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Abstract: The efficient discovery of significant group patterns from large-scale spatiotemporal
trajectory data is a primary challenge, particularly in the context of urban traffic management.
Existing studies on group pattern discovery mainly focus on the spatial gathering and moving
continuity of vehicles or animals; these studies either set too many limitations in the shape of the
cluster and time continuity or only focus on the characteristic of the gathering. Meanwhile, little
attention has been paid to the equidirectional movement of the aggregated objects and their loose
coherence moving. In this study, we propose the concept of loosely moving congestion patterns
that represent a group of moving objects together with similar movement tendency and loose
coherence moving, which exhibit a potential congestion characteristic. Meanwhile, we also develop
an accelerated algorithm called parallel equidirectional cluster-recombinant (PDCLUR) that runs on
graphics processing units (GPUs) to detect congestion patterns from large-scale raw taxi-trajectory
data. The case study results demonstrate the performance of our approach and its applicability to
large trajectory dataset, and we can discover some significant loosely moving congesting patterns
and when and where the most congested road segments are observed. The developed algorithm
PDCLUR performs satisfactorily, affording an acceleration ratio of over 65 relative to the traditional
sequential algorithms.

Keywords: loosely moving congestion patterns; parallel computing; group patterns; equidirectional
spatial snapshot cluster

1. Introduction

The currently available large-scale geolocation data from urban traffic including buses,
trucks, and taxis equipped with global positioning system (GPS) equipment provide a
reliable data source for traffic geography analysis. Such vehicle trajectory data have been
applied for the extraction of points of interest within cities [1], map matching [2], road
network map building and updating [3], location prediction [4], experiential optimal
path selection [5] and other applications. The traffic patterns of urban residents can be
understood across different spatiotemporal ranges via the examination and processing
of these big data. In particular, movement patterns or group patterns underlying taxi
trajectory data can be extracted for occupation and residence analysis and commuting
analysis [6]. Such patterns extraction can also aid in the rational planning of residential
and commercial areas and traffic areas so that the traffic pressure of morning and evening
rush hour on urban development can be relieved.

Existing works in discovering group patterns of moving objects has mainly focused on
detecting representational patterns like flocks [7], convoys [8] and swarms [9]. The patterns
presented the spatiotemporal characteristics of the groups of objects moving together
during a certain time period. The key differences between the patterns lie in the limitation
of the shape of the object clusters and maintaining the shape over k consecutive timestamps
as per theory. The flock and convoy patterns required the group of moving objects to be
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together for k consecutive times snapshots. The swarm patterns are more general and not
limited by the shape of object clusters and holding the pattern for k consecutive time points.
However, the flock and convey patterns are not realistic because of those limitations in a
lot of applications. For the swarm pattern, two objects, which only clustered together at
some time points, would be considered as moving together although their trajectories may
be quite different. Thus, it is not necessarily fit to the characteristic of congestion pattern.

In this study, we attempt to detect congestion patterns by exploring group pattern
from large-scale, raw taxi-trajectory data. We also attempt to discover sources of traffic
congestion not limited only to road junctions with traffic signals. In actual scenarios,
traffic jams on certain roads begin around the road junction and subsequently slowly
spread over the whole road as more and more vehicles gather and move towards the road
junction. Furthermore, the areas may be congested for long durations. According to the
formed features of traffic congestion, such as slight movement, high density, direction,
and duration, here we explore a new approach to discover new group patterns for the
identification of congestion from the large-scale, raw taxi-trajectory data. Different from
the previous group patterns, the congestion patterns do not set more strict limitation in
consecutive time snapshots. Unlike the swarm patterns, their trajectories of moving objects
in the congestion patterns are substantially the same. Meanwhile, the group patterns
integrate with the congestion characteristic specially taking into direction coherence of
moving objects to travel together at some time snapshots.

The efficient discovery of significant group patterns from large-scale trajectory data
remains a challenging task. In this regard, firstly, we focus on the high usability of group
patterns extracted from the vehicle trajectory data. For example, the discovered group
patterns can reveal the underlying “patterns” of traffic jams in spatiotemporal dimensions.
The main question we attempt to answer is the following: how do we use massive historical
data to estimate when and where most congested road segments are “formed”? This
question also implies that it is imperative to develop a high-performance algorithm for the
analysis of big-data trajectories. Our key contributions are as follows:

• We introduce the concept of a new moving group pattern with similar movement
tendency and loose consistency moving of vehicles, which we call the loosely moving
congestion pattern (LMCP). Different from the previous group patterns, which were
basically used to detect moving object clusters instead of traffic congestion, our proposed
LMCP can exhibit the actual traffic situation like high density, direction and duration,
and take into account the characteristics of group pattern and congestion together.

• We propose an algorithm to discover loosely moving congestion patterns based on the
characteristics of LMCP and the cluster-recombinant (CLUR) algorithm [10]. In order
to achieve the high performance of the algorithm, we also designed a GPU-enabled
parallel algorithm named PDCLUR based on the proposed discovery algorithm for
handling the massive trajectory data.

• We demonstrate the effectiveness and performance of the proposed algorithm as
applied to an actual scenario. Compared with other group patterns like swarm, the
discovery of LMCPs enables a better identification of congestion. Our results demon-
strate certain significant congesting patterns pointing to the locations and timings
of when the most congested patterns appear. Further, the proposed parallelized
algorithm performs satisfactorily on handling large-scale datasets.

The rest of the paper is organized as follows. First, we review the related work on the
spatiotemporal trajectory data analysis of moving objects. The next section illustrates the
proposed concept and algorithm, with the penultimate section presenting our case study.
Finally, we draw our conclusions in the final section.

