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Abstract: Semantic segmentation of remote sensing images (RSI) plays a significant role in urban
management and land cover classification. Due to the richer spatial information in the RSI, existing
convolutional neural network (CNN)-based methods cannot segment images accurately and lose
some edge information of objects. In addition, recent studies have shown that leveraging additional
3D geometric data with 2D appearance is beneficial to distinguish the pixels’ category. However,
most of them require height maps as additional inputs, which severely limits their applications. To
alleviate the above issues, we propose a height aware-multi path parallel network (HA-MPPNet).
Our proposed MPPNet first obtains multi-level semantic features while maintaining the spatial
resolution in each path for preserving detailed image information. Afterward, gated high-low level
feature fusion is utilized to complement the lack of low-level semantics. Then, we designed the height
feature decode branch to learn the height features under the supervision of digital surface model
(DSM) images and used the learned embeddings to improve semantic context by height feature guide
propagation. Note that our module does not need a DSM image as additional input after training and
is end-to-end. Our method outperformed other state-of-the-art methods for semantic segmentation
on publicly available remote sensing image datasets.

Keywords: remote sensing image; semantic segmentation; high spatial resolution; gated feature
fusion; digital surface model (DSM); height features

1. Introduction

Attributed to the rapid development of satellite observation technology, a large num-
ber of high spatial resolution (HSR) remote sensing images can be easily acquired. Auto-
matically extracting objects such as buildings, cars, and trees from remote sensing images
is significant for land cover classification [1], urban management [2], and city planning [3].
Remote sensing image segmentation, as a crucial role in the field of handling remote sens-
ing images, can predict the semantic category for every pixel in an input image. However,
rich texture detail information, as shown in Figure 1a, and complicated scenes in the remote
sensing image, cause difficulty in distinguishing the pixel category. Therefore, how to
preserve the spatial information of remote sensing images and obtain the strengthened
semantic context module during the process of segmentation is a challenging task.
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In recent years, convolutional neural networks (CNNs) have been successfully ap-
plied in the field of remote sensing images due to their excellent performance such as 
building extraction [4], object detection [5], image classification [6], and so on [7]. Evolving 
from CNN, the methods based on fully convolutional networks (FCNs) [8] have made 
great progress in semantic segmentation. For the extraction of semantic and recovery of 
spatial information, the structures [9,10] based on an encode–decode-network obtain se-
mantic features by the downsampling operation in the encode stage and fuse shallow 
high-resolution features through the skip connections to recover spatial information in the 
decode stage. However, frequent downsampling operations lead to the loss of spatial in-
formation, which becomes the main obstacle in accurately extracting spatial information 
from remote sensing images. To solve this problem, DeepLabv1 [11] uses conditional ran-
dom fields (CRF) for post-processing to optimize the segmentation of edges and Hierar-
chical [12] tries to enlarge the scale of the input image to obtain a high-resolution result, 
however, both of them increase the number of network calculations. Recently, HRNet [13] 
has proposed a high-resolution CNN to obtain semantic features while maintaining a 
high-resolution representation, but its high-level semantics are not rich. 
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Figure 1. Examples of rich spatial information and complicated senses in high resolution remote 
sensing image: (a) objects (such as buildings) have rich edge information and details and (b) low 
vegetation and trees are similar in 2D appearance, but belong to two different labels. 

In addition, context modeling is beneficial to improving the discrimination of pixels. 
In the field of natural imaging, PSPNet [14], ASPP [15], and DenseASPP [16] introduce a 
multi-scale context. At the same time, the self-attention-based methods [17,18] calculate a 
pixel-wise similarity map to capture long-range global context. Using these methods, the 
network can only learn 2D context appearance features, but for remote sensing images 
with more complex scenes, 3D geometric information is also essential [19,20]. Geometric 

Figure 1. Examples of rich spatial information and complicated senses in high resolution remote
sensing image: (a) objects (such as buildings) have rich edge information and details and (b) low
vegetation and trees are similar in 2D appearance, but belong to two different labels.

