearly and nonlinearly constrained kinematic problem with several different
types of constraint (joint displacement, velocity, torque, and power). Even if the presented method is
validated by the simulation of a three-DOF planar robot, it is straightforwardly applicable to more
complex 3D and multi-DOF robot manipulators and, moreover, is very flexible as to the cost function
to be minimized—i.e., a generic cost function can be optimized and multi-objective optimization can
be performed.

The paper is organized as follows: Section 2 presents the problem definition; Section 3 introduces
the new method; Section 4 presents the results; Section 5 concludes the paper.

2. Problem Definition

A kinematically redundant manipulator is a manipulator with more DOF than controlled
end-effector variables. The tracking problem of a redundant manipulator is the problem of following a
reference end-effector trajectory, expressed as a function of time (t) in the Cartesian space, and finding
the related joint variables (q(t)):

xref(t) = x(q(t)) (1)

The redundancy implies that the problem expressed by Equation (1) may have an infinite number
of solutions in the joint space. Thus, the problem is usually formulated as an optimal control problem,
where a solution among all the possible ones is chosen based on the minimization of a cost function. For
the global problem, such cost function is an integral cost. In the case hereby analyzed, the expression
of the integral cost function is:

minimize
q

∫ t f in
t0

G
(
q,

.
q,

..
q, t

)
dt

subject to x(q(t)) = xref(t)
(2)

where t0 and t f in are the initial and final time of the end-effector trajectory, q are the joint positions,
.
q are

the joint velocities,
..
q are the joint accelerations, x and xref are the actual and the reference end-effector

trajectories, and G
(
q,

.
q,

..
q, t

)
is the cost function to be minimized along the trajectory.

In this work, two cost functions are considered: kinetic energy and joint torques norm. In the first
case, the cost function is expressed as:

Gkin =
1
2

.
qTM(q)

.
q (3)

where M(q) is the inertia matrix of the manipulator. In the second case, the following expression of
joint torques is considered:

τ = M(q)
..
q + n

(
q,

.
q
)

(4)

where
..
q are the joint accelerations, n

(
q,

.
q
)

is the term that comprises Coriolis and centrifugal forces,
and gravity forces are neglected. Therefore, the following cost function is considered:

Gtor = τTτ (5)

Robotics 2020, 9, 61 5 of 24

In discrete form, the problem becomes:

minimize
q

t f in∑
i=t0

G
(
qi,

.
qi,

..
qi, i

)
∆t

subject to x
(
qi

)
= xi,re f f or i = t0 ..t f in

(6)

where xi,ref is the reference end-effector position at time i, x
(
qi

)
the actual end-effector position at time

i, qi,
.
qi,

..
qi are the joint positions, velocities, and accelerations at time i, G

(
qi,

.
qi,

..
qi, i

)
is the cost function

at time i, and ∆t is the discrete time step.
The problem of minimizing the cost function in the form of Equation (6) can be solved with several

different boundary conditions. For the purposes of this work, two possible sets of initial conditions on
joint positions and velocities are considered. In the first one, the initial configuration of the robot is left
free (i.e., it can be chosen among those that respect the reference end-effector position at time t0), while
the velocities are set to zero. This represents the case in which the manipulator has to perform a certain
task starting from zero initial joint velocities. Another possible set of initial conditions is the one in
which the manipulator performs a cyclic task: this is a task in which the initial and final configurations
and joint velocities are the same, and it is typical of industrial applications in which robot manipulators
perform repetitive operations.

In the first case, initial conditions can be written as:

x(q(t0)) = xref(t0)
.
q(t0) = 0

(7)

with infinite possible choices for q thanks to robot redundancy.
In the second case the initial conditions can be expressed as:

q(t0) = q
(
t f in

)
.
q(t0) =

.
q
(
t f in

) (8)

In the reminder of this work, initial conditions which can be expressed as in Equation (7), will be
referred to as free initial configurations, while initial conditions which can be expressed as in Equation
(8) will be referred to as cyclic initial conditions.

3. Materials and Methods

3.1. Global Optimization Method

This section presents the method that is proposed to find the joint trajectories which globally
optimize the cost function while tracking a desired end-effector trajectory. First, Section 3.1.1 briefly
introduces multi-start algorithms. Then, the new method in a simple version featuring its main
characteristics (Global Kinematic Planner) is presented in Section 3.1.2. Section 3.1.3 presents a method
to compute random initial joint configurations which comply with the end-effector position constraint
at t0. This is a necessary step, since the initial robot configuration that will result in the globally optimal
solution is not known a priori, thus a number of trials are necessary. Finally, a more sophisticated
implementation of the Global Kinematic Planner, called Interpolation-based Global Kinematic Planner,
is introduced in Section 3.1.4. This enhanced version of the method features faster convergence times
and thus allows to tackle problems with a higher number of parameters, and ultimately to perform a
more complete search over the solution space.

3.1.1. Multi-Start Algorithm

Multi-start optimization algorithms [29] exploit multiple sets of initial conditions to fully explore
the search space of the cost function. They belong to the class of Random Search Methods, which have

Robotics 2020, 9, 61 6 of 24

been proven to require mild assumptions to converge to the global optimum as the number of search
attempts grows (for a proof, see, for example, [30]). The multi-start algorithm works as follows:

1. Generate candidate solution i.
2. Apply a local search method to improve i. Let x be the optimal solution obtained.
3. If x is the best solution found so far, save it. Otherwise, discard it.
4. Repeat steps 1–3 until a stop criterion is fulfilled.

In modern implementations, rather than repeating the steps in a sequential way, steps 1–3 are
performed in parallel (starting from different candidate solutions) on different processors, and the
best solution is chosen among all outcomes. A huge number of methods to generate initial conditions
has been proposed (some references can be found, for example, in [29]), but none of them have been
specifically developed for the problem hereby discussed, as most of the existing proposals are aimed at
covering as much of the search space as possible. However, this is not ideal for the global optimization
of joint trajectories in the tracking problem of redundant manipulators, as most of the values that joint
positions can assume do not correspond to positions on the desired end-effector trajectory. Since only
the kinematically compliant solutions are relevant (i.e., the solutions in the joint space for which the
desired end-effector trajectory is properly tracked), in this paper a method based on the computation of
a population of random local solutions of the inverse kinematics problem is proposed. Each member
of the population respects the kinematic constraints and is unique, providing the multi-start algorithm
with a wide set of feasible initial conditions to draw from.

In the literature, several local search algorithms have been exploited as local search methods for
step 2 of the multi-start algorithm. In this case, the analytical gradient is difficult to compute, thus
a numerical method is used. In particular, Sequential Quadratic Programming (SQP) is used [30],
as implemented in the fmincon function in Matlab. SQP is an iterative optimization technique based on
the optimization of a quadratic model of the cost function subject to a linearization of the constraints.
Thus, it allows to include both linear and nonlinear constraints, without the need to include them
explicitly in the cost function (e.g., using weights), since any output solution of SQP is automatically
compliant with them.