2. Related Works

Related works on the spatiotemporal trajectory data analysis of moving objects essen-
tially focus on three issues: (1) detecting traffic hotspots, (2) mining moving-object data,
and (3) discovering group patterns. The conventional methods of hotspot detection include
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scan statistics [11] and kernel density estimation [12]. In addition to the above methods,
the detection of hotspots by means of spatiotemporal data clustering methods including k-
means and ordering points to identify the clustering structure (OPTICS) [13], DBSCAN [14],
and grid-based clustering methods [15] has attracted intense research interest. In this con-
text, Zhao et al. [16] proposed a trajectory clustering approach based on a decision graph
and data field, which can select parameters for clustering, such as the number of clusters
and cluster centers, to detect hotspots. The identified hotspots usually refer to geographical
areas wherein the number of aggregates of objects exceeds an expected threshold. In this
regard, a previous study [17] has introduced the trajectory box plot (TBP) to summarize
and analyze trajectory streams, estimate their spatiotemporal density, and detect outliers.
Obviously, the identification of dense traffic areas, which primarily exhibit crowding levels
within a certain range instead of “regular” behavior, affords only static features rather than
dynamic features. Meanwhile, other research works have focused on detecting spatiotem-
poral hotspots corresponding to urban resident behaviors [15], detecting networked and
constrained hotspots of crimes [18], and so on.

The mining of moving-object data is an active research field. A moving cluster is
defined as a sequence of spatial clusters, that is, clusters of moving objects gathered over
consecutive snapshots [19]. Meanwhile, there are a large number of common objects
appearing at consecutive time points during object movement [20]. In this regard, Wu
et al. [21] proposed an automatic method to extract the profile of the regional represen-
tative moving modes of moving objects using trajectory data. The profile discovery of
moving vehicles and animals can be used to detect road design flaws in urban planning
and understand the habitual behaviors of animal migration under different geographical
conditions, respectively. Unlike moving clusters, objects are “static” in spatiotemporal
influence-based moving clusters proposed in the literature [22]. A spatiotemporal influence-
based moving cluster refers to a sequence of spatial clusters that can exhibit the influence
of their “spread” over a set of nearby objects; such clusters can be applied in the study of
infectious diseases, ideas, etc. In a previous study [23], the authors proposed an approach
to discover the dynamics patterns of leadership and followership by mining frequent
patterns. In another study [24], the authors proposed a place-matching pattern-mining
approach that enabled the identifying of stop episodes, refining stop-place candidates from
OpenStreetMap (OSM), and subsequent matching using a hidden Markov model.

Here, we note that there is a growing interest in discovering group patterns of moving
objects using trajectory data. The group patterns described by terms such as flocks [7],
convoys [8], and swarms [9] refer to groups of objects moving together during a certain time
periods. The flock patterns limit the range and shape of object clusters at each snapshot
besides lasting for k consecutive timestamps. Different from the flock pattern, the shape of
object clusters generated by the density-based spatial clustering of applications with noise
(DBSCAN) algorithm is arbitrary for convoy patterns. While the swarm patterns may be
employed in more application scenarios without the limitation of holding the pattern for k
consecutive time points. The discovery algorithm of group patterns mostly searched the
moving objects that satisfied the conditions of the pattern definition by building search
space based on tree structure. The objectGrowth algorithm [9] used depth-first search
strategy to find all subsets and checked if each subset is a swarm based on the object set
search space. In order to reduce the search space, the authors proposed pruning strategies
in the algorithm. Different from the objectGrowth algorithm, another algorithm CLUR [10]
improved the algorithm performance by reducing the candidate item of the swarm based
on defined inserting and updating rules. The inserting rules required that only the new
candidate item which did not exist in previous candidate list be enabled to be inserted.
While in the definition of updating rules, the key point checked if there is intersection
between each candidate item needed to be updated and snapshot clusters. As regards
group patterns, Zheng et al. [25] have pointed out that the abovementioned patterns are
often unrealistic in practical group formations such as those in celebrations or parades.
Therefore, they proposed gathering patterns that exhibit a dense and contiguous group
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of individuals without setting a coherent membership in the gathering. A gathering can
be viewed as at least mp fixed objects appearing in kp clusters over a certain time period.
This approach is more suitable for application to group events such as parades instead
of traffic congestion pattern. In order to effectively and efficiently address a high volume
of trajectory data, Zhang et al. [26] proposed a moving-object gathering pattern retrieval
method based on spatio-temporal graphs. However, the performance of the retrieval
method greatly depends on the construction of the spatiotemporal graph. Here, researchers
noted that the interactions between moving objects would influence the mining of the group
pattern as well as the dynamics. In a previous study [27], the concept of a crew was defined
as a group of moving objects gathering with similar interactions and similar dynamics.
The study also proposes a computational solution to discover crews from raw trajectory
data. In this approach, the missing data points need to be filled for generating new fixes
at the raw-data sampling rate because the movement parameters for interactions and
dynamics are pairwise; this may limit the application of the approach. Zhao et al. [28] paid
more attention to the converging pattern before moving objects gathered, and developed
a mining framework. Furthermore, for improving the performance of online discovery
of gathering patterns or converging pattern, various index structures like R-tree, quad-
tree and grid have been introduced to accelerate computation [25,28]. Different from the
discovery of group pattern, the related works in discovering traffic congestion mainly
focused in traffic flow analysis [29], big data analysis [30] and so on. For instance, Kohan
and Ale presented JamFlowScan algorithm [29] to discover the jam routes by finding hot
routes based on speed and neighborhood searching for other jam routes based on the idea
of DBSCAN. While in the literature [30], Zhao and Hu discovered the traffic congestion
patterns from huge traffic monitoring information records by the congestion index analysis
and K-mean clustering at the macro view. These studies rather differed from the discovery
of group pattern and did not depend on moving object characteristics.

3. Methods
3.1. Concept and Definition

A loosely moving congestion pattern (LMCP) is a sequence of spatial clusters moving
along a certain direction, wherein at least minOC objects holding an approximately similar
moving direction gather in every cluster and at least λ common objects cluster together for
at least two consecutive snapshots over the entire range of Tn time points. Essentially, a
LMCP is expected to embody typical attributes of traffic congestion, such as high density,
same moving direction, loose consistency moving feature, and duration. Among these
features, high density refers to the concentration level of moving objects. In addition, the
clustered objects can further exhibit a similar movement inclination. The loose consistency
moving feature only requires that common objects travel together for at least two continu-
ous time points instead of strict limitation on the continuity. The duration feature reflects
the total time periods of congestion. The loosely moving congestion pattern can reveal
traffic-congested roads instead of only near the junction or moving and crowded streams
of individuals toward a certain target.