In recent years, convolutional neural networks (CNNs) have been successfully applied
in the field of remote sensing images due to their excellent performance such as building
extraction [4], object detection [5], image classification [6], and so on [7]. Evolving from
CNN, the methods based on fully convolutional networks (FCNs) [8] have made great
progress in semantic segmentation. For the extraction of semantic and recovery of spatial
information, the structures [9,10] based on an encode–decode-network obtain semantic fea-
tures by the downsampling operation in the encode stage and fuse shallow high-resolution
features through the skip connections to recover spatial information in the decode stage.
However, frequent downsampling operations lead to the loss of spatial information, which
becomes the main obstacle in accurately extracting spatial information from remote sensing
images. To solve this problem, DeepLabv1 [11] uses conditional random fields (CRF)
for post-processing to optimize the segmentation of edges and Hierarchical [12] tries to
enlarge the scale of the input image to obtain a high-resolution result, however, both of
them increase the number of network calculations. Recently, HRNet [13] has proposed
a high-resolution CNN to obtain semantic features while maintaining a high-resolution
representation, but its high-level semantics are not rich.

In addition, context modeling is beneficial to improving the discrimination of pixels.
In the field of natural imaging, PSPNet [14], ASPP [15], and DenseASPP [16] introduce a
multi-scale context. At the same time, the self-attention-based methods [17,18] calculate
a pixel-wise similarity map to capture long-range global context. Using these methods,
the network can only learn 2D context appearance features, but for remote sensing images
with more complex scenes, 3D geometric information is also essential [19,20]. Geometric
features can discriminate those with similar 2D appearance, but significantly different 3D
features objects such as trees and low vegetation, as shown in Figure 1b. Thus, a recent
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work [21] suggested that directly introducing height-related data (such as DSM) as an
additional input to network and fuse the learned semantic features and height features
to enhance the semantic performance. However, collecting the DSM images in a real-life
application is not convenient and the obtained height maps usually do not align with
remote sensing images, which limits their application.

In this paper, a height aware-multi path parallel network (HA-MPPNet) is proposed
to alleviate the above problems. Instead of fusing shallow mappings to recover spatial
information, we introduced the multi path parallel network (MPPNet) to learn multi-level
features while fixing the spatial resolution in each path for preserving RSI detail and edge
information. To enhance low-level semantic features, we designed a gated high-low-level
feature fusion to fuse the selected features from both levels through a gate mechanism.

To utilize the DSM image to strengthen semantic context, we note that height features
can be learned from a single remote sensing image [22]. Hence, a height aware context
module was introduced by joining a new height feature decode branch to learn height
features under the supervision of a ground-truth height map. Some recent works [23,24]
have also introduced multi-task learning to simultaneously undertake semantic map
prediction and height estimation, which is similar to our method. Unlike these methods,
which decouple two tasks in the top layers of decoder networks, our method designs
two specific decoder branches. More importantly, we introduce a height feature guide
propagation module to use the learned high feature as an affinity guide to effectively fuse
with semantic context to improve the performance. Finally, our context module does not
require a DSM image as additional supervision after training, and can directly generate the
segmentation result for the test image in an end-to-end fashion.

In this paper, we aimed to preserve the spatial information of remote sensing images
and utilize DSM images to strengthen the semantic context during the process of segmentation.

2. Related Work
2.1. Semantic Segmentation

A fully convolution network (FCN) [8] directly outputs the pixel-wise prediction
from the input image with an arbitrary size via the network upsampling layer, making a
breakthrough in the field of semantic segmentation. Then, encode–decode structures [9,10]
extract semantic features by downsampling operations in the encode stage and restore the
image resolution via upsampling layers in the decode stage. DeepLabv1 [11] introduces
dilated convolution to obtain a larger respective field of feature maps and uses conditional
random fields (CRF) as a post-process to refine the segmentation results. To capture multi-
scale feature maps, ASPP [15] uses multi parallel atrous convolutions with different dilation
rates while PSPNet [14] generates pyramid feature maps by the pyramid pooling module
(PPM). PSANet [18] and CCNet [25] use a non-local [17] style to calculate a pixel-wise
similarity map on the whole image to obtain a long-range global context. However, this
context is only obtained by spatial attention, thus CBAM [26] and DANet [27] introduce
channel attention to capture the channel dependencies between any two channel feature
maps. Recent works on these aspects [12,13] have focused on paying attention to propose
a high resolution CNN to obtain a high resolution result with precise detail and edge
information of the image.

Semantic segmentation in high resolution remote sensing images also significantly
benefits from the improvement of deep learning methods. Guo et al. [28] introduced FCN
with atrous convolutions to segment remote sensing images and use CRF as a post-process
to smooth the prediction results. Diakogiannis et al. [29] proposed a network by integrating
residual connections based on U-Net and refining dice loss function to obtain accurate
results. Wang et al. [30] utilized the ResNet-101 [31] as the backbone to extract high-level
semantic feature maps and constructed a fully convolutional network that adaptively fuses
multi-scale features. Marmanis et al. [32] tried to capture the edge details of segmentation
objects to further finetune the semantic object boundaries. Afterward, SCAttNet [33]
proposes spatial and channel attention to capture the context of every pixel. HMANet [34]



ISPRS Int. J. Geo-Inf. 2021, 10, 672 4 of 18

introduces a class channel attention to compute class based correlation and recalibrate the
category level information. Some researchers [35] have tried to apply weak supervision
techniques to the field of remote sensing image segmentation.

