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Abstract: High concentrations of fine particulate matter (PM2.5) are well known to reduce envi-
ronmental quality, visibility, atmospheric radiation, and damage the human respiratory system.
Satellite-based aerosol retrievals are widely used to estimate surface PM2.5 levels because satellite
remote sensing can break through the spatial limitations caused by sparse observation stations. In
this work, a spatiotemporal weighted bagged-tree remote sensing (STBT) model that simultaneously
considers the effects of aerosol optical depth, meteorological parameters, and topographic factors
was proposed to map PM2.5 concentrations across China that occurred in 2018. The proposed model
shows superior performance with the determination coefficient (R2) of 0.84, mean-absolute error
(MAE) of 8.77 µg/m3 and root-mean-squared error (RMSE) of 15.14 µg/m3 when compared with
the traditional multiple linear regression (R2 = 0.38, MAE = 18.15 µg/m3, RMSE = 29.06 µg/m3) and
linear mixed-effect (R2 = 0.52, MAE = 15.43 µg/m3, RMSE = 25.41 µg/m3) models by the 10-fold
cross-validation method. The results collectively demonstrate the superiority of the STBT model to
other models for PM2.5 concentration monitoring. Thus, this method may provide important data
support for atmospheric environmental monitoring and epidemiological research.

Keywords: PM2.5; aerosol optical depth; bagged-tree; remote sensing

1. Introduction

Particulate matter with ≤2.5 µm diameter is called fine particulate matter (PM2.5) [1].
Numerous epidemiological studies have found that cardiovascular and respiratory dis-
eases are closely related to long-term exposure to PM2.5 [2]. Emerging evidence has also
shown that PM2.5 is associated with impaired cognitive function [3], Alzheimer’s dis-
ease, Parkinson’s disease, cognitive decline, and dementia [4,5]. High resolution and
high coverage PM2.5 levels promote epidemiologists to analysis the effects of PM2.5 in
human health with more efficient [6]. Unfortunately, the lack of accurate monitoring data
on long-term PM2.5 levels results in scarcity of epidemiological studies concerning the
impact of particulate matter on human health [7]. The uneven atmospheric monitoring
network of the China Meteorological Administration, established in 2013, cannot capture
the regional PM2.5 concentration. Thus, establishing a suitable PM2.5 model with wide-area
coverage is necessary.

Aerosol optical depth (AOD) is an important parameter in atmospheric research [8].
AOD can be calculated by integrating aerosol extinction coefficient in a vertical column of
atmosphere. In recent years, an aerosol robot network (AERONET) has been established
in China, which can monitor AOD values relatively accurately and support regionally
environmental analysis. However, the sparse distribution of monitoring stations makes
it difficult to characterize the actual spatial change of AOD [9]. Satellite remote sensing
can realize wide-area aerosol retrieval, thereby providing chances for large-scale regional
air quality assessments [10]. Numerous studies have demonstrated a complex correla-
tion between AOD and surface PM2.5 levels. Surface PM2.5 concentrations estimated by
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satellite-based AOD have been widely applied in recent years to monitor air quality [10,11].
The AOD products commonly used to estimate PM2.5 concentrations include MODIS
AOD [12,13], MERRA-2 AOD, and Himawari-8 AOD [14,15]. A new high-resolution (1 km)
daily MCD19A2 AOD retrieved by a multiangle implementation of atmospheric correction
(MAIAC) algorithm was released on 30 May 2018 [16]. In the MAIAC AOD product de-
velopment process, researchers improved many key operations, such as snow and cloud
screening and selecting aerosol types after analysis based on time series images. At present,
MAIAC AOD data have been widely used to reveal the changes of AOD in various regions
of the world [17]. However, for estimating fine particle concentrations on fine scale, higher
resolution AOD products are indispensable, and the resolution of AOD data often used in
previous studies cannot meet the requirements. Based on this situation, the VIIRS sensor
was initiated with the launch of the S-NPP satellite in 2011. It is a new generation of
satellite sensor used to describe aerosol characteristics [18]. As a scanning radiometer, it
has expanded and improved capabilities when compared with the traditional AVHRR
and MODIS sensors [18], and can generate aerosol products with a spatial resolution of
750 m [19].

The methods for estimating PM2.5 concentrations based on satellite remote sensing
mainly include the empirical formula [20], chemical transport model [12], and statistical
model. The classical statistical models include the linear mixed-effect (LME) model, the
generalized additive model, and the geographical-weighted regression model [12,21–23].
A large number of PM2.5 concentration data from ground monitoring stations are required
to develop and verify these models [7]. However, these models are unable to completely
capture the complex relations of PM2.5 with various influencing factors [24] and cannot
fully reflect temporal and spatial differences in PM2.5 distributions. Thus, developing
superior model to map PM2.5 concentrations is still an important task by respectively
considering the spatio-temporal heterogeneity of different variables.