Let time period T = {t1, t2, . . . , ts} correspond to a series of time snapshots. Let O =
{o1, o2, . . . ,om} be a collection of objects that have moved toward a certain direction during
time period T.

Definition 1. A non-empty set of objects Cti
j ⊆ O can be defined as an equidirectional spatial

snapshot cluster at time point ti when each object in this spatial cluster moves along approximately
the same direction and is densely connected to other objects in terms of the spatial distribution. We
note here that there may be several equidirectional spatial snapshot clusters {Cti

1, Cti
2, . . . , Cti

r} (r
≤ m) at time point ti.

Definition 2. A loosely moving congestion pattern (LMCP) is expressed as <C, Tn, D>, where C
= {Cti

j, Cti+1
k, . . . , Cti+n

q} (1 ≤ j ≤ r, 1 ≤ k ≤ r, 1 ≤ q ≤ r) denotes a sequence of equidirectional
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spatial snapshot clusters moving along approximately the same direction D lasting Tn time points
during time period T, such that

• each Cti
j⊆ C represents an equidirectional spatial snapshot cluster at timestamp ti for each i (1

≤ i < s),
• spatial cluster Cti+1

k at timestamp ti+1 is formed after Cti
j at timestamp ti for each i (1 ≤ i < s),

• there are at least two equidirectional spatial snapshot clusters Cti
j and Cti+1

k in C satisfying
|Cti

j ∩ Cti+1
k | ≥ λ (the common object number between two consecutive equidirectional

spatial snapshot clusters), where λ denotes an integer >2 during T,
• there are totally Tn time points satisfying |Cti

j| ≥ minOC for each i (1 ≤ i < s) during time
period T, where minOC denotes an integer >2 during T, and

• all equidirectional spatial snapshot clusters exhibit approximately the same moving direction
D in a LMCP.

The LMCP is rather different from previous group patterns like a swarm. A pair (O,
T) is defined as a swarm if it satisfies three requirements [9]: (1) the objects number in
the set O should be at least mino; (2) the objects in O are in the same cluster for at least
mint; (3) there is at least one cluster containing all the objects in O at each time point. We
illustrate Definition 2 and differences between LMCP and swarm using an example given in
Figure 1. We observe that there is a cluster sequence {C2, C4, C7, C10} in Figure 1 when
we set λ = 3, minOC = 3, and Tn = 4. Let λ = 2, minOC = 3, and Tn = 3, and consequently,
the two sequences {C2, C4, C7, C10} and {C1, C3, C9} represent all cluster sequences of the
LMCP in which each snapshot cluster contains at least two common objects holding at
least two consecutive time points along the same movement direction during the given
time periods. For the parameters setting, the smaller the value of the parameters λ, minOC
and Tn, the more LMCPs we obtain. Meanwhile, new members can constantly “enter”
each snapshot spatial cluster, such as objects O8 and O9 entering the equidirectional spatial
snapshot clusters C4 and C7, respectively. Of course, there are also members, such as object
O2 that has “exited” the snapshot spatial cluster C10 at timestamp t3. The set {C5, C12, C11}
is not a cluster sequence of LMCP because C12 is not an equidirectional spatial snapshot
cluster in which the moving directions of objects O6 and O7 are not consistent with the mov-
ing directions of other objects O4, O5 in cluster C12. In our algorithm, the two objects O6
and O7 cannot be gathered in cluster C12. If we set the thresholds of the swarm mino = 2 and
mint = 3, there are three swarms: ({O1,O2,O3},{t0,t1,t2}), ({O1,O3,O8},{t1,t2,t3}) and
({O1,O3,O26}, {t0,t1,t3}). From Figure 1, we find that the swarm ({O1,O3,O26}, {t0,t1,t3})
contains the object O26 although its trajectory deviate others at timestamp t2. While in
LMCP, the object O26 is not included in the cluster C4. If we set λ = 3, minOC = 5, and
Tn = 3, there is only one snapshot cluster sequence {C2, C7, C10} in LMCP.
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Figure 1. Example of loosely moving congestion pattern. 
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Figure 1. Example of loosely moving congestion pattern.

3.2. Pattern Discovery Algorithm

This paper mainly focuses on efficiently discovering LMCPs based on the CLUR
algorithm [10], which was employed discovering the swarms. In order to extract the
LMCPs, we develop three rules for creating new candidate items, updating the candidate
list at each timestamp and identifying LMCPs finally. Given a spatial clusters Cti = {Cti

1,
Cti

2, . . . , Cti
n} at timestamp ti, which these clusters can be obtained by spatial clustering,

we consider the following rules:

Rule 1. For any spatial snapshot cluster Cti
j at time point ti (1 ≤ j ≤ n), if the number of moving

objects within it |Cti
j| ≥ minOC and |Om

d − On
d| ≤ maxθ (Om

d and On
d belong to the range

of the approximate direction D) for ∀ Om∈Cti
j and ∀ On∈ Cti

j (1 ≤ j ≤ n), where Om
d and On

d

denote the movement directions of Om and On, respectively, then Cti
j is an equidirectional spatial

snapshot cluster at timestamp ti, and a new candidate item <Cti
j, ti, D > (D denotes the directional

value) is created in the candidate list L of LMCPs.

Rule 2. For any candidate item V = < Cti
j, T, D> ∈ L (1 ≤ j ≤ n), if Cti+1

k is an equidirectional
spatial snapshot cluster at timestamp ti+1 and| Cti

j ∩ Cti+1
k | ≥ λ (there are λ common objects

for two equidirectional spatial snapshot clusters Cti
j and ti+1

k), |Om
d − On

d| ≤ maxθ for ∀ Om
∈ Cti

j and ∀ On ∈ Cti+1
k (1 ≤ k ≤ n), then V is updated as <{Cti

j, Cti+1
k}, T ∪ {ti+1},D> in the

candidate list L.