2.2. Multi-Level Feature Fusion

Feature fusion is frequently employed in semantic segmentation to utilize different
level features. U-Net [10] adds a skip connection between the encode and the decode stage
to reuse the shallow feature maps to enhance the high-level features with strong semantics
in spatial detail. In contrast, ExFuse [36] embeds high-level features into low-level features
to enhance low-level semantics. FPN [37] introduces the method of lateral connections to
obtain multi-levels of prediction. However, these methods all adopt simple pixel addition
or channel concatenation operations to directly fuse multi-level features without measuring
the effectiveness of information in all feature maps, which limits the propagation of useful
features. To alleviate this issue, recent work [38] on natural language processing (NLP)
has proposed the idea of using gate mechanisms to control the information flow. Inspired
by these, Gated-SCNN [39] proposes the use of gate mechanisms to define information
flow between the regular semantic stream and another shape stream to capture precise
boundary information. Note that GFF [40] uses gates to fully fuse features from every level
feature map, but the fused feature maps of each level are mainly dependent on the value of
the gates of the current level. In our work, we introduced a gated high–low-level feature
fusion to adaptively select useful information from a high–low-level via a gate mechanism
and gradually perform feature fusion by a bottom-up pathway.

2.3. Height Estimation for Remote Sensing Image

For semantic segmentation of remote sensing images, 3D geometric information
can be used to enhance segmentation performance. Some works have shown how the
estimated DSM data providing useful additional information for building detection [19] or
semantic segmentation [20]. For example, V-FuseNet [21] uses the DSM image as additional
input for the segmentation task, which simultaneously learns RGB and height features
through a two-stream network and then fuses the learned features from the two encode
networks for final prediction. The later works [41,42] focused on designing a stronger
encode network structure or fusing two features at different locations of the network to
improve segmentation performance. However, these approaches all need the ground-truth
height map as additional input, which severely limits their applications. It is worth noting
that Lichao et al. [22] proved height features were naturally preserved by the remote
sensing image, where the authors trained an encode–decode network to predict height
map from a single remote sensing image. On this basis, Srivastava et al. [23] proposed a
multi-task CNN, one for semantic prediction, and the other for height estimation, where
the key of this work is that DSM data are not required during testing time. Volpi et al. [24]
considered that both semantic map prediction and DSM regression required specific model
layers, so a more suitable strategy was designed to perform middle splitting the multi-
task architecture to divide it into two specific task branches. For the task of RGB–depth
semantic segmentation, which is similar to height estimation, Wang et al. [43] proposed a
joint framework to predict both depth and semantic maps, followed by a hierarchical CRF
for post-processing to optimize the pixel-level depth estimations, but did not research the
information sharing between different tasks.

3. Methods

To preserve the spatial information lost in the process of CNN downsampling and
utilize geometric information to improve the discrimination of the pixel, we proposed
a height aware-multi path parallel network (HA-MPPNet), as shown in Figure 2. Our
proposed network consisted of the multi path parallel network (MPP-Net) in Section 3.1;
the gated high-low level feature fusion in Section 3.2; and height aware context module
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(HAC) in Section 3.3. In Section 3.4, we introduce the multi-task loss function to train
the network.
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Figure 2. The pipeline of our network, the HSR remote sensing image, first sends two consecutive downsampling stems
to extract feature maps and reduce its resolution, and feeds them into a MPP-Net to obtain multi-scale semantic feature
maps x1, x2 and x3. Adjacent high–low level feature maps adaptively select useful information from themselves via a gate
mechanism to gradually perform feature fusion. Then, the fused lowest-level feature map, x1 learns the separate semantic
context and height feature, respectively, by two different 3 × 3 convolutions. Finally, the learned height features are used to
improve the quality of semantic context by the height feature guide propagation (HFGP) module to realize height aware
semantic context. 2×means two consecutive downsampling or upsampling operations.