In this study, the AOD products with high coverage ratio are generated by integrating
MODIS MAIAC AOD [13] and VIIRS IP AOD [25]. Integrating the advantages of the two
AOD products by considering similar pixels between the two products can improve the
coverage of MAIAC AOD products. Moreover, a spatiotemporal bagged-tree (STBT) model
that considers the spatiotemporal heterogeneity between different influencing factors was
applied to map PM2.5 concentrations across China that occurred in 2018. Sample-based
and station-based cross-validation (CV) methods are used to evaluate the performance of
the STBT model.

2. Study Area and Datasets

Ground PM2.5 observation, MAIAC AOD, VIIRS IP AOD, meteorological parameters,
topographic factors, and other auxiliary data related to site-measured PM2.5 levels were
applied in this study, as shown in Table 1. The datasets cover the period from 1 January to
31 December 2018.

2.1. Study Area

In this study, the nationwide PM2.5 observation data at 1591 sites were downloaded
from the database of the China National Environmental Monitoring Center. As shown in
Figure 1, the monitoring sites are distributed unevenly in the study area; specifically, the
stations are densely distributed in the east and sparsely distributed in the west. East China
is adjacent to the Pacific Ocean, which spans many temperature zones, such as tropical,
subtropical, and temperate monsoon. In contrast, the northwest belongs to a non-monsoon
region with a temperate continental climate.
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Table 1. Datasets used in this study. AOD: aerosol optical depth; RH: relative humidity; TEMP: temperature; WS: wind
speeds; BLH: boundary layer height; NDVI: normalized difference vegetation; DEM: digital elevation model.

Data Variables Unit Temporal
Resolution

Spatial
Resolution Sources

PM2.5 PM2.5 µg/m3 1 h site CNEMC
MAIAC AOD AOD Unitless 1 day 1 km MODIS
VIIRS IP AOD AOD Unitless 1 day 750 m S-NPP

Meteorological
parameters

RH % 1 h 0.25◦

ERA5
TEMP K 1 h 0.25◦

WS m/s 1 h 0.25◦

BLH m 1 h 0.25◦

Topographic factors DEM m – 90 m USGS
Vegetation factors NDVI Unitless 16 days 0.05◦ MODIS

Figure 1. Distribution of PM measured sites managed by the China National Environmental Monitoring Center (CNEMC).
The total number of monitoring sites is 1591.

2.2. MODIS AOD

The MODIS AOD product has high retrieval accuracy and is widely applied for PM2.5
level monitoring over large areas [26]. The MAIAC AOD product developed by the MAIAC
algorithm has a high spatial resolution of 1 km. The confidence level of the MAIAC AOD
product used in this study is high. MAIAC AOD from 1 January 2018 to 31 December 2018
were downloaded from NASA (http://ladsweb.modaps.eosdis.nasa.gov/, accessed on 2
February 2019).

http://ladsweb.modaps.eosdis.nasa.gov/
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2.3. VIIRS IP AOD

The visible infrared imaging radiometer (VIIRS), which is extended from the MODIS
series, was carried on the S-NPP satellite [27] and used to obtain the AOD product with
750 m resolution. The VIIRS IP AOD has been used in domestic and international studies
to retrieve PM2.5 concentrations over large areas [28]. VIIRS IP AOD from 1 January 2018
to 31 December 2018 were downloaded from NOAA (https://ncc.nesdis.noaa.gov/VIIRS/,
accessed on 11 April 2019).

2.4. Meteorological Data

The surface PM2.5 concentrations were closely related to meteorological parameters,
especially the boundary layer height and the wind [29]. In this study, the meteorologi-
cal data from the reanalysis dataset of the European Meteorological Centre are used in
this study. These data were downloaded from ERA5 (https://cds.climate.copernicus.
eu/cdsapp#!/home, accessed on 22 June 2019). The meteorological parameters used in
this study, including relative humidity (RH), temperature (TEMP), boundary layer height
(BLH), and wind speed (WS), as shown in Table 1.

2.5. Geographic and Topographic Data

MODIS retrieved Normalized difference vegetation index (NDVI) with a time resolu-
tion of 16 days was used in this study, which can represent different land cover types. NDVI
data at a spatial resolution of 0.05◦ were downloaded from the NASA Earth Observatory
(http://neo.sci.gsfc.nasa.gov/, accessed on 17 June 2019). In addition, digital elevation
model (DEM) data from the U.S. Geological Survey (https://www.usgs.gov/, accessed
on 18 April 2018) with a spatial resolution 30 m was used in this study to characterize the
topographic features of the study area.

3. Methodology
3.1. Multi-Source AOD Data Fusion

Given cloud effect and MODIS aerosol retrieval method, a large number of AOD data
are missing in the study area. According to the mechanism of retrieving aerosol loadings
from satellite-based sensors, some researchers considered the relationship between AOD
loadings and NDVI, comprehensively weighing the spatial proximity, AOD and NDVI
similarity, to recover AOD [30,31]. The VIIRS IP AOD at 550 nm can provide a reliable
dataset with a high resolution (750 m) [32]. In this study, filling AOD vacancy based on
the adaptive threshold method was adopted to enhance the spatiotemporal continuity of
the data. The similar pixels from VIIRS IP AOD found by local range were used to recover
missing pixels in the MAIAC AOD product. Here, adaptive determination was used to
search for similar pixels by considering local differences between MAIAC AOD and VIIRS
IP AOD values and spatial distance. Similar pixels should satisfy the following inequality,∣∣Aj − Ai