Rule 3. For any candidate item V = <C, T, D> ∈ L (C = { Cti
j, Cti+1

k, . . . , Cti+n
l}), if |T| ≥ Tn

(Tn ≥ 2 represents the total lasting time) satisfying the condition: ∃i : 1 ≤ i < i + 1 < n, ti ∈
T ∧ ti+1 ∈ T = true, then <C, T, D> is a loosely moving congestion pattern (LMCP).

Rule 1 is employed to create a new candidate item of LMCP at time point ti which
is expressed as a triple < Cti

j, ti, D>. We need to estimate whether or not a cluster Cti
j is
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an equidirectional spatial snapshot cluster according to two conditions: (1) the number of
objects within the cluster is greater than a given threshold minOC; (2) the difference of the
direction value between objects within the same cluster is less than a given threshold maxθ.
While rule 2 give the conditions of updating candidate item, one is the common object
number of two consecutive snapshot cluster Ct

k and Cti+1
k, the other is the difference of

the direction value between objects respectively within two consecutive snapshot cluster
Ct

k and Cti+1
k. The rule can ensure that there are λ objects moving together toward the

approximate same direction. Finally, a LMCP is identified from candidate list L when the
total time points of a candidate item are greater than a given threshold Tn and a candidate
item keeps at least two consecutive times points according to rule 3.

Based on these rules, we propose an algorithm for discovering LMCPs. This algorithm
firstly performs spatial clustering of moving objects via the DBSCAN algorithm adding
direction limitation at each timestamp. Next, we build and update a list of candidate
items according to rules 1 and 2 at each timestamp. Finally, the LMCPs are identified
according to rule 3. As an example, the discovery process of moving congestion patterns in
Figure 1 is captured in Table 1. Before the generation of the candidate items, the equidi-
rectional spatial snapshot clusters from C1 to C11 are obtained by the DBSCAN algorithm
adding direction limitation. At the first timestamp t0, there are two candidate items V1 =
<C2, t0, 0> and V2 = <C1, t0, 0> that satisfy the condition |C| ≥ minOC (minOC = 3), with
the same moving directions of all objects within same cluster according to rule 1. Next,
at timestamp t1, the candidate items V1 and V2 are, respectively, updated as <{C2, C4},
{t0, t1},0> and <{C1, C3}, {t0, t1},0> according to rules 2 when the parameter λ = 2. At the
same time, the candidate item V3 = <C5, t1, π> is created at timestamp t1 according to
rule 1. At time point t2, the moving directions of the objects within the cluster C12 are not
consistent, and therefore, the cluster C12 is not created (minOC = 3) as per our modified
DBSCAN algorithm. The candidate item <C12, t2, π>, indicated in italics, is not included in
the candidate list. At the last timestamp t3, only two candidate items, <{C2, C4, C7, C10}, {t0,
t1, t2, t3},0> and <{C1, C3, C9}, {t1, t2, t3},0>, correspond to the definition of LMCP according
to rule 3 when we set Tn = 3 and λ = 2. In particular, an item <{C5, C12, C11}, {t1, t2, t3},π> is
not a LMCP, as mentioned above. Furthermore, if we neglect cluster C12, the item <{C5,
C11}, {t1, t3},π> cannot satisfy the condition holding at least two consecutive time points
during the moving process as per rule 3.

Table 1. Example of discovery of loosely moving congestion patterns.

t0 t1

O C T D O C T D

O1, O2, O3,
O26

C2 t0 0 O1, O2, O3,
O8

C2, C4 t0, t1 0

O11, O12, O13 C1 t0 0 O11, O12, O14,
O15

C1, C3 t0, t1 0

O4, O5, O18,
O19

C5 t1 π

t2 t3

O C T D O C T D

O1, O2, O3,
O8, O9

C2, C4, C7 t0, t1, t2 0 O1, O2, O3,
O8, O9, O10

C2, C4, C7,
C10

t0, t1, t2, t3 0

O4, O5, O18,
O19

C5, C12 t1, t2 π
O11, O12, O14,

O15, O16
C1, C3, C9 t0, t1, t3 0

O20, O21, O22 C6 t2 1.75π O4, O5, O18,
O19

C5, C12, C11 t1, t2, t3 π

O11, O12, O14,
O15

C1, C3 t0, t1 0 O20, O21, O22 C6 t2 1.75π
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Algorithm 1 presents the pseudo-code for discovering LMCPs. Given the input
parameters like the candidate list L, snapshot clusters set Clusters, threshold minOC, maxθ,Tn
and λ, the possible LMCPs will be generated by creating and updating candidate items.
At each time point, we check each cluster of current snapshot clusters to see if it can become
a candidate item. If so, the new candidate item will be created and inserted into next list
as shown in lines 7–11 in Algorithm 1. Then we check each candidate item in candidate
list L to see if it can be updated according to rule 2. The Lines 12–20 outlines the process.
Meanwhile, we also insert the updated item into the next list. At last, all candidate items
which satisfy the conditions of pattern identification will be inserted into the LMCPs list.

Algorithm 1. Discovering LMCPs

In order to accelerate the pattern discovery, we designed a GPU-enabled parallel
algorithm named PDCLUR based on Algorithm 1 using Compute Unified Device Archi-
tecture (CUDA) (Figure 2). PDCLUR initializes the parameters and reads the clustering
results generated by parallel computing adding direction limitation on DBSCAN (PDL-
DBSCAN) algorithm, as shown in the flow chart in Figure 3, at each timestamp within the
CPU environments, and then switches to the memory of GPU after specifying the CUDA
parameters and allocating the CUDA memory for advanced calculations. The kernel func-
tion GetCandidateSet is employed to parallelize the discovery of LMCP. In this algorithm,
two-level parallel computing is carried out, wherein all clusters at each timestamp are
addressed as blocks within the global memory of the GPU environments via first-level
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parallel computing. Moreover, the calculations of the intersection between each cluster
at each timestamp and each item in candidate list L are performed on a large number
of threads invoked by kernel function GetCandidateSetI for implementing second-level
parallel computing.
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The PDL-DBSCAN algorithm also utilizes two-level parallelized computing by means
of the kernel functions JudgeCore and GetNBKernel to obtain the core object set and the
neighborhood relation between any two objects, respectively, which is a primary step
for generating the neighborhood of each core object (this computation greatly affects the
algorithm efficiency) using CUDA, as shown in Figure 3. An important point to estimate
the neighborhood relation in the kernel function GetNBKernel takes account of not only
the distance difference but also direction difference between objects. In PDCLUR and
PDL-DBSCAN, the choice of the appropriate CUDA parameters (blocks and threads) for
the parallel kernel function is dependent on the GPU device used. For example, each GPU
device (GeForce RTX 2080) used in this study has up to 65,535 × 1024 threads.