3.1. Multi Path Parallel Network

Rather than recovering spatial information by the skip connections and fusing shallow
mappings in traditional encoder–decoder-based networks, our multi path parallel network
(MPPNet) can capture high-level semantics in the downsampling layer while preserving
high-resolution remote sensing image edge and detail information. As shown in Figure 3,
we first put the remote sensing image into two consecutive downsampling stems, each of
which was composed of a 3 × 3 convolution followed by batch normalization (BN) and
a rectified linear unit (ReLU) activation function to extract semantic feature maps with
64 channels (especially for two consecutive downsamping stems) and a 2 × 2 max pooling
to downsample its resolution to 1/4 of the original remote sensing image. In particular,
this operation aims to avoid issues related to the exhaustion of computing resources when
we directly inputted the original 512 × 512 pixel image into the deep network.
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We divided MPP-Net into three stages (S1, S2, and S3) and three parallel paths (P1,
P2, and P3) to consider the complexity and efficiency of the network as analyzed in the
experimental setup described in Section 4.2.2. In each stage, we sent the feature maps
obtained from the previous sage into a feature extraction block to extract richer semantics
with the condition of a fixed spatial resolution. At the end of the stage, a new parallel
path is generated through a downsampling stem to capture high-level semantic features
with a double downsampling resolution and double channels, as shown in the dashed
box of Figure 3. The feature maps extracted by each path maintain the resolution, thereby
retaining more edge and detail information of the object in the remote sensing image.
In each path, channels and resolutions of feature maps are both fixed during the entire
process of feature extraction. The feature extraction block is composed of a series of cascade
residual blocks [31]. The impact of a different number of residual blocks on MPPNet
performance is explained in the experimental setup in Section 4.2.2.

We note that the extract block of P3 was replaced with an A-extract block, which
consisted of four parallel atrous convolutions with different dilation rates, as shown in the
dashed box of Figure 3. This operation aims to integrate a much more receptive-field of the
high-level and enhance the high-level feature semantics. Next, the extracted feature maps
were channel-wise concatenated to reuse multi-receptive-field feature maps and sent into a
1 × 1 convolution to restore input channel dimension. Finally, our MPP-Net obtained three
scale feature maps x1, x2 and x3, where the spatial resolutions were 1/4, 1/8, and 1/16
of the original image, and the corresponding numbers of channels were 64, 128, and 256,
respectively.

3.2. Gated High-Low Level Feature Fusion

Low-level feature maps near the input image had a high resolution remote sensing
image, but their semantic information was much fewer than the high-level feature maps.
The latter obtained richer semantic information and a much more receptive-field from
the extraction of deep network and these semantics can assist in predicting most pixels
of larger objects in remote sensing images, but are limited by resolution. Therefore, it is
natural to consider complementing the advantages of multi-levels by fusing high-level
feature maps to low-level features, in order to realize a fused feature map with both high
resolution and rich semantic information. In most cases of high-low level feature fusion,
bilinear interpolation and 1 × 1 convolution are first used to restore the high-level feature
maps to the same resolution and channel number of the low-level feature maps, and
then adopt addition or concatenation operation to fuse high-low level feature. Among
them, the method of addition adds their features at each pixel position and the method of
concatenation concatenates two feature maps along their channel dimension. However, the
problem of both fusion methods is that useful information is mixed with massive amounts
of useless information without selection during the fusion process, which increases the
amount of calculation and reduces the segmentation performance.

To address this issue, we proposed a gated high–low level feature fusion to adaptively
fuse useful information from each layer, as shown in Figure 4. In particular, we first
reshaped the high-level feature map xl+1 ∈ R2C× H

2 ×
W
2 with the same spatial resolution

size and channel number as a low-level feature map xl ∈ RC×H×W through bilinear
interpolation, followed by 1 × 1 convolution, and l is the l-th level feature map. Then, xl

and reshaped
∧

xl+1 are concatenated (||), and followed by a 1 × 1 convolutional layer C1×1
with the output channels reduced to C. Then, we can obtain a gate map G ∈ RC×H×W by
the ψ project function as follows:

G = ψ
(

C1×1

( ∧
xl+1

∣∣∣∣∣∣xl

))
= σ

(
C3×3

(
SE

(
C1×1

( ∧
xl+1

∣∣∣∣∣∣xl

))))
(1)

where SE is a squeeze-and-excitation block [44] implementing channel attention and σ
denotes the sigmoid operation. Intuitively, G can be seen as a selective map, which decides
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the fusing weight between high-level features and low-level features. Then, the gated fusion
of adjacent high–low level based on pixel-wise addition can be calculated as shown in:

∼
xl = G⊗ xl + (1− G)

∧
xl+1 (2)

where
∼
xl is the fused feature map; and ⊗ denotes the Hadamard product in the channel

dimension. The fused
∼
xl continues to re-fuse with lower level feature maps and gradually

obtains the final fused feature map from bottom to top. After using the selecting function
of a gate mechanism, the final fused feature map

∼
x1 obtains both high resolution and rich

semantics with the less computational cost.
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3.3. Height Aware Context Module

In the remote sensing image, the scene is much more complicated than the natural
image. This means that there is larger intra-class variance and smaller inter-class variance,
which causes the problem of false alarms. The introduction of semantic context alone
cannot effectively distinguish objects with similar 2D semantic appearance, but different
3D height features in remote sensing images (such as trees and low vegetation). To alleviate
this problem, a height aware context module is proposed to improve discrimination of the
pixel by learning height features as affinity guidance of semantic context. As shown in
Figure 2c, we designed a new height feature decode branch, where the ground truth of the
height map was used as a label to guide the learning of height features during the training
process. Then, the learned height features were used as an affinity guide to fuse with the
semantic context by height feature guide propagation (HFGP), as shown in Figure 5.
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Concretely, for the fused feature map,
∼
x1 is sent into two different 3 × 3 convo-

lutions followed with BN and ReLU to learn the independent semantic context x and
height features h, respectively. We processed the learned height embeddings into two
sub-embeddings with φ and ϕ project functions. Then, we calculated the height similarity
matrix Sij of two height sub-embeddings by dot-product as follows:

Sij(h) = φ(hi)
T · ϕ

(
hj
)

(3)

where i and j are the location of pixel; T is the operation of matrix transpose, and respec-
tively, φ and ϕ are just implemented by a 1 × 1 convolutional layer followed by batch
normalization. Then, the produced height similarity Sij is used as an affinity guide to fuse
height features and semantic context by another dot-product. Finally, the original semantic
context is added to the obtained result to avoid interruption during the whole propagation.
Note that the whole propagation process maintains the size and dimension of the semantic
features. The height aware semantic context propagation output yi at location i can be
calculated as:

yi =
1
R

N

∑
j

((
Sij(h) · g

(
xj
)))

+ xi (4)

where N is the number of pixels; g is the implementation of a 1 × 1 convolutional layer
followed by batch normalization and to project the semantic feature to deal with the di-
mension variation during the propagation. The normalization factor R is set as R = ∑N

j Sij.
Compared to other work [21,41,42], by using both HSR remote sensing images and

height maps as inputs for a two-stream network, our introduced height aware context
module does not require DSM images as additional inputs after training and can directly
generate the segmentation maps for the test images in an end-to-end fashion.

3.4. Multi-Task Loss Function

In our work, we introduce both semantic segmentation training and height feature
training, hence the joint loss function is defined as:

L = Lseg + Lh (5)

where Lseg denotes semantic segmentation loss and Lh denotes height feature loss.
For semantic segmentation learning, most existing methods adopt cross-entropy loss

function to measure the difference between the predicted semantic map and ground truth
label. However, the problem exists in high resolution remote sensing images that some
classes (buildings, surface, and so on) have more samples than the car class, which causes
the predicted accuracy of few samples to have low accuracy. Motivated by the proposed
focal loss [45] in the field of image object detection, we applied it and set the focusing
parameter γ = 2 in our segmentation learning, so our segmentation loss function can be
formulated as:

Lseg = −∑
i

∑
c
(1− pic)

2 × li × log(pic) (6)

where i is the pixel location; c is the pixel class index; pic denotes the predicted probability
of the i-th pixel belonging to class c; and li corresponds to its ground truth. This loss
function can promote the loss contribution of hard samples and suppress the loss of easy
training samples. For example, if a pixel is predicted correctly with p = 0.8, then the weight
of the pixel loss value is 0.04; if a pixel is predicted incorrectly with p = 0.1, then the weight
of the pixel loss value is 0.81.

For height features learning, we adopted Smooth L1 loss for our height feature super-
vision as follows:

Lh =

{
∑i 0.5(hi − hi

∗)2 if|hi − hi
∗|< 1

∑i
∣∣hi − hi

∗∣∣−0.5 otherwise
(7)
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where hi and hi
∗ denote the predicted and ground truth height values at pixel i. This loss

function can avoid the issue of gradient explosion when the value of |hi − hi
∗| is large and

strengthen the robustness of the model. At the same time, a low |hi − hi
∗| value will cause

the Lh to be small, which can accelerate the convergence model.