∣∣≤ A_thi, (1)

where Aj and Ai refer to a similar AOD pixel and target AOD pixel in the VIIRS IP AOD
dataset, respectively, and A_thi is the adaptive threshold calculated by the AOD local
standard deviation formula:

A_thi = std(MAIACdiv − VIIRSdiv) ∗ length ∗ width, (2)

where MAIACdiv and VIIRSdiv refer to two AOD datasets from MAIAC and VIIRS in a
given window respectively, std represents the calculated standard deviation, and length
and width represent the local window size. Similar pixels are endowed with weights based
on AOD differences and spatial relations:

Dij =
∣∣∣Aj − Ai + β

∣∣∣∗((xj − xi
)2

+
(
yj − yi

)2
)

, (3)

https://ncc.nesdis.noaa.gov/VIIRS/
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
http://neo.sci.gsfc.nasa.gov/
https://www.usgs.gov/
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where x and y refer to longitude and latitude, respectively, and β is a small value that
prevents Dij from equaling zero, which is empirically determined. Normalized processing
is then carried out:

Wij =
1/Dij

∑N
i=1

(
1/Dij

) , (4)

Finally, the missing value in MAIAC AOD is filled based on the weighting sum of
these similar pixels in MAIAC AOD that are determined by the similarity relation between
MAIAC and VIIRS AOD:

AODtg =
N

∑
i=1

Wij ∗ AODi, (5)

3.2. Spatiotemporal Bagged-Tree Model
3.2.1. Bagged-Tree Model

Decision tree models typically give good classification decisions [33]. The model is
built in the light of the bagged-tree combination classification method [34]. The combined
classifier used in this work is composed of multiple individual classifiers consisting of deci-
sion trees. The training data of each tree are extracted by using bootstrap. Each individual
classifier has its own classification results. The classified result from the combined classifier
is determined by the combination of the results of individual classifiers to avoid overfitting.

3.2.2. Spatiotemporal Weighted Function

The spatial cross-correlation and temporal autocorrelation of the data were explored
by considering the spatio-temporal heterogeneity of PM2.5 concentrations in this study.
The spatial cross-correlation can be expressed by the spatial weight function:

Ps =
∑W

w=1
1

dsw
2 PMw

∑W
w=1

1
dsw

2

, (6)

where ds refers to the space distance, PMw refers to the PM2.5 of station w adjacent to
the target station, and W refers to the number of stations within the selected scope. The
temporal autocorrelation is expressed by the temporal weight function:

Pt = α
t+1

∑
t−1

PMt + β
1
n

n

∑
1

PMn + γ
1
m

m

∑
1

PMM + θ, (7)

where PMt refers to the PM2.5 measured in the day before and after the current day,
1
n ∑n

1 PMn is the averaged PM2.5 value within a week, n is the number of valid days of the
week, 1

m ∑m
1 PMM represents the averaged PM2.5 level within a month, and m is the number

of valid days of the month. The coefficient is obtained by linear analysis, and θ refers to the
linear analysis residual.

3.3. Other Models
3.3.1. MLR Model

The simple multiple linear regression (MLR) model can be expressed as:

PM2.5 = b + a1 × AOD + a2 × TEMP + a3 × RH + a4 × WS
+a5 × BLH + a6 × NDVI + a7 × DEM + ε

(8)

where b indicates the intercept, α1 − α7 refer to regression coefficients, and ε represents the
error term.
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3.3.2. LME Model

The ordinary MLR model can be extended as LME model by considering random
effect in a specific time. LME model can explain the time-related relationship between
surface PM2.5 levels and multiple predictors in a specific region, and can be expressed as:

PM2.5n,m = [β0 + bday
0,n,m] + [β1 + bday

1,n,m]× AODn,m + β2 × TEMPn,m + β3 × RHn,m

+β4 × WSn,m + β5 × BLHn,m + β6 × NDVIn,m + β7 × DEMn,m + εn,m;
(bday

0,n,m, bday
1,n,m) ∼ N[(0, 0, ∑)], εn,m ∼ N(0, σ2);

(9)

where n and m refers to the grid and time index, respectively; β0 represent the fixed in-
tercept; β1 − β7 are the fixed slopes for these corresponding predictors; bday

1,n,m and bday
0,n,m

represent the time-specific random slope and intercept for intercept and AOD, respec-
tively; ∑ indicates the variance–covariance matrix of the random effects; εn,m represent the
error term.

3.4. Model Evaluation

The performance of the proposed STBT model was validated via sample-based and
station-based 10-fold cross-validation (CV) methods to calculate the determination co-
efficient (R2), MAE, and RMSE. CV has an ability to reveal whether or not a model is
overfit. Finally, the results of the proposed model were compared with those of tradi-
tional estimation models, such as the MLR and LME models, to determine its accuracy
and generalizability.