4. Case Study

In order to evaluate the efficiency and effectiveness of the discovery algorithm of
LMCPs, a comprehensive performance study has been conducted on two trajectory datasets
with different size. The first dataset [31] contains 664 electric taxi GPS samples for one
day on 22 October 2014 in the city Shenzhen including vehicle id, longitude, latitude, time,
speed. We sampled 61,683 trajectory points from the dataset at a 1-min interval from 5 to
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6 pm. These sampled trajectory points would be used to implement the experiment for
the discovery of LMCPs. Because the data volume is small, we only used the Algorithm
1 to conduct the pattern discovery instead of parallel algorithm. The second dataset
contains approximately 33,900,000 trajectory points generated by nearly 14,000 taxis in
Beijing in November 2012. Trajectory points within 24-h per day were collected at about
1-min time interval, and each trajectory point contained the taxi’s trajectory information
such as geographic position, speed, direction, timestamp and so on. In our study, a
large number of taxi trajectory points were extracted during the morning (7–9 a.m.) and
evening peak (5–7 p.m.) times for discovering LMCPs. The data of nearly 7900 taxis were
extracted to calculation after data preprocessing, which included the removal of noisy
data and sampling according to time granularity (5 min), during the daily morning peak
traffic period. Similarly, the data of approximately 8800 taxis were extracted to pattern
analysis during the daily evening peak time. For the second dataset, we implemented the
PDCLUR algorithm to discover LMCPs. Through the case study, we expected to obtain
valuable traffic information including the most congested road segments, congestion time,
congestion directions and so on.

4.1. Algorithm Effectiveness Analysis and Discussion
4.1.1. Effectiveness of LMCP Discovery Algorithm for Shenzhen Samples Dataset

In this case study, we used a total of 60 timestamps data from 5 to 6 pm according to
1-min interval. Next, we traced the trajectory point of every taxi at every time snapshot.
The dataset lacks the direction information of each trajectory point. Thus, the default
parameters used in this dataset of experiments are minOc = 5, Tn = 3 and λ. The parameter
λ denotes the number of common objects between two consecutive snapshot cluster and
is key for the discovery of LMCPs. We compared experimental results caused by setting
different parameter λ. Meanwhile, we also compared the discovered LMCP with the swarm
when the parameters λ and mino (at least the objects number in the object set O of swarm)
were respectively set to different values. By setting λ = 3 to 8, we found 86, 84, 82, 76, 70
and 65 LMCPs, respectively. While setting mino = 3 to 5, the swarms we found were all 32.
When we set mino = 6 to 8, there were 22, 16 and 16 swarms, respectively. Obviously, the
discovery algorithm of LMCP can generate more group patterns.

The main experimental results are shown in Figure 4. The red trajectory points plotted
in the Shenzhen image denoted the LMCPs generated by Algorithm 1, while the yellow
trajectory points denoted the swarms generated by CLUR. Our algorithm can find the
main four congested road segments like Futian Overpass, Baishi Road, Fuqiang Road and
Shenan Xiuzhou Overpass in all settings of the parameter λ. To evaluate the validity of
the discovery of LMCPs, we used the congestion index like speed to verify the results.
By the calculations on the trajectory points belonging to LMCPs from 5 to 6 pm, the av-
erage speeds of the identified road segments were all at low speed, respectively 20, 18,
9 and 10 km per hour. In Figure 4a,b, we find that the key differences between two pat-
terns focus on five road segments in the LMCPs: Futian Overpass, Baishi Road, Riverside
Avenue, Riverside Xinzhou Overpass and Riverside Jintian Overpass. Correspondingly,
the average speeds of these roads were, respectively, 20, 18, 10,16 and 13 km per hour.
In Figure 4c, three congested segments, like Futian Overpass, Baishi road and Riverside
Avenue, were discovered by our algorithm instead of CLUR. In Figure 4d–f, yellow tra-
jectory points became less and less with the parameter mino increased. In particular, the
discovery of swarm has hardly detected the congested road segments in Figure 4f. These
findings indicated that our discovery of LMCPs outperforms the swarms for detecting the
congestion pattern.
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(a) (b) (c)

(d) (e) (f)

Figure 4. The LMCPs generated by Algorithm 1 (rendered by red) and swarms generated by CLUR (rendered by yellow).
(a) λ = 3 and mino = 3; (b) λ = 4 and mino = 4; (c) λ = 5 and mino = 5; (d) λ = 6 and mino = 6; (e) λ = 7 and mino = 7; (f) λ = 8
and mino = 8.

4.1.2. Effectiveness of LMCP Discovery Algorithm for Beijing Samples Dataset

In the second case study, CUDA version 9.1 was chosen to implement our GPU-based
PDCLUR algorithm. The programming language used was C/C++, and the operating
system was Windows. The GPU device used in this study was the NVIDIA GeForce RTX
2080 (2944 CUDA cores, 1.8 GHz clock rate, 8 GB global memory, and 64 computing units
of peak performance for double-precision floating point operations). The CPU used for
sequential computing was the Intel Core i7 6700 (dual four-core processor) with 3.4 GHz
clock frequency and 16 GB memory.