4. Experiment
4.1. Dataset and Metric

To evaluate our method, we conducted experiments on two publicly available remote
sensing image datasets from two cities in Germany: Vaihingen and Potsdam. In both
datasets, each ground truth label provides six classes for corresponding images: impervious
surfaces (e.g., roads), cars, trees, low vegetation, buildings, and clutter.

The ISPRS Vaihingen dataset has a spatial resolution of 9 cm, with an average size of
2500× 2100 pixels. There were 33 high resolution remote sensing images with three spectral
bands of infrared, red, green (IRRG) and related DSM images. Following the standard split,
we used 16 titles providing ground truth for model training and the remaining 17 tiles
were used for model testing.

The ISPRS Potsdam dataset has a spatial resolution of 5 cm, with an average size
of 6000 × 6000 pixels. There were 38 high resolution remote sensing images with four
spectral bands infrared, red, green, blue (IRRGB) and related DSM images. Following
the standard split, we used 24 titles providing ground truth for model training and the
remaining 14 titles were used for model testing.

We employed the commonly used metrics including overall accuracy (OA) and inter-
section over union (IoU) to evaluate the performance of our method, defined as follows:

OA =
TP + FN

N
(8)

IoU =
TP

FP + TP + FN
(9)

where TP, FP, and FN represent the number of true positive pixels, false positive pixels,
false negative pixels, respectively, and N is the number of pixels.

4.2. Implement Details and Experimental Setup
4.2.1. Implement Details

Our research was implemented on the TensorFlow platform, and run by an NVIDA
Titan-V GPU with 12 Gigabyte of memory. We selected the Adam solver, with beta1 and
beta2 set to default as recommended, in order to optimize the network. The initial learning
rate was set to 0.001 for all datasets and we trained the model for 80 epochs. Considering
the limit of the GPU memory, the batch size was set to 4.

As the titles of both datasets were very high resolution, we could not directly process
them in our network for training and testing. As a result, we used random cropping to
crop each large image to a size of 512 × 512 pixels to fit the GPU memory. At the same
time, the number of training samples was not adequate for training, so we used rotation,
mirroring, adding noise, and other data augmentation methods to expand the dataset to
better train the model. Note that we used DSM images as additional labels for our network
during the training time and did not require them during the testing time.

4.2.2. Experimental Setup

In general, the accuracy and the parameters of the network are mainly affected by the
structure and depth of the network. In this section, we conducted an experiment on the
Vaihingen dataset to research the influence of the number of paths and residual blocks on
the performance of MPPNet. We set the number of paths from two to four, and the number
of residual blocks from three to six according to the experience. The metrics mIoU and
params were used to measure the accuracy and complexity of the network respectively.
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The experimental results are shown in Figure 6. On one hand, as the number of
residual blocks increased, the mIoU score reached the highest when the number was 5 and
then decreased. This may be due to the fact that the generalization ability of the network
decreased with the increase in depth and parameters and the network params maintained
linear growth. On the other hand, when the number of paths increased, the mIoU score
also increased, while the params of the network increased exponentially. We note that
when there were three paths, the mIoU score was slightly less than the highest score of
four, but the cost params were much lower than the latter.
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and black lines represent the mIoU result and model params. The rectangle, circle, and triangle
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axis represents the different number of residual blocks in each extracted block.

In order to balance the accuracy and complexity of the network, we chose three parallel
paths and five residual blocks of each extract block to construct our MPPNet as shown by
circles marked with blue, which saves a large amount of network params at the expense of
losing a smaller accuracy cost.

4.3. Comparison with State-of-the-Art Methods
4.3.1. Results on Vaihingen Dataset

We compared our proposed method with state-of-the-art methods through the experi-
ment on the public Vaihingen dataset and the numerical comparison results are shown in
Table 1, with the best performances marked in bold. As indicated in Table 1, our method
outperformed all of the compared methods with the highest OA of 91.54% and mean
intersection over union (mIoU) of 82.81%. In addition, when analyzing the results on some
categories in the IoU form as shown in Table 1, we can see that our method performed
better than the other methods in most categories. In particular, in the hard category (such
as car), our method still achieved a higher IoU due to the newly introduced multi-task
loss function. It can be seen that HRNet [13] achieved the highest result on buildings,
due to the high resolution result the network obtained. At the same time, V-FuseNet [21]
used the DSM image as the additional input of the network and was obviously better than
the traditional IRRG input method, which further verifies the effectiveness of the height
features. However, unlike this one, we used the DSM image as additional supervision
of the model training and did not require it during the test time, which is convenient for
real-life applications.
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Table 1. Comparisons with state-of-the-art methods on the Vaihingen dataset. The accuracy of each category is presented in
the IoU form. DSM(s) is the model using the DSM image as additional supervision.