4. Results and Discussion
4.1. Assessment of Fused AOD and Statistical Analysis of the Datasets
4.1.1. Assessment of Fused AOD

The AERONET measurements are used to evaluate the fused AOD data. However,
AERONET network observes AOD value in multiple wavelengths, almost of which are
different from MAIAC AOD at 550 nm. Therefore, AERONET aerosol retrievals at 550 nm
can be interpolated from the value at other wavelengths by the second-order polynomial
method. By fitting the linear relationship between the fused and AERONET AOD, the
error is validated using correlation coefficient (R), RMSE, and bias. The analysis results are
shown in Figure 2.

Figure 2. Validation results of total data for (a) original MAIAC AOD and (b) fusion MAIAC AOD. The color bar presents
counts of points. Number of samples (N), correlation coefficient (R), RMSE, and bias are given in each subplot.

The fused MAIAC AOD shows larger matched samples (N = 3408) than original
aerosol retrievals (N = 2704) with similar performance (R = 0.82, bias = 0.098, RMSE = 0.161)
to the original MAIAC AOD (R = 0.84, bias = 0.115, RMSE = 0.188). Furthermore, the daily
coverage of original and fused AOD products is also quantitatively evaluated. The coverage
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percentage in the study area is calculated by the ratio between the number of valid and
total pixels. Figure 3 shows the daily coverage of original and fused AOD products in the
study areas (70–140◦E, 10–55◦N). The average daily coverage of the original AOD is only
21.20%. In contrast, the coverage of the fused AOD reaches 37.24%.

Figure 3. Time series plot of daily coverage for original (red line) and fused (blue line) MAIAC AOD. The numbers in
parentheses represent the averaged AOD coverage.

Figure 4 displays the comparison of coverage percentage between the original and
fused AOD in each quarter. The quarterly coverages of the fused AOD are apparently
higher than that of the original AOD, especially in autumn and winter. The coverages
for different quarters are improved from 24.61% to 37.78% in spring, 15.60% to 32.49% in
summer, 30.33% to 44.67% in autumn, and 19.09% to 33.61% in winter. The fused AOD
coverage is significantly improved in China, especially for northern and southwestern
China. The degree of recovery varies regionally, depending on the local spatial and
temporal properties of AOD.

Figure 4. Maps of quarterly AOD coverage for original (a–d) and fused (e–h) MAIAC AOD. The color bar represents AOD
coverage (%). Spring: March–May; Summer: June–August; Autumn: September–November; Winter: December–February.
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4.1.2. Statistical Analysis of the Datasets

The spatial and temporal resolution of different factors is unified to 750 m and 1 day
by the linear interpolation method, respectively. After screening for abnormal data, a
total of 215,893 matched data are obtained. The data are statistically analyzed, and their
maximum, minimum, mean, and standard deviation are calculated. The statistical results
are shown in Figure 5.

Figure 5. Statistical analysis of the datasets used in this study, including PM2.5, AOD, temperature,
RH, wind, precipitation, BLH, NDVI, and DEM.

4.2. Model Evaluation and Comparison

The bagged-tree model is applied in this study; data numbering 215,893 are matched
through 1591 stations, and each datum contains 13 attributes, including time, longitude,
latitude, temperature, relative humidity, etc. Parameter debugging is also very important
in the process of model training. Combined with the data volume and feature number,
the minimum leaf size is set to 8 and the number of Learning Cycles is set to 30 in the
bagged-tree model.

The performance of the STBT model is evaluated by using R2, RMSE, and MAE, as
shown in Figure 6. Both station-based and sample-based 10-CV method is adopted to
determine whether overfitting occurs. The comparisons of the proposed STBT model and
two traditional models (MLR and LME) are also Figure 6. Two kinds of 10-CV methods
were adopted to verify the performance of these models. Firstly, 90% samples from the
215,893 data were randomly selected to train the STBT model, and the remaining 10% was
regarded as validation samples. Secondly, considering the wide distribution of measured
sites, 90% of 1591 sites are randomly selected to train the model, and the remaining 10%
sites are used as verification, which can adequately reveal the prediction ability of the
model in different spatial domains.

Figure 6a,d demonstrate that the MLR model exhibited low performance with site-
based (sample-based) 10-CV: R2 of 0.38 (0.38), the corresponding MAE is 18.18 (18.15)
µg/m3, and RMSE is 29.10 (29.06) µg/m3. The complex relationship between PM2.5 and
AOD is difficult to express by a simple linear relationship. Additionally, the LME model
also performed moderately well with site-based (sample-based) 10-CV: R2 of 0.53 (0.52), the
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corresponding MAE is 15.43 (15.43) µg/m3, and RMSE is 25.33 (25.41) µg/m3 in Figure 6b,e.
It is gratifying that the STBT model performs well with site-based (sample-based) 10-CV:
R2 value of 0.81 (0.84), the corresponding the MAE is 8.93 (8.77) µg/m3, and RMSE is
16.37 (15.14) µg/m3, as shown in Figure 6c,f. The similar verification results between
site-based and sample-based 10-CV method indicate that the proposed STBT model has
good prediction ability over the regions without measurements and could effectively avoid
overfitting by considering spatial and temporal heterogeneity. Compared with the two
traditional MLR and LME models, the R2 of the proposed STBT model is higher by 121.05%
and 61.54%, respectively, its RMSE is lower by 41.91% and 40.42%, respectively, and its MAE
is lower by 51.69% and 43.17%, respectively. Thus, compared with other models, the STBT
model shows greatly improved performance for mapping regional PM2.5 concentrations.