We firstly discretized the peak time (7–9 a.m. and 5–7 p.m.) into different time points
according to 5-min intervals. Thus, there are a total of 24 timestamps during the morning
and evening peak intervals. Next, we traced the trajectory point of every taxi at every
time snapshot. We set the algorithm parameters as minOc = 8, λ = 5, Tn = 3, maxθ = 0.4 (in
radians). That is to say, no less than eight taxis are required to move together at every time
point, of which at least five taxis keep moving together for 10 min. In addition, no less
than five taxis in two snapshot clusters, which are not always continuous, merge together
during no less than 15 min. For obtaining the snapshot clusters at each time point, we
applied the PDL-DBSCAN algorithm with CUDA and settings of minO = 8, ε = 300 (m).

The effectiveness of our algorithm was evaluated via discovering LMCPs, using which
we could determine the most congested road segments, time periods of the congestions,
and congested differences between weekday and weekend morning peak (7–9 a.m.) and
evening (5–7 p.m.) hours. In order to verify the validity of our algorithm, furthermore, we
compared the discovered LMCPs with the generated swarm pattern by CLUR algorithm.

In the study, we found that in Beijing city, during the morning peak hours on working
days from Monday to Friday (Figure 5a), the congested roads (rendered in red color) were
mainly the West second Ring Road, West third Ring Road, West fourth Ring Road, North
fourth Ring Road, area around Wangjing, and East third Ring Road. In addition, according
to the direction of equidirectional spatial snapshot clusters in LCMPs, we found that the
direction of traffic jams was chiefly aligned from the south to north in Beijing city. Among
these congested roads, the segment from Caihuyin bridge to Tianningsi bridge in the West
second Ring Road was severely congested. The most congested segment of the West third
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Ring Road spanned from Lize bridge to Zizhu bridge. Meanwhile, on the West fourth Ring
Road, traffic jams occurred at two road segments: from Kefeng bridge to Kandan bridge
and from Fengtai large bridge to Dinghui north bridge. On the West fourth Ring Road,
there was a certain degree of congestion around Nanshawo bridge, Wukesong, and Dinghui
bridge. Moreover, in the east region of the city, traffic jams occurred on East second Ring
Road, East third Ring Road, and East fourth Ring Road. In particular, we determined two
congested road segments from Fenzhongsi bridge to Shuangjing bridge and from Guomao
station to Yansha bridge on the East third Ring Road. Serious congestions emerged in
certain segments of the airport highway from Dongzhimen to Sanyuan bridge and from
Siyuan bridge to Wuyuan bridge. In the north of the city, the road segment from Wanquan
river bridge to Haidian bridge was congested on the North fourth Ring Road. Traffic on
the road from Deshengmen bridge to Jianxiang bridge connecting North second Ring Road
to North fourth Ring Road was heavy. In addition, the road section from Jimen bridge to
Xueyuan bridge parallel to this road was also congested. From the west to east, severe
congestion was observed from Lianhuachi west road to Xibianmen bridge. The time period
of the congestion period mainly ranged from 7:20 to 8:55 a.m. Compared to the swarm
pattern generated by CLUR algorithm (Figure 4b), the LMCPs almost embodied all the
swarm pattern besides one section of Zizhuyuan road on North second Ring Road and
another section around Jimen bridge on North third Ring Road. Our algorithm discovered
more congested roads like the section from Guomao station to Yansha bridge on the East
third Ring Road. To compare the results between LMCPs and swarm, we analyzed the
actual road situation by evaluating the congestion index like speed. We calculated the
average speed per day for all taxis belonging to the LMCPs on the East third Ring Road.
For each working day, there may be 3 or 4 days of taxi data belonging to LMCPs in a
month. Thus, we calculate at most three days of data belonging LMCPs per working
day. In Figure 6a, we use four values to present the congestion level for each working day.
The first three values are the taxis’ average speeds of three days belonging to the LMCPs
on each working day, and the fourth value represents the average value of three days to
show the overall average level. There was only one day of data on Monday, Tuesday and
Friday. According to the local standard “Urban Road Traffic Operation Evaluation Index
System” in Beijing city, the speed on the main road is mild congestion at 20 to 30 km per
hour, moderate congestion at 15 to 20 km per hour, and heavy congestion below 15 km
per hour. From the Figure 6a, we can see that all values are below 30 km per hour, and
all average values per working day are below 20 km per hour. That means the road was
congested, and our result like the congested road on East third Ring Road was consistent
with the actual road situation during morning peak hours on working days.
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(a) (b)

Figure 5. The discovered congested pattern during morning peak traffic hours on working days. (a) The LMCPs generated
by our algorithm; (b) The swarm pattern generated by CLUR algorithm.
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Figure 6. The taxies speeds during the working days. (a) The taxies speeds on the East third Ring Road during morning
peak traffic hours; (b) The taxies speeds on the West fourth Ring Road during evening peak traffic hours.

Relative to weekdays, weekend traffic jams (Figure 7a) were greatly reduced from 7:00
to 9:00 a.m. Congestion was mainly concentrated at four road sections: from Guanganmen
bridge to Xizhimen bridge on West second Ring Road, from Liuli bridge to Lianhua bridge
near the Beijing west railway station on West third Ring Road, from Deshengmen bridge
to Jianxiang bridge on the road connecting North second Ring Road and North fourth
Central Road, and from Dongzhimen bridge to Sanyuan bridge and near Siyuan bridge,
Wangjing, and Wuyuan bridge in the direction of the airport highway. In addition, traffic
jams were also observed in the road section from Lianhua bridge to Xibianmen bridge in
the west–east direction. The time interval of this congestion period mainly ranged from
7:45 to 8:50 a.m. Compared with the swarm pattern shown in Figure 6b, our algorithm
generated more results like the congested road from Guanganmen bridge to Xizhimen
bridge on West second Ring Road and other congested road between Lianhua bridge and
Xibianmen bridge.
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(a) (b)

Figure 7. The discovered congested pattern between 7:00 and 9:00 a.m. on weekends. (a) The LMCPs generated by our
algorithm; (b) The swarm pattern generated by CLUR algorithm.