Model Input Imp. Surf Building Low. Veg Tree Car OA (%) mIoU(%)

U-Net IRRG 76.59 78.46 71.82 72.94 62.69 84.35 72.50
PSPNet IRRG 77.45 79.51 73.04 75.01 64.58 86.07 73.92

HMANet IRRG 78.34 80.21 78.18 78.57 64.12 87.19 75.88
HRNet IRRG 79.23 84.35 75.86 77.42 67.62 87.96 76.90

V-FuseNet IRRG+DSM 82.57 82.86 83.94 82.45 73.32 90.12 81.02
HA-MPPNet IRRG+DSM(S) 83.46 83.85 83.27 84.68 78.79 91.54 82.81

We also selected some samples from the experimental results to show the comparison
of the semantic results of our model with other methods on the Vaihingen dataset in
Figure 7. It is clear that our method achieved more satisfactory results than the other
methods. For objects (such as buildings) with richer details and edges, our method could
well preserve this information during the segmentation process. In particular, we used a red
dashed box to mark challenging areas that are easy to misclassify. It can be seen from the
marked areas in Figure 7 that our method was superior to other methods in distinguishing
between trees and low vegetation. This is because our height aware context module uses
height features to improve the distinction between objects with a 2D appearance, but
different geometric characteristics.
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4.3.2. Results on the Postam Dataset

We also conducted the experiment on the Postam dataset to further evaluate our
proposed method and adopted the same training and testing settings on the Potsdam
dataset. We report the results of the numerical comparisons of our method and state-of-
the-art methods as shown in Table 2, and the best performances aree marked in bold. It
is noteworthy that our model obtained the highest OA of 90.21% and mIoU of 80.51%.
At the same time, in the prediction results of each category, buildings with richer spatial
information, trees, and low vegetation with similar 2D appearance, our method also
achieved a higher mIoU. In addition, selected samples of the segmentation result maps are
shown in Figure 8. We also used the red dashed box to mark challenging areas that are easy
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to misclassify. These areas better verified the predictive ability of our model and shows
that our proposed method produced better segmentation maps than the other methods.

Table 2. Comparisons with state-of-the-art methods on the Postam dataset. The accuracy of each category is presented in
the IoU form. DSM(s) is the model using DSM images as additional supervision.

Model Input Imp. Surf Building Low. Veg Tree Car OA (%) mIoU(%)

U-Net IRRGB 75.68 77.59 70.76 72.49 61.93 83.82 71.69
PSPNet IRRGB 77.05 78.32 72.83 74.41 64.05 85.24 73.33

HMANet IRRGB 78.04 79.28 76.56 78.85 65.39 86.56 75.62
HRNet IRRGB 78.75 83.89 75.20 76.54 66.23 87.43 76.12

V-FuseNet IRRGB+DSM 81.38 82.96 81.96 81.25 69.56 89.79 79.42
HA-MPPNet IRRGB+DSM(S) 82.85 83.43 81.63 83.13 71.52 90.21 80.51
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4.4. Ablation Study

In order to verify the effectiveness of each module in our proposed network, we
carried out an ablation study on the Vaihingen dataset. All the training and testing
environments of each ablative experiment were kept the same. In our ablation study, we
designed different variants of our HA-MPPNet by replacing or removing four key modules
of the network. We constructed our baseline as follows: (1) we replaced the MPPNet
with ResNet-101 [31] as the feature extraction for the network; (2) we replaced the GHLF
module with direct channel concatenation followed by a 1 × 1 convolution for feature
fusion; (3) we removed the height features decode (HFD) branch and used traditional IRRG
as the network input; and (4) we replaced the HFGP module with direct concatenation
for fusing learned height features and semantic context. Then, we gradually replaced or
added the four key modules to the baseline, and provide the visualization and quantitative
results in Figure 8 and Table 3.
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Table 3. Quantitative evaluation of ablation studies on the Vaihingen dataset.