Figure 6. Scatterplot of the sample-based (a–c) and station-based (d–f) CV for surface PM2.5 estima-
tions from the different models: (a,d) MLR, (b,e) LME, and (c,f) STBT model.

Surface PM2.5 concentrations measured by sites and estimated by the STBT model are
plotted in Figure 7. The bias between estimations and measurements from during the study
period (from 1 January to 31 December 2018) is plotted in the same figure. The annual
average bias between the estimated and measured PM2.5 concentration is 7.16 µg/m3. The
estimated results match the measured values well, especially in summer.

4.3. Spatial Distributions of Surface PM2.5 Levels

Figure 8 shows the seasonal average PM2.5 levels estimated by the STBT model
across China. These subfigures reveal significant seasonal changes in the distribution of
surface PM2.5 levels. Among the four seasons, winter demonstrates the greatest levels of
pollution, with an average PM2.5 value of 44 µg/m3. By contrast, summer shows the lowest
levels of pollution, with an average PM2.5 value of 31 µg/m3. This significant seasonal
change is strongly correlated with anthropogenic emissions [35–38]. A mass of particulate
matter produced by burning fossil fuels and biomass promote the high polluted levels
in winter [39,40]. Adverse weather conditions during cold periods could promote the
accumulation of air pollutants over a certain region [41]. The low pollution in summer
may be related to the less fossil fuel and biomass burning in this season. Moreover, clean
marine air mass, intense atmospheric convection, and sufficient wet deposition of aerosols
can significantly reduce pollution levels during the Asian summer monsoon [42]. Ground
PM2.5 concentrations also show distinct spatial inconsistency. Low seasonal PM2.5 levels
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exist in the eastern coastal area. By contrast, the seasonal average PM2.5 levels over the
Beijing–Tianjin–Hebei and Xinjiang regions are high, likely because of regional industrial
development or adverse terrain accumulate of air pollutants. Moreover, the performance
of the STBT model in the western region may be influenced by the sparse distribution of
measured stations in these regions. Furthermore, the lifetime of PM2.5 in the atmosphere
can be up to 6 days, and during those days the particles can travel up to 3000 km. The wind
erosion effect leads to the very high concentration of PM2.5 in northwestern China [43],
which transports sand dust from Taklamakan Desert to adjacent areas.

Figure 7. Time series plot of estimations from the STBT model and measurements together with bias between estimations
and measurements. The abscissa represents the time of two hours before and after 12:00 local time, and the ordinate
represents the average of the observed values of all stations in that hour.

Figure 8. Spatial distribution of seasonal PM2.5 concentrations estimated by the STBT model: (a) Spring, (b) Summer,
(c) Autumn, and (d) Winter.
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4.4. Regional PM2.5 Concentrations

Four typical polluted regions are selected, including the Yangtze River Delta region,
the North China Plain, the Sichuan Basin and the Pearl River Delta region. As shown in
Figure 9, the North China Plain remains the most polluted area, due to many anthropogenic
emission sources, adverse topographic conditions, and other factors [44]. The Pearl River
Delta has the lowest polluted levels among the four regions, because the monsoon on the
east coast disperses fine particles. The concentration of fine particles in Sichuan Basin
is also relatively high, which is mainly due to the closed topography, which results in
pollutant accumulation [45].

Figure 9. Annual averaged surface PM2.5 levels in 2018 for four typical polluted regions: (a) North China Plain, (b) Yangtze
River Delta region, (c) Pearl River Delta region, and (d) Sichuan Basin.

5. Conclusions

The spatiotemporal distribution of surface PM2.5 levels across China are mapped
by a STBT model using fused AOD data collected in 2018 in this study. The main
conclusions follow:

(1) Compared with the average coverage of the original MAIAC AOD (21.20%), the
coverage of the fused AOD reaches 37.24% by using an adaptive threshold algorithm
of auxiliary pixels.

(2) Compared with traditional MLR (R2 = 0.38, MAE = 18.15 µg/m3, RMSE = 29.06 µg/m3)
and LME (R2 = 0.52, MAE = 15.43 µg/m3, RMSE = 25.41 µg/m3) models, the STBT
model can map regional PM2.5 concentrations with a higher R2 (0.84), lower MAE
(8.77 µg/m3), and RMSE (15.14 µg/m3), based on sample-based 10-fold CV.