As shown in Figure 8a, during the evening peak traffic hours, congestion primarily
appeared on the East third Ring Road, East second Ring Road, West second Ring Road,
West third Ring Road, and the road segment from Deshengmen bridge to Jianxiang bridge
that connects North second Ring Road to North fourth Ring Road from the south to the
north. In addition, congestion was observed in the segment from Jimen bridge to Xueyuan
bridge from south to north. From east to west, there were two congested roads on the
North fourth Ring Road: from Wanhe bridge to Anhui bridge and from Xueyuan bridge
to Wanquan river bridge. On the North third Ring Road, traffic jams spanned a long
distance from Anzhen bridge to Zhongguancun avenue crossing. On the North second
Ring Road, congestion ranged from Xiaojie bridge to Deshengmen bridge. From east to
north, traffic was heavy in two road sections from Liangma bridge on the East third Ring
Road to Taiyanggong bridge on the North third Ring Road and from Siyuan West bridge to
Wanghe bridge on the North fourth Ring Road. From the generated results by the CLUR
algorithm shown in Figure 8b, we can see that heavy traffic congestion also appeared on
the same roads, basically. The main difference between LMCPs and swarm pattern was
the congested road from Nanshawo bridge to Sijiqin bridge on West fourth Ring Road
by our algorithm and the road on Wanfeng road by the CLUR algorithm. As before, we
also compared the results between LMCPs and swarm by evaluating the congestion index.
As shown in Figure 6b, all values are below 30 km per hour, and all average values per
working day are below 20 km per hour on the road from Nanshawo bridge to Sijiqin bridge
on West fourth Ring Road during evening peak traffic hour. This means that our results
are more consistent with the actual road situation compared to the swarms. Meanwhile,
our results also show that the congestion period is mainly concentrated between 5:30 and
6:50 p.m. These results are also consistent with the actual traffic situation. Basically, most
workplaces are normally closed by 5:00 p.m. in Beijing, which corresponds to the beginning
of the evening rush hour. We hypothesize that it takes about 30 min for a large number of
vehicles to enter the road segments, which results in traffic congestion. Traffic significantly
reduces after 6:50 p.m., thereby signaling the end of the evening peak.
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(a) (b)

Figure 8. The discovered congested pattern during evening peak traffic hours on working days. (a) The LMCPs generated
by our algorithm; (b) The swarm pattern generated by the CLUR algorithm.

Traffic on Saturdays and Sundays was slight between 5:00 and 7:00 p.m., which is
the time interval corresponding to the evening peak situation on working days. From
the discovered congested pattern by our algorithm and the CLUR algorithm shown in
Figure 9, congestions were mainly observed on roads near the Beijing west railway station,
airport highway, and the central road connecting the North second Ring Road to the North
fourth Ring Road. For LMCPS, traffic jams were mainly observed after 6 p.m. In addition
to these congested roads, slight congestions appeared on the East third Ring Road and East
second Ring Road, near Xueyuan bridge on the North fourth Ring Road, Suzhou bridge on
the North third Ring Road, and Xizhimen bridge on the West second Ring Road.

(a) (b)

Figure 9. The discovered congested pattern between 5:00 and 7:00 p.m. on weekends. (a) The LMCPs generated by our
algorithm; (b) The swarm pattern generated by CLUR algorithm.

From the discovery of congestion patterns, we have reason to believe that the number
of traffic lights and junctions are a possible because of traffic congestion. For instance,
traffic congestion on the road from Deshengmen bridge to Jianxiang bridge connecting
North second Ring Road to North fourth Ring Road was heavy whether travel time was
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morning or evening peak hours, working day or weekend. Obviously, there are more
junctions on the congested road than other road from geographic location and road network
structure. On the other hand, the traffic pressure on the second and third ring roads is great
as a result of road network structure lacking of fast link lines between these ring roads.
From our results of the discovery of congestion patterns, traffic jam usually was heavy on
the second and third ring roads in east, west and north of the city. Other possible causes of
traffic congestion include the division of urban functional zones, road capacity and so on.

We also report the evaluated results of LMCPs using the congestion index like speed.
Figure 10a,b respectively present the accuracy ratios of the discovery of LMCPs during
morning and evening peak traffic hours within 30 days. The red line represents the ratio of
the number of taxis per day belonging to LMCPs, which their speeds were under 30 km
per hour (mild congestion), to all number of taxis per day belonging to LMCPs. While the
green line represents the ratio under 20 km per hour (moderate congestion). The accuracy
ratios under 30 km per hour are higher than those under 20 km per hour. In Figure 10a, the
lower values occur on November 3, 11, 17, 24 and 25 whatever under 30 km per hour or
under 20 km per hour. Besides these days, other values are closed to 0.9 or above 0.9 when
the speed of taxis, belonging to LMCPs, was under 30 km per hour. While under 20 km per
hour, the accuracy ratios are closed to 0.8 or above 0.8. Similarly, the lower values emerge
on 4 November, 10,18 and 25 in Figure 10b. The lower accuracy ratios all occur on weekend.
The reason is that traffic jam on weekend is not heavy compared with weekdays. As a
whole, the accuracy ratio during evening peak traffic hours are higher than those during
morning peak traffic hours. From the evaluation results of the discovery of LMCPs, our
approach presents benefic effectiveness in identifying the congestion pattern.
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4.2. Algorithm Performance

This section focuses on the evaluation of the performance of our GPU-based parallel
computing algorithm. Here, we note that the number of trajectory points and the choice
of GPU are the primary factors that affect the acceleration performance of the algorithm.
In the study, we compared the running times of pattern discovery between GPU-based
parallel computing and CPU-based sequential computing. We tested >4,300,000 points and
>5,400,000 points over 28 days during the morning and evening peak hours, respectively.