Module OA (%) mIoU(%)

Baseline MPPNet GHLF HFD HFGP
√

85.73 73.64√ √
87.86 77.52√ √ √
88.95 78.85√ √ √ √
90.28 81.67√ √ √ √ √
91.54 82.81

As shown in Figure 9, we can see that the baseline can roughly segment the image
but loses partial information of the object. By using MPPNet for feature extraction, which
preserves spatial information of images, buildings and others with complex texture objects
are well predicted while increasing the percentage gains of OA 2.13% and mIoU 3.88% on
the Vaihingen dataset. Then, we introduced the GHLF module, which selectively fuses
features from high and low levels by using a gate mechanism, and contributes to gains
of 1.09% and 1.33% in terms of OA and mIoU. Next, utilizing the HFD module, which
incorporates height features, enabled a boost in the performance considerably, which
further revealed the effectiveness of height information. It was obviously seen that objects
with similar 2D appearance but completely different height features such as trees and low
vegetation were well distinguished, and this module improved the percentage gains of
OA 1.33% and mIoU 2.82%. Finally, we introduced the HFGP module to use the learned
height feature as an affinity guide for semantic features, which further improved the whole
HA-MPPNet in two metrics.
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Figure 9. Visualization of ablative results on the Vaihingen dataset. From left to right: input IRRG, ground truth, segmenta-
tion maps predicted by baseline, Baseline + MPPNet, Baseline + MPPNet + GHLF, Baseline + MPPNet + GHLF + HED, and
the full HA-MPPNet.

In addition, we also counted the computational cost of MPPNet with different fea-
ture fusion operations to further verify the effectiveness of our GHLF, and the quanti-
tative results are shown in Table 4. It can be seen that compared with MPPNet + Con-
tact/Addition using the traditional channel contact or pixel addition feature fusion method,
our MPPNET + GHLF module required less GPU memory usage and had less computa-
tional cost with a few parameters. Meanwhile, our MPPNET + GHLF module still achieved
a higher value of mIoU than the other fusion operations and reached 78.85% in the experi-
ment of the Vaihingen dataset, which we attributed to the GHLF module that adaptively
selects effective information from each layer and then performs feature fusion.
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Table 4. Computational cost comparison of MPPNet with different feature fusion operations.

Module mIo U(%) Memory (MB) Params (M)

MPPNet + Addition 77.68 256 33.1
MPPNet + Contact 77.52 238 32.8
MPPNet + GHLF 78.85 185 29.3

4.5. Visualization Results

To explore the feasibility of our proposed method for large-scale images, we used the
large-scale titles of the Vaihingen and Postam datasets as inputs for the HA-MPPNet. We
also selected samples of segmentation results, as shown in Figures 10 and 11. It can clearly
be seen that our module could also predict excellent segmentation maps for large-scale
images, which confirms the generalization of our network.
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4.6. Discussion

As shown in the results, our method could well preserve the buildings with richer
details and edges as the MPPNet maintains the resolution during the progress of the
extraction of the feature. Our method was superior to the other methods in distinguishing
between trees and low vegetation with a similar 2D appearance. This is because our height
aware context module uses height features to improve the distinction between objects with
2D appearance, but different geometric characteristics. More importantly, our network
does not require DSM images as an additional input after training and can directly generate
the segmentation map for the test image. In addition, the ablation study evaluates the
effectiveness of the proposed module. Gated feature fusion module adaptively selects
effective information from each layer to obtain a higher accuracy with less computational
cost than other feature fusion operations. Experiments have demonstrated the potentials of
applying HA-MPPNet on high-resolution remote sensing image semantic segmentation.

5. Conclusions

In this paper, we proposed a height aware-multi path parallel network to alleviate
the problem of the loss of rich detail information and indistinguishable pixel categories
in semantic segmentation of high spatial resolution remote sensing images. The first
contribution to our work was to introduce a multi path parallel network (MPPNet) to learn
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the multi-level semantic features while fixing the spatial resolution in each path to preserve
the detail and edge information of images. Second, the gated high-low-level feature fusion
(GHLF) module was used to fuse the selected features from both high–low levels by a gate
mechanism and gradually enhanced low-level feature semantics. Then, we designed a
height feature decode branch (HED) to learn the height features under the supervision of
the DSM image. Followed by a height feature guide propagation (HFGP) architecture, the
learned height embeddings were used as guidance to improve the semantic context. Our
work only uses the DSM image as a side supervision for the network during the training
stage, does not require it during the inference stage, and is an end-to-end fashion. Finally,
the experiments on both the Vaihingen dataset and Postam dataset demonstrated that HA-
MPPNet outperformed other state-of-the-art methods with a higher mIoU. In addition, we
conducted an ablation study to further evaluate the effectiveness of the proposed module.
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