(3) Seasonally spatial distributions of surface PM2.5 levels estimated by the STBT model
display the significant seasonal changes. Among the seasons, summer reveals the
lowest pollution levels, followed by spring and autumn. Winter shows the highest
pollution levels. In terms of spatial distribution, the pollution in the Beijing–Tianjin–
Hebei and Xinjiang regions is high while that in the southeast coastal region is low.
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The stability and performance of the STBT model is improved by considering the
spatiotemporal heterogeneity of different modeling factors. In future work, our research
team aims to improve models with better performance for regional PM2.5 mapping.
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Nomenclature

Acronym Full Name
AERONET Aerosol Robotic Network
AOD Aerosol Optical Depth
BLH Boundary Layer Height
CNEMC China National Environmental Monitoring Center
CV Cross Validation
LME Linear Mixed-effect
MAE Mean Absolute Error
MAIAC Multiangle Implementation of Atmospheric Correction
MLR Multiple Line Regression
MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation
R2 Determinate Coefficient
RH Relative Humidity
PM2.5 Particulate Matter with Aerodynamic Diameter less than 2.5 µm
RMSE Root Mean Square Error
STBT Spatiotemporal bagged-tree
Temp Temperature
USGS United States Geological Survey
VIIRS Visible Infrared Imaging Radiometer Suite
WS Wind Speed

References
1. Jin, M.; Yang, H.W.; Tao, A.L.; Wei, J.F. Evolution of the protease-activated receptor family in vertebrates. Int. J. Mol. Med. 2016,

37, 593–602. [CrossRef] [PubMed]
2. Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 Exposures with High Spatiotemporal

Resolution across the Continental United States. Env. Sci. Technol. 2016, 50, 4712–4721. [CrossRef] [PubMed]
3. Ailshire, J.; Karraker, A.; Clarke, P. Neighborhood social stressors, fine particulate matter air pollution, and cognitive function

among older U.S. adults. Soc. Sci. Med. 2017, 172, 56–63. [CrossRef]
4. Lee, M.; Schwartz, J.; Wang, Y.; Dominici, F.; Zanobetti, A. Long-term effect of fine particulate matter on hospitalization with

dementia. Environ. Pollut. 2019, 254, 112926. [CrossRef]

http://ladsweb.modaps.eosdis.nasa.gov/
https://ncc.nesdis.noaa.gov/VIIRS/
https://cds.climate.copernicus.eu/cdsapp#!/home
http://neo.sci.gsfc.nasa.gov/
http://neo.sci.gsfc.nasa.gov/
https://www.usgs.gov/
http://doi.org/10.3892/ijmm.2016.2464
http://www.ncbi.nlm.nih.gov/pubmed/26820116
http://doi.org/10.1021/acs.est.5b06121
http://www.ncbi.nlm.nih.gov/pubmed/27023334
http://doi.org/10.1016/j.socscimed.2016.11.019
http://doi.org/10.1016/j.envpol.2019.07.094


ISPRS Int. J. Geo-Inf. 2021, 10, 676 13 of 14

5. Chen, H.; Kwong, J.C.; Copes, R.; Tu, K.; Villeneuve, P.J.; van Donkelaar, A.; Hystad, P.; Martin, R.V.; Murray, B.J.; Jessiman, B.; et al.
Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort
study. Lancet 2017, 389, 718–726. [CrossRef]

6. Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An
ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ.
Int. 2019, 130, 104909. [CrossRef]

7. Huang, K.; Xiao, Q.; Meng, X.; Geng, G.; Wang, Y.; Lyapustin, A.; Gu, D.; Liu, Y. Predicting monthly high-resolution PM2.5
concentrations with random forest model in the North China Plain. Env. Pollut. 2018, 242, 675–683. [CrossRef]

8. Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical
properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos.
2000, 105, 9791–9806. [CrossRef]

9. Chatterjee, A.; Michalak, A.M.; Kahn, R.A.; Paradise, S.R.; Braverman, A.J.; Miller, C.E. A geostatistical data fusion technique for
merging remote sensing and ground-based observations of aerosol optical thickness. J. Geophys. Res. Space Phys. 2010, 115, 115.
[CrossRef]

10. Guo, J.-P.; Zhang, X.-Y.; Che, H.-Z.; Gong, S.-L.; An, X.; Cao, C.-X.; Guang, J.; Zhang, H.; Wang, Y.-Q.; Zhang, X.-C.; et al.
Correlation between PM concentrations and aerosol optical depth in eastern China. Atmos. Environ. 2009, 43, 5876–5886.
[CrossRef]

11. Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor
data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [CrossRef]

12. Xie, Y.; Wang, Y.; Zhang, K.; Dong, W.; Lv, B.; Bai, Y. Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using
3 km Resolution MODIS AOD. Env. Sci Technol. 2015, 49, 12280–12288. [CrossRef]

13. Wei, J.; Li, Z.; Huang, W.; Xue, W.; Song, Y. Improved 1-km-Resolution PM2.5 Estimates across China Using the Space-Time
Extremely Randomized Trees. Atmos. Chem. Phys. Discuss. 2019. [CrossRef]

14. Sun, T.M.; Chang, Y.H.; Chang, K.E.; Lin, T.H. Using radiance of cloud shadow for retrieve Investigation of AOD retrieval with
Himawari-8 satellite data. In Proceedings of the Egu General Assembly Conference, Vienna, Austria, 17–22 April 2016.