3.1.2. Global Kinematic Planner

The method that follows has been called Global Kinematic Planner and exploits a weighted
pseudoinverse in order to generate the initial conditions for the multi-start search. The use of
the weighted pseudoinverse is a widespread technique in robotics (for local optimal redundancy
resolution in differential kinematics), especially in the case W = I, where I is the identity matrix,
when the weighted pseudoinverse is called Moore Penrose pseudoinverse, and is used to calculate the
minimum-norm joint velocities required to obtain a desired end-effector velocity. Its mathematical
formulation is:

.
q = J+wv (9)

where v is the desired end-effector velocity. The weighted pseudoinverse can be expressed as:

J+w = W−1JT
(
JW−1JT

)−1
(10)

where the weight matrix W is a symmetric and positive definite matrix. It computes the local minimum
of the quadratic cost function:

C =
.
qTW

.
q (11)

The most important feature of Equation (9) for our purposes is that it is possible to generate a
different solution by changing the weight matrix W, so that the relative importance of each joint in
the cost function is modified. In the presented method, a randomly generated weight matrix for the
weighted pseudoinverse is exploited to obtain several kinematically compliant candidate solutions

Robotics 2020, 9, 61 7 of 24

(i.e., joint trajectories that respect the desired end-effector trajectory) for the multi-start algorithm.
The best candidates are then picked for further optimization. The steps of the proposed method are
presented here below. In their description, bold notations, such as q,

.
q, etc., identify vectors as usual,

while a notation with braces, such as
{
q
}
,
{ .
q
}
, etc., identifies a set of vectors, each one representing a

different time step of the trajectory.

Initialization

1. Manipulator geometrical and inertial parameters, simulation parameters (see Section 3.2),
and desired end-effector trajectory are taken as input.

2. A set of joint configurations compliant with the desired end-effector initial position is taken
as input.

3. A set of weight matrices is generated, each one symmetric with random eigenvalues comprised
between 0 and 1. The number of weight matrices to be generated depends on the available
computational power, but it must generally be high enough that a further increase does not
improve the best candidate solution anymore (see later in this section for further explanation).
A reasonable number is:

ncandidates = nparameters
2 (12)

where nparameters is the number of parameters of the problem taken into account, which corresponds to:

nparameters = npath points ∗ n joints (13)

where npath points is the number of points that define the desired end-effector trajectory, and n joints
is the number of DOF of the manipulator.

Population

4. A set of ncandidates solutions {qrandom} is computed for each robot initial configuration defined at
point 2, using the weight matrices generated at point 3 to weight the pseudoinverse. The joint
velocity profiles of each solution are obtained through Equation (9). Each candidate solution
{qrandom} is then obtained through numerical integration.

Optimization

5. All candidate solutions generated during the population phase are ranked according to a criterion.
In case of unconstrained optimization, the criterion is the value of the cost function, while, in case
of constrained optimization, the criterion is the value of the cost function plus an extra term to
penalize the violation of constraints on joint mechanical limits. This term has the same expression
as that presented in [31] by Liegeois in a different context:

wJL(q) = kJL

t f in∑
i=t0

1
2n

n∑
j=1

(
qi − qi

qiM − qim

)2

(14)

The value kJL is a weight to balance the extra term against the cost function, and the reminder of
the expression is a quantity defined as the distance from the joint mechanical limits, computed
for each time step and summed over the whole motion time. In Equation (14), qiM (qim) is the
maximum (minimum) i-th joint limit, qi the mean value between the two, and n are the robot DOF.
This term is included in the cost function to penalize candidate solutions that exceed joint limits
by large amounts, as opposed to excluding all candidate solutions that violate the limits, and for
this reason kJL is set to 0.01. In this way, the solver is still able to consider candidate solutions that
exceed the limits by a small amount on a limited number of path points. Other constraints are
not considered for the ranking of solutions, since in all the simulations carried out joint limits
appeared to be by far the most influential constraint for the ranking. The term in Equation (14) is

Robotics 2020, 9, 61 8 of 24

not required to be explicitly part of the cost function used for the optimization (step 6 below), since
all constraints, including trajectory tracking, are taken into account as part of the SQP algorithm.

6. The multi-start algorithm is launched with the best nruns candidate solutions, while all the others
are discarded. Joint limits and the other constraints are enforced through the fmincon function,
which takes their expression/value as an input. The number nruns depends on the computational
power available and on the complexity of the problem. For the examples presented in this work
(see Section 4), nruns has been set to 24.

7. The optimal set of joint position vectors
{
qbest

}
is picked from the results of the multi-start

algorithm. This corresponds to the optimal solution.

It must be highlighted that the use of a random weight matrix might feature very different results
in term of joint displacements over the whole length of the trajectory despite apparently small changes
in the weights. This makes it necessary for ncandidates to be sufficiently high, while on the other hand
increasing it above a certain value will require additional computational time but will not sensibly
increase the quality of the best candidate solution anymore. In order to investigate the relationship
between ncandidates and the chances to find the best optimum, the value of the kinetic energy cost
function for a three-DOF planar robot has been computed for sets with ncandidates from 1 to 104.5 for a
problem with 39 parameters, corresponding to an initial end-effector position and 12 following path
points along a line, which for three DOF gives (12 + 1)*3 parameters. In Figure 1, the x-axis shows
the number of candidate solutions in the set, and the y-axis shows the difference between the cost
function value (C) for the best member of the ncandidates set and the best computed value of the cost
function obtained in the simulations (see Section 4.2, Simulation 1) for the system under consideration,
according to Equation (15).

y = log
(
Cbest candidate −Cbest optimum

)
(15)

Robotics 2020, 9, x FOR PEER REVIEW 8 of 24

 The multi-start algorithm is launched with the best 𝑛௨௦ candidate solutions, while all the
others are discarded. Joint limits and the other constraints are enforced through the fmincon
function, which takes their expression/value as an input. The number 𝑛௨௦ depends on the
computational power available and on the complexity of the problem. For the examples
presented in this work (see Section 4), 𝑛௨௦ has been set to 24.

 The optimal set of joint position vectors ሼ𝒒𝒃𝒆𝒔𝒕ሽ is picked from the results of the multi-start
algorithm. This corresponds to the optimal solution.

It must be highlighted that the use of a random weight matrix might feature very different
results in term of joint displacements over the whole length of the trajectory despite apparently
small changes in the weights. This makes it necessary for 𝑛ௗௗ௧௦ to be sufficiently high, while on
the other hand increasing it above a certain value will require additional computational time but will
not sensibly increase the quality of the best candidate solution anymore. In order to investigate the
relationship between 𝑛ௗௗ௧௦ and the chances to find the best optimum, the value of the kinetic
energy cost function for a three-DOF planar robot has been computed for sets with 𝑛ௗௗ௧௦ from 1
to 104.5 for a problem with 39 parameters, corresponding to an initial point and 12 following path
points along a line, which for three DOF gives (12 + 1)*3 parameters. In Figure 1, the x-axis shows the
number of candidate solutions in the set, and the y-axis shows the difference between the cost
function value (𝐶) for the best member of the 𝑛ௗௗ௧௦ set and the best computed value of the cost
function obtained in the simulations (see Section 4.2, Simulation 1) for the system under
consideration, according to Equation (15). 𝑦 = log (𝐶௦௧ ௗௗ௧ − 𝐶௦௧ ௧௨) (15)

It can be observed that, for a number of 𝑛ௗௗ௧௦ higher than the number of parameters, such
difference tends to a linear function in logarithmic scale, which corresponds to a power law in linear
scale. The best fit function is: 𝑦 = 𝑒ିସ.ଷଷ ∗ 𝑛ௗௗ௧௦ି.ଶଷ (16)

This suggests that, for the problem under consideration, increasing the number of 𝑛ௗௗ௧௦
progressively reduces the distance between the initial guess and the globally optimal solution. It is
noted that the value of 𝑛ௗௗ௧௦ obtained by Equation (12) is 1521, which falls well within the
linear part of the graph.

Figure 1. Difference between cost function value of best candidate solution and best computed value of
cost function versus number of candidate solutions.

It can be observed that, for a number of ncandidates higher than the number of parameters, such
difference tends to a linear function in logarithmic scale, which corresponds to a power law in linear
scale. The best fit function is:

y = e−4.0733
∗ n−0.2030

candidates (16)

Robotics 2020, 9, 61 9 of 24

This suggests that, for the problem under consideration, increasing the number of ncandidates
progressively reduces the distance between the initial guess and the globally optimal solution. It is
noted that the value of ncandidates obtained by Equation (12) is 1521, which falls well within the linear
part of the graph.