As discussed previously, our algorithm consists of two complicated calculation pro-
cesses: clustering and searching candidate items. In our algorithm, the core calculation
with high computation complexity is executed by means of parallel computing. Thus, the
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computing environment includes a CPU as well as the GPU. In our study, we applied
the DBSCAN algorithm by appending a direction limitation within the same cluster and
using CUDA. For nearly 170,000 points over 24 h, including the data of 24 times snap-
shots during the morning peak time, an average of ~7900 points in each time snapshot is
clustered. In addition, the threads of the first-level and second-level parallel calculations
in the PDL-DBSCAN algorithm are all set to 16 × 512. In contrast, the number of each
time snapshot of one day during the evening peak interval was approximately 8800 points,
which means that the threads of parallel calculation also increase to 18 × 512. For search-
ing the candidate items of LMCPs for one day, we conducted four calculation traverses
considering the limitation of the CUDA computing environment; the number of blocks
was set to 100 during the first-level parallel analysis and the number of threads was set to
128 × 100 during the second-level parallel calculation for each traverse.

Tables 2 and 3, respectively, present the computing performance results during the
morning and evening peak intervals from day 1 to day 28. From Table 2, we note that
the running time, both sequential Algorithm 1 and PDCLUR with parallel computing,
increases as the number of trajectory points increases. However, our algorithm, using
parallel computing, can significantly enhance the computing performance. For example,
the sequential calculation time for discovering the LMCPs of one day using the Algorithm
1 is 950 s during the morning peak time. On the other hand, upon applying PDCLUR with
GPU acceleration, only 13 s are needed to discover the loose moving congestion patterns
of one day during the morning peak time. For ~4.34 million points across 28 days, the
sequential calculation time amounts to 24,056 s. On the other hand, the total computing
time using GPU for pattern discovery is only 352 s when the GPU with 64 computing
units is used to handle the 28-day data. Here, we use the ratio of the running time of the
PDCLUR algorithm involving parallel and sequential computing to the execution time of
the sequential computing of the algorithm using only the CPU to evaluate the computing
performance. Although the acceleration ratio slightly decreases as the number of points
increases, we find that the acceleration ratio is generally very high (>65, Tables 2 and 3).
Here, we also note that the data transfer rate between the CPU and GPU increases as
the number of points increases; this factor can thus affect the acceleration performance.
However, the frequency of data transfer reduces with increase in the number of GPUs
working together or when the computing performance of the single GPU is upgraded.

Table 2. Performance comparison between PDCLUR and Algorithm 1 during morning peak.

Days Number of Points Time Taken Using
Algorithm 1 (s)

Time Taken Using
PDCLUR (s)

Acceleration
Ratio

1 166,758 950 13 73.08
5 735,726 4112 57 72.14
10 1,535,117 8571 119 72.03
14 2,150,514 11,961 175 68.35
18 2,747,272 15,204 223 68.18
23 3,534,680 19,619 281 69.82
28 4,339,689 24,056 352 68.34

Table 3. Performance difference between PDCLUR and Algorithm 1 during evening peak.

Days Number of Points Time Taken Using
Algorithm 1 (s)

Time Taken Using
PDCLUR (s)

Acceleration
Ratio

1 205,289 1143 15 76.2
5 901,220 5008 69 72.58
10 1,901,502 10,627 146 72.79
14 2,589,308 14,464 193 74.94
18 3,378,266 18,710 263 71.14
23 4,412,752 24,639 375 65.7
28 5,452,006 30,634 458 66.91
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5. Conclusions

In this paper, we propose the concept and generating rules of loosely moving conges-
tion pattern. The concept and rules are different from those in the previous studies, and
they enable the discovery of more practical group pattern of moving objects for detecting
traffic congestion. The LMCP combines the characteristics of group pattern with congestion
phenomenon and exhibits high density, movement direction, and loose movement and
duration of moving objects when they travel together. We also proposed an algorithm to ef-
ficiently discover LMCPs from large-scale trajectory datasets for extracting congested roads,
congestion levels, congestion time periods, and directions. Considering the performance
of the discovery algorithm, our algorithm introduced a parallel computing method that
includes the parallel DBSCAN algorithm for obtaining snapshot clusters and the PDCLUR
algorithm for searching candidate items and generating the patterns. The contribution of
our approach is threefold: (1) it relaxes the limitation of holding consecutive moving of
objects, but ensures only moving objects with the approximately same trajectories staying
in LMCP; (2) it implicates that traffic flow, which is represented by the number of common
moving objects during lasting time period in LMCP, is a cause for congestion, and enables
detecting different traffic congestion levels by adjustment the parameter setting; (3) its
generated rules make it easier to implement by parallel computing.

For the evaluation of the effectiveness of the proposed method, we conducted ef-
fectiveness and performance analysis on two trajectory datasets. Meanwhile, the valid-
ity evaluation was performed through comparison experiment with the swarm pattern.
From the results of implementation, our algorithm basically embodied all the swarm pat-
tern. What is more, our algorithm generated more results that were consistent with the
actual road conditions by analyzing the actual road conditions based on congestion index,
for instance speed, during the same peak hours. In second dataset, the proposed approach
determined not only the most congested roads, but also congestion time periods and the
traffic differences between working days and weekends during the morning and evening
peak hours. These findings can also reveal some possible causes of traffic congestion such
as the number of traffic junctions and the structure of road network, and the accuracy
ratio of the discovery of LMCPs is around 0.9 for mild congestion level, while it is around
0.8 for moderate congestion level. The proposed algorithm PDCLUR is very useful for
handling large trajectory sets during a long time periods. Thus, we can also analyze the
trend and the law of traffic congestion for predicting rush-hour traffic. A large trajectory
set from a real-world scenario is employed to illustrate the computing benefit of PD-
CLUR. The acceleration ratio of PDCLUR to sequential computing is >65 for a single GPU.
This high acceleration performance can greatly contribute to handling the bottleneck prob-
lem of high computational intensity during group pattern discovery.

However, the approach does have certain limitations in its present state, and these
limitations will mark the directions of our future research. First, how to choose the right
algorithm parameters is future work for discovering more actual congestion patterns.
Second, we only tested parallel computing with a single GPU for the discovery of LMCPs
in this study. A future direction will include the further enhancement of the computing
performance via the application of multiple GPUs together and the exploration of variable-
grained domain decomposition strategies. Third, we only considered taxi trajectory data in
the pattern discovery. In the future, we plan to upgrade the proposed approach to address
more sources of big mobility data and road information like road classification and road
carrying capacity for extracting more valuable patterns.
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