15. Wang, W.; He, J.; Miao, Z.; Du, L. Space–Time Linear Mixed-Effects (STLME) Model for Mapping Hourly Fine Particulate
Loadings in the Beijing–Tianjin–Hebei Region, China. J. Clean. Prod. 2021, 292, 125993. [CrossRef]

16. Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [CrossRef]
17. Lyapustin, A.; Wang, Y.; LaszloI, I.; Korkin, S. Improved cloud and snow screening in MAIAC aerosol retrievals using spectral

and spatial analysis. Atmos. Meas. Tech. 2012, 5, 843–850. [CrossRef]
18. Liu, H.; Remer, M.A.; Huang, J. Preliminary evaluation of S-NPP VIIRS aerosol optical thickness. J. Geophys. Res. Atmos. 2014,

119, 3942–3962. [CrossRef]
19. Jackson, J.M.; Liu, H.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.; Huang, H.C. Suomi-NPP VIIRS aerosol algorithms and

data products. J. Geophys. Res. Atmos. 2013, 118, 12673–12689. [CrossRef]
20. Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite

observation. Remote Sens. Environ. 2015, 160, 252–262. [CrossRef]
21. Li, T.; Shen, H.; Yuan, Q.; Zhang, X.; Zhang, L. Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A

Geo-Intelligent Deep Learning Approach. Geophys. Res. Lett. 2017. [CrossRef]
22. Yu, W.; Liu, Y.; Ma, Z. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian

hierarchical setting. Sci. Rep. 2017, 7, 1–9. [CrossRef]
23. Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing. Env. Sci. Technol.

2014, 48, 7436–7444. [CrossRef]
24. Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.A.S.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method

to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Env. 2018,
636, 52–60. [CrossRef] [PubMed]

25. Chen, Y.; Wu, S.; Wang, Y.; Zhang, F.; Du, Z. Satellite-Based Mapping of High-Resolution Ground-Level PM2.5 with VIIRS IP
AOD in China through Spatially Neural Network Weighted Regression. Remote Sens. 2021, 13, 1979. [CrossRef]

26. Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and evaluation of MODIS
Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 2019,
224, 12–28. [CrossRef]

27. Meng, F.; Cao, C.; Shao, X. Spatio-temporal variability of Suomi-NPP VIIRS-derived aerosol optical thickness over China in 2013.
Remote Sens. Environ. 2015, 163, 61–69. [CrossRef]

28. Yao, F.; Si, M.; Li, W.; Wu, J. A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5
concentrations over a heavily polluted region in China. Sci. Total. Environ. 2018, 618, 819–828. [CrossRef] [PubMed]

29. Karagiannidis, A.; Poupkou, A.; Giannaros, T.; Giannaros, C.; Melas, D.; Argiriou, A. The Air Quality of a Mediterranean Urban
Environment Area and Its Relation to Major Meteorological Parameters. Water Air Soil Pollut. 2015, 226, 2239. [CrossRef]

30. Zhang, T.; Chao, Z.; Wei, G.; Wang, L.; Zhu, Z. Improving spatial coverage for Aqua MODIS AOD using NDVI-based multi-
temporal regression analysis. Remote Sens. 2017, 9, 340. [CrossRef]

http://doi.org/10.1016/S0140-6736(16)32399-6
http://doi.org/10.1016/j.envint.2019.104909
http://doi.org/10.1016/j.envpol.2018.07.016
http://doi.org/10.1029/2000JD900040
http://doi.org/10.1029/2009JD013765
http://doi.org/10.1016/j.atmosenv.2009.08.026
http://doi.org/10.1016/j.atmosenv.2004.01.039
http://doi.org/10.1021/acs.est.5b01413
http://doi.org/10.5194/acp-2019-815
http://doi.org/10.1016/j.jclepro.2021.125993
http://doi.org/10.5194/amt-11-5741-2018
http://doi.org/10.5194/amt-5-843-2012
http://doi.org/10.1002/2013JD020360
http://doi.org/10.1002/2013JD020449
http://doi.org/10.1016/j.rse.2015.02.005
http://doi.org/10.1002/2017GL075710
http://doi.org/10.1038/s41598-017-07478-0
http://doi.org/10.1021/es5009399
http://doi.org/10.1016/j.scitotenv.2018.04.251
http://www.ncbi.nlm.nih.gov/pubmed/29702402
http://doi.org/10.3390/rs13101979
http://doi.org/10.1016/j.rse.2019.01.033
http://doi.org/10.1016/j.rse.2015.03.005
http://doi.org/10.1016/j.scitotenv.2017.08.209
http://www.ncbi.nlm.nih.gov/pubmed/29132719
http://doi.org/10.1007/s11270-014-2239-8
http://doi.org/10.3390/rs9040340


ISPRS Int. J. Geo-Inf. 2021, 10, 676 14 of 14

31. Yuan, W.A. Large-scale MODIS AOD products recovery: Spatial-temporal hybrid fusion considering aerosol variation mitigation.
ISPRS J. Photogramm. Remote Sens. 2019, 157, 1–12.

32. Wang, W.; Mao, F.; Pan, Z.; Du, L.; Gong, W. Validation of VIIRS AOD through a Comparison with a Sun Photometer and MODIS
AODs over Wuhan. Remote Sens. 2017, 9. [CrossRef]

33. Margineantu, D.D.; Dietterich, T.G. Improved Class Probability estimates from Decision Tree Models. Nonlinear Estim. Classif.
2003, 171, 173–188.