3.1.3. Generation of Robot Initial Configurations

Step 2 of the Global Kinematic Planner involves the input of a set of initial joint configurations.
However, it is most often the case where no known initial configuration is likely to be reasonably close
to the one of the global optimum solution. In this case, the following method can compute more initial
configurations starting from an existing one (qinitial configuration):

1. A set of npath points joint velocity vectors {
.
qperturbation

}
is randomly generated. In the examples

provided in this paper, a normal distribution has been used, due to its effectiveness and the
simplicity of implementation. Other methods are widely used for finding initial conditions for
multi-start algorithms, such as Latin hypercube [32]. This was not necessary here, but it could
lead to better results when the chosen qinitial configuration is thought to be far from the optimal one.

2. An inverse kinematics problem is solved with end-effector velocity set to zero, robot initial

configuration q = qinitial configuration, and secondary task
{ .
qperturbation

}
. This leads to a new initial

configuration which does not affect the end-effector position:

q new initial configuration = qinitial configuration +

∫ t f in

t0

(
I− J+J

) .
qperturbationdt (17)

Equation (17) is obtained by considering the general solution of the inverse kinematics problem
with Moore–Penrose pseudoinverse:

.
q = J+

.
x +

(
I− J+J

) .
q0 (18)

where
.
x is the desired end-effector velocity and

.
q0 is a secondary task to be executed without modifying

the end-effector velocity. This can be achieved by exploiting the null-space operator [33] (I− J+J). If
.
x

is set to zero in Equation (18), the joint velocities will not be affected by the end-effector velocity and
will be equal to (I− J+J)

.
q0. Equation (17) is obtained by integrating Equation (18) from t0 to t f in.

The size of the set of initial configurations is an important parameter to ensure convergence on the
best optimum, as the initial configuration of the manipulator influences the whole trajectory. In general
terms, this set should be representative of the whole set of configurations that produce the desired
end-effector initial position. Inverse kinematics as per Equation (17) is computationally inexpensive,
which allows to generate a high number of set members relatively inexpensively. The examples
presented in this paper have been produced with a set of 66 initial configurations, which come from
a trade-off between the overall computation time required and the probability to discard an initial
condition that would give an optimum better than the previous ones found. Some of the 66 initial
configurations may violate the manipulator joint limits. On the one hand, the ranking function will
penalize initial configurations in which joint limits are violated by large amounts (which will not be
processed further) and, on the other hand, the SQP optimization will always provide optimal solutions
that are compliant with all the constraints, even if some of the initial configurations violate the joint
limit constraints by a small amount.

3.1.4. Interpolation-Based Global Kinematic Planner

While the Global Kinematic Planner can find global optima of the problem expressed by Equation (6),
its computational complexity grows with both the number of DOF of the manipulator and the number
of path points. Due to this, its use might be computationally expensive for problems featuring

Robotics 2020, 9, 61 10 of 24

multi-DOF manipulators or long trajectories with high precision requirements. In order to overcome
this issue, a global optimal solution on a reduced set of parameters can be calculated and extended on
a higher number of parameters through interpolation. Such new solution can then be optimized again
with the new number of parameters. This two steps approach will reduce computational time, since the
second round of optimization starts from an initial guess that is already optimal for a similar problem.
The two steps can then be repeated adding more parameters through interpolation, until the desired
time step is reached (possibly, the same as the Global Kinematic Planner). This method also allows a
more thorough search on the solution space: since the optimization of a single candidate solution is
much less time consuming with a low number of parameters, it is possible to first run the multi-start
algorithm with a high number of candidate solution nruns, and then focus the following optimization
steps on the most promising solutions obtained. This allows to save computational power and may
increase the chances to find a global optimum. The method above outlined, called Interpolation-based
Global Kinematic Planner, works as follows:

1. A subset of path points of the end-effector trajectory to track is selected. A sampling interval
∆tinterp = n ∗∆t with n integer and ∆t discrete time step of the complete problem is used. Sampling
can be thicker in parts of the trajectory where the cost function to be minimized is expected to
be higher.

2. The Global Kinematic Planner is used to provide a solution {qinterp,subset}, as explained above.

3. A new ∆tinterp is chosen, according to the formula ∆tinterp, new = n∗∆t
m , where m is an integer

submultiple of n.
4. A new set of path points is selected with ∆tinterp, new as a time step.
5. Cubic splines are used to interpolate the values of q on the path points not included in the

previous subset
{
qinterp,subset

}
, obtaining a complete

{
q
}

vectors set on the new set of path points.

6. A further gradient-based optimization based on SQP is run with initial guess corresponding to
the solution obtained at the previous step.

7. Steps 3–6 are repeated, decreasing ∆tinterp until the desired step size ∆t is reached. Subject to
available computational power, this can be as small as the one of the complete original problem.

The solution obtained at step 5 is likely to be close to the optimal solution of the full global problem
since it is an interpolation of a global optimal solution of a simplified version of the problem. For this
reason, step 6 can run a much easier optimization (with faster convergence) with respect to step 6 of
the Global Kinematic Planner, since the initial guess is already near-optimal.

3.2. Simulation Setup

A three-DOF planar manipulator (with 3 revolute joints) is used for the implementation, validation,
and simulation of the presented method. This model corresponds to a real robot prototype that has
been used in previous works [34–37]. The two end-effector Cartesian coordinates are controlled, x and
y, thus leaving one degree of kinematic redundancy. Geometrical and inertial characteristics of the
manipulator are presented in Table 1.

Table 1. Manipulator geometrical and inertial parameters.

Link # Mass
(kg)

Length
(m)

Moment of Inertia
(Barycentric) (kgm2)

Center of Gravity
(m)

1 0.615 0.176 0.001811 0.0950
2 0.615 0.176 0.003173 0.0717
3 0.307 0.1375 0.002103 0.0526

In order to show the effectiveness of the presented method, five simulations have been performed:
one without constraints to validate it with respect to a known global optimum method available in

Robotics 2020, 9, 61 11 of 24

the literature, and the other four with linear and nonlinear constraints to show its ability to handle
different cost functions and a set of constraints. Two different end-effector trajectories have been used:
a rectilinear one for validation and for testing the effectiveness of the method with joint, velocity, torque,
and power constraints, and a circular one to show the effectiveness of the method also with cyclic initial
conditions. Both trajectories start from the same end-effector position, xinit = [0.4678 m; 0.0000 m],
and run for a total time T = 1 s. The rectilinear trajectory has a length of 0.40 m and reaches the
end-effector final position xfin = [0.0983 m; 0.1526 m], while the final end-effector position is the same
as the initial one for the circular trajectory. The radius of the circular trajectory is 0.05 m. The constraints
considered in this work are on joint displacement, velocity, torque, and power. It should be noted that
torque and power are nonlinear constraints. The numerical values of the limits used are reported in
Table 2.

Table 2. Constraint values.

Constraint Value

Joint displacement 90 deg on 1st joint, 120 deg on 2nd and 3rd joint
Joint velocity 3.8 rad/s
Joint torque 0.4 Nm
Joint power 0.7 W

Using the Global Kinematic Planner method as a reference with ∆t = 0.01 s, each problem has
303 parameters, since the robot has three DOF and the number of path points is 101 (included the
initial point). All simulations were performed using the Interpolation-based Global Kinematic Planner,
with an initial ∆tinterp = 0.08 s, leading to a highly reduced number of parameters (39 parameters).
A number of 1521 (= 392) candidate solutions were generated, and the best 48 (nruns) selected to be
optimized via the multi-start algorithm. The time step has been then progressively halved, doubling
the number of parameters at each iteration, until the full solution with 303 parameters and ∆t = 0.01 s
was reached. All the characteristics of the simulated trajectories are summarized in Table 3.