34. Banfield, R.E.; Hall, L.O.; Bowyer, K.W.; Kegelmeyer, W.P. A comparison of decision tree ensemble creation techniques. IEEE
Trans. pattern Anal. Mach. Intell. 2007, 29, 173–180. [CrossRef]

35. Rodriguez, S.; Querol, X.; Alastuey, A.; Viana, M.-M.; Alarcón, M.; Mantilla, E.; Ruiz, C.R. Comparative PM10–PM2.5 source
contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci. Total Environ. 2004, 328, 95–113.
[CrossRef]

36. Zhang, Y.L.; Cao, F. Fine particulate matter (PM 2.5) in China at a city level. Sci Rep. 2015, 5, 14884. [CrossRef]
37. Wang, W.; Mao, F.; Du, L.; Pan, Z.; Gong, W.; Fang, S. Deriving Hourly PM2.5 Concentrations from Himawari-8 AODs over

Beijing–Tianjin–Hebei in China. Remote Sens. 2017, 9, 858. [CrossRef]
38. Wang, W.; Mao, F.; Zou, B.; Guo, J.; Wu, L.; Pan, Z.; Zang, L. Two-stage model for estimating the spatiotemporal distribution of

hourly PM1. 0 concentrations over central and east China. Sci. Total Environ. 2019, 675, 658–666. [CrossRef]
39. Nava, S.; Prati, P.; Lucarelli, F.; Mandò, P.A.; Zucchiatti, A. Source Apportionment in the Town of La Spezia (Italy) by Continuous

Aerosol Sampling and PIXE Analysis. Water Air Soil Pollut. Focus 2002, 2, 247–260. [CrossRef]
40. Rushdi, A.I.; Al-Mutlaq, K.F.; Al-Otaibi, M.; El-Mubarak, A.H.; Simoneit, B.R.T. Air quality and elemental enrichment factors of

aerosol particulate matter in Riyadh City, Saudi Arabia. Arab. J. Geosci. 2013, 6, 585–599. [CrossRef]
41. Noble, C.A.; Mukerjee, S.; Gonzales, M.; Rodes, C.E.; Lawless, P.A.; Natarajan, S.; Myers, E.A.; Norris, G.A.; Smith, L.;

Oezkaynak, H. Continuous measurement of fine and ultrafine particulate matter, criteria pollutants and meteorological conditions
in urban El Paso, Texas. Atmos. Environ. 2003, 37, 827–840. [CrossRef]

42. Yoo, J.M.; Lee, Y.R.; Kim, D.; Jeong, M.J.; Stockwell, W.R.; Kundu, P.K.; Oh, S.M.; Shin, D.B.; Lee, S.J. Corrigendum to “New
indices for wet scavenging of air pollutants (O 3,CO, NO 2, SO 2, and PM 10) by summertime rain”. Atmos. Environ. 2014,
91, 226–237. [CrossRef]

43. Jorquera, H.; Barraza, F. Source apportionment of PM and PM. in a desert region in northern Chile. Sci. Total. Environ. 2013,
444, 327–335. [CrossRef] [PubMed]

44. He, Q.; Huang, B. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an
improved geographically and temporally weighted regression model. Environ. Pollut. 2018, 236, 1027–1037. [CrossRef] [PubMed]

45. He, Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM 2.5 in China via space-time regression modeling.
Remote Sens. Environ. 2018, 206, 72–83. [CrossRef]

http://doi.org/10.3390/rs9050403
http://doi.org/10.1109/TPAMI.2007.250609
http://doi.org/10.1016/S0048-9697(03)00411-X
http://doi.org/10.1038/srep14884
http://doi.org/10.3390/rs9080858
http://doi.org/10.1016/j.scitotenv.2019.04.134
http://doi.org/10.1023/A:1021339502467
http://doi.org/10.1007/s12517-011-0357-9
http://doi.org/10.1016/S1352-2310(02)00935-4
http://doi.org/10.1016/j.atmosenv.2013.10.022
http://doi.org/10.1016/j.scitotenv.2012.12.007
http://www.ncbi.nlm.nih.gov/pubmed/23280290
http://doi.org/10.1016/j.envpol.2018.01.053
http://www.ncbi.nlm.nih.gov/pubmed/29455919
http://doi.org/10.1016/j.rse.2017.12.018

	Introduction 
	Study Area and Datasets 
	Study Area 
	MODIS AOD 
	VIIRS IP AOD 
	Meteorological Data 
	Geographic and Topographic Data 

	Methodology 
	Multi-Source AOD Data Fusion 
	Spatiotemporal Bagged-Tree Model 
	Bagged-Tree Model 
	Spatiotemporal Weighted Function 

	Other Models 
	MLR Model 
	LME Model 

	Model Evaluation 

	Results and Discussion 
	Assessment of Fused AOD and Statistical Analysis of the Datasets 
	Assessment of Fused AOD 
	Statistical Analysis of the Datasets 

	Model Evaluation and Comparison 
	Spatial Distributions of Surface PM2.5 Levels 
	Regional PM2.5 Concentrations 

	Conclusions 
	References