Table 3. Simulated trajectories.

Simulation nr. Shape Control Cost Constraints

1 Rectilinear Kinetic energy Unconstrained (validation)
2 Rectilinear Kinetic energy Joint displacement, velocity
3 Rectilinear Torques norm Joint displacement, velocity
4 Rectilinear Torques norm Joint displacement, velocity, torque, power
5 Circular Kinetic energy Joint displacement, velocity, cyclic motion

The end-effector velocity profiles have been chosen in order to have sufficiently smooth
accelerations (continuous and with continuous derivative), as shown in Figure 2. The equation
of the derivative of the curvilinear abscissa of the end-effector used is:

ds
dt

=

2 ∗

(
L
2

(T
2)

2

)
∗

(
t2

2 + (2 ∗β)−2
∗ cos((2 ∗β) ∗ t) − (2 ∗β)−2

)
, t ≤ T

2

L −
(
2 ∗

(
L
2

(T
2)

2

)
∗

(
((T)−t)2

2 + (2 ∗β)−2
∗ cos

(
(2 ∗β) ∗

((
T
2

)
− t

))
− (2 ∗β)−2

))
, t > T

2

(19)

where T is the total motion time, L the overall length of the considered trajectory, and β = 2π
T .

Robotics 2020, 9, 61 12 of 24
Robotics 2020, 9, x FOR PEER REVIEW 12 of 24

Figure 2. End-effector curvilinear abscissa and its derivatives.

4. Results

4.1. Validation

In order to validate the proposed method, the solution for the kinetic energy integral cost
function (without constraints) is computed and then compared with a solution obtained with a
different method available in literature, which is based on calculus of variations. The method used
for the comparison has been proposed by Nedungadi et al. [3] and is based on an acceleration-based
inverse kinematics solution: 𝒒ሷ = 𝑱𝑩ା൫𝒙ሷ − 𝑱ሶ𝒒ሶ ൯ + (𝑰 − 𝑱𝑩ା𝑱)𝑩ି𝟏𝒏(𝒒, 𝒒ሶ) (20)

where 𝑱𝑩ା is the pseudoinverse weighted with the manipulator inertia matrix (𝑩), 𝑱ሶ is the first
derivative of the Jacobian matrix, and 𝒙ሷ is the end-effector acceleration. The solution of Equation (20)
along an end-effector trajectory gives the joint accelerations which correspond to a minimum of the
kinetic energy integral along the trajectory.

Results for the kinetic energy integral and mean absolute difference of joint displacements
between the Interpolation-based Global Kinematic Planner and Nedungadi’s solution, starting from
the same joint configuration, are shown in Table 4 for the three optima found, which comply with
the boundary conditions of Equation (7). The stroboscopic views of robot motion for the three
optimal trajectories are shown in Figure 3.

Figure 2. End-effector curvilinear abscissa and its derivatives.

4. Results

4.1. Validation

In order to validate the proposed method, the solution for the kinetic energy integral cost function
(without constraints) is computed and then compared with a solution obtained with a different method
available in literature, which is based on the calculus of variations. The method used for the comparison
has been proposed by Nedungadi et al. [3] and is based on an acceleration-based inverse kinematics
solution:

..
q = J+

B

(..
x−

.
J

.
q
)
+

(
I− J+

BJ
)
B−1n

(
q,

.
q
)

(20)

where J+
B is the pseudoinverse weighted with the manipulator inertia matrix (B),

.
J is the first derivative

of the Jacobian matrix, and
..
x is the end-effector acceleration. The solution of Equation (20) along an

end-effector trajectory gives the joint accelerations which correspond to a minimum of the kinetic
energy integral along the trajectory.

Results for the kinetic energy integral and mean absolute difference of joint displacements between
the Interpolation-based Global Kinematic Planner and Nedungadi’s solution, starting from the same
joint configuration, are shown in Table 4 for the three optima found, which comply with the boundary
conditions of Equation (7). The stroboscopic views of robot motion for the three optimal trajectories
are shown in Figure 3.

Table 4. Comparison between results obtained with the Nedungadi’s method and with the
Interpolation-based Global Kinematic Planner.

Optimum nr. Nedungadi—Kinetic
Energy Integral (Js)

Interpolation-Based Global
Kinematic Planner—Kinetic

Energy Integral (Js)

Mean Absolute
Difference of Joint

Displacements (rad)

1 0.0532 0.0528 8.5 × 10−3

2 0.0567 0.0563 2.2 × 10−2

3 0.0673 0.0671 3.8 × 10−3

Robotics 2020, 9, 61 13 of 24
Robotics 2020, 9, x FOR PEER REVIEW 13 of 24

Figure 3. Stroboscopic views of robot motion for the three optimal trajectories, as computed by the
Interpolation-based Global Kinematic Planner.

Table 4. Comparison between results obtained with the Nedungadi’s method and with the
Interpolation-based Global Kinematic Planner.

Optimum
nr.

Nedungadi—Kinetic
Energy Integral (Js)

Interpolation-based Global
Kinematic Planner—Kinetic

Energy Integral (Js)

Mean Absolute
Difference of Joint

Displacements (rad)
1 0.0532 0.0528 8.5*10−3
2 0.0567 0.0563 2.2*10−2
3 0.0673 0.0671 3.8*10−3

It can be observed that all three optima results are very similar, with a negligible advantage in
terms of kinetic energy integral for the Interpolation-based Global Kinematic Planner, which is
probably due to numerical considerations. Moreover, in all three cases the maximum difference in
joint motions is considerably small. The similarity of the solutions demonstrates that the proposed
method is as effective as a theoretically proven method based on the calculus of variations for
unconstrained problems. Therefore, the proposed method is validated and can be used with
different cost functions and constraints, as presented in Section 4.2. It should be observed that
solutions based on the calculus of variations, such as the one by Nedungadi, require the solution of a
TPBVP and the computation of the Jacobian pseudoinverse, which is a source of numerical
problems. Moreover, an appropriate choice of the initial guess is necessary to allow for the
convergence of the TPBVP. This is, however, difficult, as it requires a trial-and-error process based
on specific knowledge of the manipulation problem under examination.

4.2. Simulation Results

Simulations 1–4 feature the same end-effector trajectory optimized according to different cost
functions and constraints, as shown in Table 3. The values of kinetic energy integral and joint

Figure 3. Stroboscopic views of robot motion for the three optimal trajectories, as computed by the
Interpolation-based Global Kinematic Planner.

It can be observed that all three optima results are very similar, with a negligible advantage
in terms of kinetic energy integral for the Interpolation-based Global Kinematic Planner, which is
probably due to numerical considerations. Moreover, in all three cases the maximum difference in joint
motions is considerably small. The similarity of the solutions demonstrates that the proposed method
is as effective as a theoretically proven method based on the calculus of variations for unconstrained
problems. Therefore, the proposed method is validated and can be used with different cost functions
and constraints, as presented in Section 4.2. It should be observed that solutions based on the calculus
of variations, such as the one by Nedungadi, require the solution of a TPBVP and the computation
of the Jacobian pseudoinverse, which is a source of numerical problems. Moreover, an appropriate
choice of the initial guess is necessary to allow for the convergence of the TPBVP. This is, however,
difficult, as it requires a trial-and-error process based on specific knowledge of the manipulation
problem under examination.

4.2. Simulation Results

Simulations 1–4 feature the same end-effector trajectory optimized according to different cost
functions and constraints, as shown in Table 3. The values of kinetic energy integral and joint torques
squared norm integral for these simulations are compared in Table 5. Table 6 reports the same results
for the circular cyclic trajectory (simulation 5). Computational times have been measured on a machine
featuring an Intel i7 ninth generation exa-core processor with 32 GB RAM, SSD mass storage, and using
Windows 10 and Matlab version 2019b.

Robotics 2020, 9, 61 14 of 24

Table 5. Results for rectilinear trajectories.

Simulation nr. Cost Function Kinetic Energy
Integral (Js)

Torques Squared Norm
Integral ((Nm)2s)

Computational
Time (s)

1 Kin. Energy 0.0528 0.1827 290

2 Kin. Energy 0.0528 0.1820 218

3 Torques norm 0.0795 0.0912 276

4 Torques norm 0.0808 0.0916 160

Table 6. Results for circular cyclic trajectory.

Simulation nr. Cost Function Kinetic Energy
Integral (Js)

Torques Squared Norm
Integral ((Nm)2s)

Computational
Time (s)

5 Kin. Energy 0.0554 1.898 282

For each simulation two figures are shown, one with manipulator energy-related variables
(kinetic energy, power, kinetic energy integral, joint torques squared norm integral), and one with the
stroboscopic view of robot motion, joint displacements, velocities, torques, and powers. In the latter
case, variables related to the first joint are shown in blue, those related to the second joint are shown in
red, and those related to the third joint are shown in yellow.

The results of simulation 1 are presented in Figures 4 and 5, while the results of simulations 2, 3,
4, and 5 are presented in Figures 6 and 7, in Figures 8 and 9, in Figures 10 and 11, and in Figures 12
and 13, respectively.

Robotics 2020, 9, x FOR PEER REVIEW 14 of 24

torques squared norm integral for these simulations are compared in Table 5. Table 6 reports the
same results for the circular cyclic trajectory (simulation 5). Computational times have been
measured on a machine featuring an Intel i7 ninth generation exa-core processor with 32 GB RAM,
SSD mass storage, and using Windows 10 and Matlab version 2019b.

Table 5. Results for rectilinear trajectories.

Simulation
nr.

Cost
Function

Kinetic Energy
Integral (Js)

Torques Squared Norm
Integral ((Nm)2s)

Computational
Time (s)

1 Kin. Energy 0.0528 0.1827 290
2 Kin. Energy 0.0528 0.1820 218

3 Torques
norm

0.0795 0.0912 276

4
Torques

norm 0.0808 0.0916 160

Table 6. Results for circular cyclic trajectory.

Simulation
nr.

Cost
Function

Kinetic Energy
Integral (Js)

Torques Squared Norm
Integral ((Nm)2s)

Computational
Time (s)

5 Kin. Energy 0.0554 1.898 282

For each simulation two figures are shown, one with manipulator energy-related variables
(kinetic energy, power, kinetic energy integral, joint torques squared norm integral), and one with
the stroboscopic view of robot motion, joint displacements, velocities, torques, and powers. In the
latter case, variables related to the first joint are shown in blue, those related to the second joint are
shown in red, and those related to the third joint are shown in yellow.

The results of simulation 1 are presented in Figures 4 and 5, while the results of simulations 2, 3,
4, and 5 are presented in Figures 6 and 7, in Figures 8 and 9, in Figures 10 and 11, and in Figures 12
and 13, respectively.

Figure 4. Results of simulation 1—Stroboscopic view of robot motion (top) and joint variables
(bottom).

Figure 4. Results of simulation 1—Stroboscopic view of robot motion (top) and joint variables (bottom).

Robotics 2020, 9, 61 15 of 24

Robotics 2020, 9, x FOR PEER REVIEW 15 of 24

Figure 5. Results of simulation 1—Energy-related manipulator variables.

Figure 6. Results of simulation 2—Stroboscopic view of robot motion (top) and joint variables
(bottom).

Figure 5. Results of simulation 1—Energy-related manipulator variables.

Robotics 2020, 9, x FOR PEER REVIEW 15 of 24

Figure 5. Results of simulation 1—Energy-related manipulator variables.

Figure 6. Results of simulation 2—Stroboscopic view of robot motion (top) and joint variables
(bottom).

Figure 6. Results of simulation 2—Stroboscopic view of robot motion (top) and joint variables (bottom).

Robotics 2020, 9, 61 16 of 24

Robotics 2020, 9, x FOR PEER REVIEW 16 of 24

Figure 7. Results of simulation 2—Energy-related manipulator variables.

Figure 8. Results of simulation 3—Stroboscopic view of robot motion (top) and joint variables
(bottom).

Figure 7. Results of simulation 2—Energy-related manipulator variables.

Robotics 2020, 9, x FOR PEER REVIEW 16 of 24

Figure 7. Results of simulation 2—Energy-related manipulator variables.

Figure 8. Results of simulation 3—Stroboscopic view of robot motion (top) and joint variables
(bottom).

Figure 8. Results of simulation 3—Stroboscopic view of robot motion (top) and joint variables (bottom).

Robotics 2020, 9, 61 17 of 24

Robotics 2020, 9, x FOR PEER REVIEW 17 of 24

Figure 9. Results of simulation 3—Energy-related manipulator variables.

Figure 10. Results of simulation 4—Stroboscopic view of robot motion (top) and joint variables
(bottom).

Figure 9. Results of simulation 3—Energy-related manipulator variables.

Robotics 2020, 9, x FOR PEER REVIEW 17 of 24

Figure 9. Results of simulation 3—Energy-related manipulator variables.

Figure 10. Results of simulation 4—Stroboscopic view of robot motion (top) and joint variables
(bottom).

Figure 10. Results of simulation 4—Stroboscopic view of robot motion (top) and joint variables (bottom).

Robotics 2020, 9, 61 18 of 24

Robotics 2020, 9, x FOR PEER REVIEW 18 of 24

Figure 11. Results of simulation 4—Energy-related manipulator variables.

Figure 12. Results of simulation 5—Stroboscopic view of robot motion (top) and joint variables
(bottom).

Figure 11. Results of simulation 4—Energy-related manipulator variables.

Robotics 2020, 9, x FOR PEER REVIEW 18 of 24

Figure 11. Results of simulation 4—Energy-related manipulator variables.

Figure 12. Results of simulation 5—Stroboscopic view of robot motion (top) and joint variables
(bottom).

Figure 12. Results of simulation 5—Stroboscopic view of robot motion (top) and joint variables (bottom).

Robotics 2020, 9, 61 19 of 24

Robotics 2020, 9, x FOR PEER REVIEW 19 of 24

Figure 13. Results of simulation 5—Energy-related manipulator variables.

Simulation 1, featuring the unconstrained optimization of the kinetic energy integral, is
characterized by a considerable motion of the third joint (as can be seen in the stroboscopic view of
robot motion), with velocity up to 4.042 rad/s. This is what was expected from a solution with
minimum kinetic energy, as the third joint is the one related to the minimum moment of inertia (link
3 only). The second joint also reaches a high speed (3.053 rad/s), while the first one is the slowest one
(1.553 rad/s), and this is reasonable since the first joint is related to the highest moment of inertia (all
three links). Although this allows for a low kinetic energy integral, the joint torques squared norm
integral is very high—this is mostly due to the fact that, despite the limited velocity, the first joint is
requiring a high torque (up to 0.7068 Nm) to perform the specified task.

Simulation 2 features kinetic energy integral as a cost function, and joint displacement and
velocity limits. The limit on joint velocities does not particularly reduce the joint torques squared
norm integral, as it is only active on the third joint between times t = 0.29 s and t = 0.38 s. Although
only one active constraint on joint velocities exists, all joint velocities become non-differentiable at
these times (generating acceleration peaks)—the activation of the constraint makes the manipulator
to lose one DOF, and completely changes the joints motion (since the kinematic redundancy is lost).
The change is instantaneous at the times when the constraint is activated or deactivated. In this case,
the cost function only depends on joint displacements and velocities, thus there is no advantage in
reducing joint acceleration peaks.

Simulation 3 features the same limits (joint displacements and velocities), but the cost function
used is the integral of the squared norm of joint torques in this case. The cost function also contains
the squared joint accelerations, which would become very high in the case of non-differentiable
velocities. Thus, despite a velocity limit is active as in simulation 2, joint velocities are differentiable
and continuous over the whole trajectory, with a smooth transition when constraints become
active/inactive.

Simulation 4 also features the joint torques squared norm integral as a cost function, but limits
are now on joint displacements, velocities, torques, and powers. The trajectory features a small
discontinuity in torque and power when torque and power limits are reached at the same time (t =
0.42 s), but the proposed method is still able to find a feasible solution. The results are almost the
same as in simulation 3, with only a minor degradation of the solution due to the extra
constraints—integrals of both joint torques squared norm and kinetic energy are almost the same,
with a difference around 1%.

Simulation 5 features kinetic energy integral minimization on a circular cyclic trajectory with
joint displacement and velocity constraints. In this example, both kinetic energy integral and joint

Figure 13. Results of simulation 5—Energy-related manipulator variables.

Simulation 1, featuring the unconstrained optimization of the kinetic energy integral, is characterized
by a considerable motion of the third joint (as can be seen in the stroboscopic view of robot motion),
with velocity up to 4.042 rad/s. This is what was expected from a solution with minimum kinetic
energy, as the third joint is the one related to the minimum moment of inertia (link 3 only). The second
joint also reaches a high speed (3.053 rad/s), while the first one is the slowest one (1.553 rad/s), and this
is reasonable since the first joint is related to the highest moment of inertia (all three links). Although
this allows for a low kinetic energy integral, the joint torques squared norm integral is very high—this
is mostly due to the fact that, despite the limited velocity, the first joint is requiring a high torque (up to
0.7068 Nm) to perform the specified task.

Simulation 2 features kinetic energy integral as a cost function, and joint displacement and velocity
limits. The limit on joint velocities does not particularly reduce the joint torques squared norm integral,
as it is only active on the third joint between times t = 0.29 s and t = 0.38 s. Although only one
active constraint on joint velocities exists, all joint velocities become non-differentiable at these times
(generating acceleration peaks)—the activation of the constraint makes the manipulator to lose one
DOF, and completely changes the joints motion (since the kinematic redundancy is lost). The change
is instantaneous at the times when the constraint is activated or deactivated. In this case, the cost
function only depends on joint displacements and velocities, thus there is no advantage in reducing
joint acceleration peaks.

Simulation 3 features the same limits (joint displacements and velocities), but the cost function
used is the integral of the squared norm of joint torques in this case. The cost function also contains
the squared joint accelerations, which would become very high in the case of non-differentiable
velocities. Thus, despite a velocity limit is active as in simulation 2, joint velocities are differentiable and
continuous over the whole trajectory, with a smooth transition when constraints become active/inactive.

Simulation 4 also features the joint torques squared norm integral as a cost function, but limits are
now on joint displacements, velocities, torques, and powers. The trajectory features a small discontinuity
in torque and power when torque and power limits are reached at the same time (t = 0.42 s), but the
proposed method is still able to find a feasible solution. The results are almost the same as in simulation
3, with only a minor degradation of the solution due to the extra constraints—integrals of both joint
torques squared norm and kinetic energy are almost the same, with a difference around 1%.

Robotics 2020, 9, 61 20 of 24

Simulation 5 features kinetic energy integral minimization on a circular cyclic trajectory with joint
displacement and velocity constraints. In this example, both kinetic energy integral and joint torques
squared norm integral are higher than in the case of rectilinear trajectories (the latter one is one order of
magnitude higher). Looking at the variables of each joint, torques and powers are much higher (up to
4.144 Nm and 5.814 W, respectively), and the joints reach velocity limits more often, causing velocities
to be non-differentiable at several points. This fact restricts the mobility of the manipulator: in fact,
if the number of active constraints were equal to the number of joints, the manipulator motion would
be completely constrained, and tracking would not generally be possible. However, in the solution
computed by the proposed method, only one joint reaches the velocity limit at a given time.

Concerning the capability of the presented method to possibly find optimal solutions that cross
singularities, a few considerations can be made. First, this work focuses on cost functions that have
quadratic terms in joint velocities and accelerations (Gkin and Gtor; see Equations (3) and (5)) and,
therefore, the optimal solutions will be likely to have limited joint velocities and accelerations (and thus
be far from singularities, near which joint velocities and accelerations usually increase abruptly).
Second, it can be noticed from Figure 3 (Optimum nr. 2) that the presented method is also able to
find the optimal solution in cases in which two links become aligned (link 1 and link 2 in this case)
and the motion of the manipulator is such that it does not cause the abrupt increase in joint velocities.
Anyway, it could be useful to better investigate this scenario, considering, for example, a different cost
function [38] which optimal solution may cross singularities, and this will be part of future work.

4.3. Multi-Objective Optimization

For some robotic applications, it is required to balance between different cost functions [11].
This kind of problem is tackled by multi-objective optimization.

Considering a set of solutions X, and a set of cost functions f =
(

f1 .. fp
)
, a feasible solution x̂ ∈ X

is a Pareto optimal solution of a multi-objective optimization problem min(f (x) : x ∈ X) if, and only
if, no x ∈ X exists such that f (x) ≤ f (x̂). The set of Pareto optimal solutions of a multi-objective
optimization problem form the Pareto optimal set, or Pareto front.

When solving a multi-objective optimization problem, it is usually desired to find a solution that
is as close as possible to the Pareto optimal set. In the ideal case, the full Pareto optimal set can be
exactly computed, and it is possible to choose the preferred solution among its members. Exhaustive
computation of the complete Pareto optimal set is, however, computationally expensive and, in many
cases, not possible, thus the problem is usually approached by computing some of the members of the
set and using them as a representation of the full set. The most used method to do so in robotics is
the weighting method [11], which, however, does not produce evenly distributed solutions, cannot
individuate all members of the Pareto optimal set, and, moreover, fails in the case of non-convex
Pareto fronts [39]. A complete discussion of all possible algorithms to compute the Pareto front is
beyond the scope of this work, but it is noted that methods such as the ε-constraint method can
capture the shape of the Pareto front in a more complete and representative way than the weighting
method, even when the Pareto front is non-convex [40]. The use of the ε-constraint method requires the
imposition of nonlinear constraints on an optimization problem, which is possible through the use of
the Interpolation-based Global Kinematic Planner presented in this work. This has been demonstrated
by analyzing the bi-objective optimization problem resulting from optimizing both the kinetic energy
integral and torques squared norm integral while tracking the rectilinear trajectory used in simulations
1–4. Particularly, its Pareto optimal set has been searched considering joint and velocity limits as
per Table 2.

For the equally spaced implementation used here, the ε-constraint method steps are as follows:

1. The feasible solutions resulting in the minima of the two objective functions,
{
q
}
kin (for the

minimum of kinetic energy integral) and
{
q
}
tor (for the minimum of torques squared norm

integral), are computed separately.
2. The intervals intkin = Gkin

({
q
}
tor

)
−Gkin

({
q
}
kin

)
and inttor = Gtor

({
q
}
kin

)
−Gtor

({
q
}
tor

)
are computed.

Robotics 2020, 9, 61 21 of 24

3. Each interval is divided in k equally spaced steps ∆Gkin and ∆Gtor, so that Gkin
({

q
}
tor

)
=

Gkin
({

q
}
kin

)
+ k ∆Gkin and Gtor

({
q
}
kin

)
= Gtor

({
q
}
tor

)
+ k ∆Gtor.

4. For each h = 1 .. k a single-objective kinetic energy integral optimization problem is solved with
the formulation:

minimize
q

∫ t f in
t0

Gkin
(
q,

.
q, t

)
dt

subject to Gtor = Gtor
({

q
}
tor

)
+ h ∆Gtor

(21)

Likewise, a single-objective torques squared norm integral optimization problem is solved with
the formulation:

minimize
q

∫ t f in
t0

Gtor
(
q,

.
q,

..
q, t

)
dt

subject to Gkin = Gkin
({

q
}
kin

)
+ h ∆Gkin

(22)

Following these steps, a set of Pareto optimal solutions has been computed, see Figure 14.

Robotics 2020, 9, x FOR PEER REVIEW 21 of 24

 Each interval is divided in k equally spaced steps 𝛥𝐺 and 𝛥𝐺௧ , so that 𝐺(ሼ𝒒ሽ௧) = 𝐺(ሼ𝒒ሽ) + 𝑘 𝛥𝐺 and 𝐺௧(ሼ𝒒ሽ) = 𝐺௧(ሼ𝒒ሽ௧) + 𝑘 𝛥𝐺௧.
 For each ℎ = 1 . . 𝑘 a single-objective kinetic energy integral optimization problem is solved

with the formulation: minimize න 𝐺(𝒒, 𝒒ሶ , 𝑡)௧௧బ 𝑑𝑡𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺௧ = 𝐺௧(ሼ𝒒ሽ௧) + ℎ 𝛥𝐺௧ (21)

Likewise, a single-objective torques squared norm integral optimization problem is solved with
the formulation: minimize න 𝐺௧(𝒒, 𝒒ሶ , 𝑡)௧௧బ 𝑑𝑡𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺 = 𝐺(ሼ𝒒ሽ) + ℎ 𝛥𝐺 (22)

Following these steps, a set of Pareto optimal solutions has been computed, see Figure 14.

Figure 14. Pareto front of bi-objective optimization problem under consideration.

This result shows the suitability of the Interpolation-based Kinematic Planner for individuating
Pareto optimal sets with a more reliable method than the weighting method.

5. Conclusions

A global optimization method has been presented to solve the inverse kinematics problem of a
redundant manipulator tracking a specified end-effector trajectory while optimizing a cost function.
The proposed method has been validated by comparing its solution for the minimization of kinetic
energy integral with that obtained with a different method presented in the literature based on the
calculus of variations.

It has been demonstrated that the proposed method is more flexible than existing methods on
several aspects: it can compute optimal solutions with different cost functions, such as kinetic energy
and joint torques integral, it is suitable for multi-objective optimization, and it is able to find multiple
optima, offering a solution for the known issue of optima lying in different homotopy classes.
Furthermore, it is able to include a variety of different constraints, such as linear constraints on joint
displacement and velocity, and nonlinear constraints on joint torque and power. While doing so, it is
also able to tackle cyclic manipulator motions.

Figure 14. Pareto front of bi-objective optimization problem under consideration.

This result shows the suitability of the Interpolation-based Global Kinematic Planner for
individuating Pareto optimal sets with a more reliable method than the weighting method.

5. Conclusions

A global optimization method has been presented to solve the inverse kinematics problem of a
redundant manipulator tracking a specified end-effector trajectory while optimizing a cost function.
The proposed method has been validated by comparing its solution for the minimization of kinetic
energy integral with that obtained with a different method presented in the literature based on the
calculus of variations.

It has been demonstrated that the proposed method is more flexible than existing methods
on several aspects: it can compute optimal solutions with different cost functions, such as kinetic
energy and joint torques integral, it is suitable for multi-objective optimization, and it is able to find
multiple optima, offering a solution for the known issue of optima lying in different homotopy classes.
Furthermore, it is able to include a variety of different constraints, such as linear constraints on joint
displacement and velocity, and nonlinear constraints on joint torque and power. While doing so, it is
also able to tackle cyclic manipulator motions.

Robotics 2020, 9, 61 22 of 24

In order to reduce the negative effects of the high dimensionality of the global problem, a sequential
version of the method has been presented, based on the sequential solution of relaxed problems with a
reduced number of path points, with more path points introduced in the problem at every step through
cubic spline interpolation.

Future plans include extending and validating the proposed method on multi-DOF and 3D robot
manipulators, the introduction of environmental constraints (obstacles), the investigations of cost
functions whose optimal solutions may cross singularities, and the implementation and experimental
validation on industrial manipulators in the context of real industrial applications.

Author Contributions: Conceptualization, S.C. and A.T.; methodology, S.C. and A.T.; software, A.T.; investigation,
S.C. and A.T.; writing—original draft preparation, S.C. and A.T.; writing—review and editing, S.C. and A.T.;
supervision, S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nakamura, Y.; Hanafusa, H.; Yoshikawa, T. Task-Priority Based Redundancy Control of Robot Manipulators.
Int. J. Rob. Res. 1987, 6, 32–42. [CrossRef]

2. Kazerouinian, K.; Wang, Z. Global versus Local Optimization in Redundancy Resolution of Robotic
Manipulators. Int. J. Rob. Res. 1988, 7, 3–12. [CrossRef]

3. Nedungadi, A.; Kazerouinian, K. A local solution with global characteristics for the joint torque optimization
of a redundant manipulator. J. Robot. Syst. 1989, 6, 631–654. [CrossRef]

4. Hirakawa, A. Trajectory planning of redundant manipulators for minimum energy consumption without
matrix inversion. In Proceedings of the International Conference on Robotics and Automation, Albuquerque,
NM, USA, 25 April 1997; pp. 1–5.

5. Martin, B.J.; James, E. Minimum-Effort Motions for Open-Chain Manipulators with Task-Dependent
End-Effector Constraints. Int. J. Rob. Res. 1999, 18, 213–224. [CrossRef]

6. Zhou, Z.; Nguyen, C.C. Joint Configuration Conservation and Joint Limit Avoidance of Redundant
Manipulators. In Proceedings of the International Conference on Robotics and Automation, Albuquerque,
NM, USA, 25 April 1997; pp. 2421–2426.

7. Zhou, Z.L.; Nguyen, C.C. Globally Optimal Trajectory Planning for Redundant Manipulators using State
Space Augmentation Method. J. Intell. Robot. Syst. Theory Appl. 1997, 19, 105–117. [CrossRef]

8. Nurmi, J.; Mattila, J. Global energy-optimal redundancy resolution of hydraulic manipulators: Experimental
results for a forestry manipulator. Energies 2017, 10, 647. [CrossRef]

9. Lyu, H.; Song, X.; Dai, D.; Li, J.; Li, Z. Time-optimal and energy-efficient trajectory generation for robot
manipulator with kinematic constraints. In Proceedings of the 2017 13th IEEE Conference on Automation
Science and Engineering (CASE), Xi’an, China, 20–23 August 2017; pp. 503–508.

10. Ferrentino, E.; Chiacchio, P. A Topological Approach to Globally-Optimal Redundancy Resolution with
Dynamic Programming. In ROMANSY 22, Robot Design, Dynamics and Control; Springer International
Publishing: Cham, Switzerland, 2019; pp. 77–85. ISBN 978-3-7091-1378-3.

11. Guigue, A.; Ahmadi, M.; Langlois, R.; Hayes, M.J. Pareto optimality and multiobjective trajectory planning
for a 7-DOF redundant manipulator. IEEE Trans. Robot. 2010, 26, 1094–1099. [CrossRef]

12. Davidor, Y. Genetic Algorithms and Robotics: A Heuristic Strategy for Optimization; World Scientific Publishing
Company: Singapore, 1991.

13. Shintaku, E. Minimum energy trajectory for an underwater manipulator and its simple planning method by
using a genetic algorithm. Adv. Robot. 1998, 13, 115–138. [CrossRef]

14. McAvoy, B.; Sangolola, B.; Szabad, Z. Optimal trajectory generation for redundant planar manipulators.
In Proceedings of the 2000 IEEE International Conference on Systems, Man & Cyberbetics, Nashville, TN,
USA, 8–11 October 2000; pp. 3241–3246.

15. Tian, L.; Collins, C. Motion planning for redundant manipulators using a floating point genetic algorithm.
J. Intell. Robot. Syst. Theory Appl. 2003, 38, 297–312. [CrossRef]

http://dx.doi.org/10.1177/027836498700600103
http://dx.doi.org/10.1177/027836498800700501
http://dx.doi.org/10.1002/rob.4620060508
http://dx.doi.org/10.1177/027836499901800206
http://dx.doi.org/10.1023/A:1007905817998
http://dx.doi.org/10.3390/en10050647
http://dx.doi.org/10.1109/TRO.2010.2068650
http://dx.doi.org/10.1163/156855399X00171
http://dx.doi.org/10.1023/B:JINT.0000004973.29102.33

Robotics 2020, 9, 61 23 of 24

16. Baba, N.; Kubota, N. Collision avoidance planning of a robot manipulator by using genetic algorithm—A
consideration for the problem in which moving obstacles and/or several robots are included in the workspace.
In Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, FL, USA, 27–29 June 1994;
pp. 714–719.

17. Kazem, B.I.; Mahdi, A.I.; Oudah, A.T. Motion Planning for a Robot Arm by Using Genetic Algorithm. Jordan J.
Mech. Ind. Eng. 2008, 2, 131–136.

18. Ferrentino, E.; Della Cioppa, A.; Marcelli, A.; Chiacchio, P. An Evolutionary Approach to Time-Optimal
Control of Robotic Manipulators. J. Intell. Robot. Syst. Theory Appl. 2019, 245–260. [CrossRef]

19. Stevo, S.; Sekaj, I.; Dekan, M. Optimization of Energy in Robotic arm using Genetic Algorithm. In Proceedings
of the 19th World Congress The International Federation of Automatic Control, Cape Town, South Africa,
24–29 August 2014.

20. Hansen, C.; Kotlarski, J.; Ortmaier, T. Experimental validation of advanced minimum energy robot trajectory
optimization. In Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR),
Montevideo, Uruguay, 25–29 November 2013. [CrossRef]

21. Doan, N.C.N.; Tao, P.Y.; Lin, W. Optimal redundancy resolution for robotic arc welding using modified
particle swarm optimization. In Proceedings of the 2016 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 554–559.

22. Garg, D.P.; Kumar, M. Optimization techniques applied to multiple manipulators for path planning and
torque minimization. Eng. Appl. Artif. Intell. 2002, 15, 241–252. [CrossRef]

23. Martin, D.P.; Baillieul, J.; Hollerbach, J.M. Resolution of Kinematic Redundancy Using Optimisation
Techniques. IEEE Trans. Robot. Autom. 1989, 5, 529–533. [CrossRef]

24. Pashkevich, A.P.; Dolgui, A.B.; Chumakov, O.A. Multiobjective optimization of robot motion for laser cutting
applications. Int. J. Comput. Integr. Manuf. 2004, 17, 171–183. [CrossRef]

25. Dolgui, A.; Pashkevich, A. Manipulator motion planning for high-speed robotic laser cutting. Int. J. Prod. Res.
2009, 47, 5691–5715. [CrossRef]

26. Gao, J.; Pashkevich, A.; Caro, S. Optimization of the robot and positioner motion in a redundant fiber
placement workcell. Mech. Mach. Theory 2017, 114, 1339–1351. [CrossRef]

27. Reiter, A.; Muller, A.; Gattringer, H. On Higher Order Inverse Kinematics Methods in Time-Optimal Trajectory
Planning for Kinematically Redundant Manipulators. IEEE Trans. Ind. Informat. 2018, 14, 1681–1690. [CrossRef]

28. Reiter, A.; Gattringer, H.; Müller, A. Redundancy resolution in minimum-time path tracking of robotic
manipulators. In Proceedings of the International Conference on Informatics in Control, Automation and
Robotics (ICINCO), Lisbon, Portugal, 29–31 July 2016; Volume 2, pp. 61–68. [CrossRef]

29. Martì, R. Multi-Start Methods. In Handbook of Metaheuristics; Glover, F., Kochenberger, G.A., Eds.; International
Series in Operations Research & Management Science; Springer: Boston, MA, USA, 2003; Volume 57.

30. Solis, F.J.; Wets, R.J.-B. Minimization by Random Search Techniques. Math. Oper. Res. 1981, 6, 19–30. [CrossRef]
31. Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2006.
32. Liegeois, A. Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms.

IEEE Trans. Syst. Man Cybern. 1977, 7, 868–871.
33. Beckman, R.J.; Conover, W.J.; McKay, M.D. A comparison of three methods for selecting values of input

variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245.
34. Cocuzza, S.; Pretto, I.; Debei, S. Least-Squares-Based Reaction Control of Space Manipulators. J. Guid.

Control. Dyn. 2012, 35, 976–986. [CrossRef]
35. Cocuzza, S.; Pretto, I.; Debei, S. Novel reaction control techniques for redundant space manipulators: Theory

and simulated microgravity tests. Acta Astronaut. 2011, 68, 1712–1721. [CrossRef]
36. Cocuzza, S.; Tringali, A.; Yan, X.-T. Energy-efficient motion of a space manipulator. In Proceedings of the

International Astronautical Congress, IAC, Guadalajara, Mexico, 26–30 September 2016.
37. Tringali, A.; Cocuzza, S. Predictive control of a space manipulator through error and kinetic energy expectation.

In Proceedings of the International Astronautical Congress, Bremen, Germany, 1–5 October 2018.
38. Ferrentino, E.; Chiacchio, P. On the Optimal Resolution of Inverse Kinematics for Redundant Manipulators

Using a Topological Analysis. J. Mech. Robot. 2020, 12, 1–14. [CrossRef]

http://dx.doi.org/10.1007/s10846-019-01116-9
http://dx.doi.org/10.1109/ICAR.2013.6766463
http://dx.doi.org/10.1016/S0952-1976(02)00067-2
http://dx.doi.org/10.1109/70.88067
http://dx.doi.org/10.1080/0951192031000078202
http://dx.doi.org/10.1080/00207540802070967
http://dx.doi.org/10.1016/j.mechmachtheory.2017.04.009
http://dx.doi.org/10.1109/TII.2018.2792002
http://dx.doi.org/10.5220/0005975800610068
http://dx.doi.org/10.1287/moor.6.1.19
http://dx.doi.org/10.2514/1.45874
http://dx.doi.org/10.1016/j.actaastro.2010.06.014
http://dx.doi.org/10.1115/1.4045178

Robotics 2020, 9, 61 24 of 24

39. Das, I.; Dennis, J.E. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set
generation in multicriteria optimization problems. Struct. Optim. 1997, 14, 63–69. [CrossRef]

40. Chircop, K.; Zammit-Mangion, D. On Epsilon-Constraint Based Methods for the Generation of Pareto
Frontiers. J. Mech. Eng. Autom. 2013, 3, 279–289.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01197559
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Definition
	Materials and Methods
	Global Optimization Method
	Multi-Start Algorithm
	Global Kinematic Planner
	Generation of Robot Initial Configurations
	Interpolation-Based Global Kinematic Planner

	Simulation Setup

	Results
	Validation
	Simulation Results
	Multi-Objective Optimization

	Conclusions
	References

