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Abstract: Terraces, which are typical artificial landforms found around world, are of great importance
for agricultural production and soil and water conservation. However, due to the lack of maintenance,
terrace damages often occur and affect the local flow process, which will influence soil erosion.
Automatic high-accuracy mapping of terrace damages is the basis of monitoring and related studies.
Researchers have achieved artificial terrace damage mapping mainly via manual field investigation,
but an automatic method is still lacking. In this study, given the success of high-resolution unmanned
aerial vehicle (UAV) photogrammetry and object-based image analysis (OBIA) for image processing
tasks, an integrated framework based on OBIA and UAV photogrammetry is proposed for terrace
damage mapping. The Pujiawa terrace in the Loess Plateau of China was selected as the study
area. Firstly, the segmentation process was optimised by considering the spectral features and the
terrains and corresponding textures obtained from high-resolution images and digital surface models.
The feature selection was implemented via correlation analysis, and the optimised segmentation
parameter was achieved using the estimation of scale parameter algorithm. Then, a supervised
k-nearest neighbourhood classifier was used to identify the terrace damages in the segmented
objects, and additional geometric features at the object level were considered for classification.
The comparison with the ground truth, as delineated by the image and field survey, showed that
proposed classification can be adequately performed. The F-measures of extraction on three terrace
damages were 92.07% (terrace sinkhole), 81.95% (ridge sinkhole), and 85.17% (collapse), and the
Kappa coefficient was 85.34%. Finally, the potential application and spatial distribution of the terrace
damages in this study were determined. We believe that this work can provide a credible framework
for mapping terrace damages in the Loess Plateau of China.

Keywords: object-based image analysis (OBIA); terrace damages; Loess Plateau of China;
UAV photogrammetry

1. Introduction

Terraces, which are represented by a series of successively receding flat surfaces along
contour lines on slopes [1], are typical artificial landforms in hilly and mountainous ar-
eas [2]. Terracing can increase arable land and agricultural production [3,4] and contribute
to soil and water conservation [5,6] by changing the local topography of slopes and their
corresponding water flow process [7] and soil properties [8]. The artificially terraced land-
scapes that have been developed widely around the world [2,9] can enhance biodiversity
and landscape diversity [10,11] and provide aesthetic, cultural, and tourism landscape
value [12–14]. However, localised movement and erosion are likely to occur on terraced
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fields due to steep ridges, as manifested by the micro-landforms of terrace damages, includ-
ing collapse and sinkholes [15–18]. Around the world, terrace damages are closely related
to farmland abandonment or lack of maintenance [9,17,19–22]. According to the reviewed
literature, terrace damage provides a major material source for hydrogeological hazards
during intense rainfall [23] and threatens food security and historical landscapes [24,25].

The Loess Plateau of China is one of the areas with the most serious soil erosion
in the world due to its broken terrain and loose loess [26]. Terracing has a long history,
and the amount of terraces had greatly increased during the second half of the last cen-
tury. The implementation of transforming slopes into cultivated terraces have helped to
overcome poverty [27,28]. Furthermore, terracing is an important strategic measure for
soil conservation in the Loess Plateau of China [29,30]. Since the late 1990s, the program
called ‘Grain for Green’ has contributed to the conversion of steep cultivated land into
forests and grasslands [31,32], and it has led to the ecological and economic migration of
farmers [33–35]. A large number of farmlands, including terraced farmlands, on the Loess
Plateau have been abandoned [36]. The improvement of the ecological environment of the
Loess Plateau in recent years has proven the success of the ‘Grain for Green’ program, and
it represents an important victory of soil and water conservation via vegetation restora-
tion [26,37,38]. However, the loss of agricultural ecosystem services of the Loess Plateau
caused by abandoned farmlands remains to be a concern, as it may threaten food security
and rural social development [39].

Our research team conducted the investigation after a serious rainstorm on July 15, 2020
in Suide, Shaanxi, China. Figure 1 shows examples of common problems related to terrace
damages. An investigation of terrace damages is extremely important in understanding the
processes involved in land degradation. Due to the presence of extremely complex and broken
terrains, manual investigation alone is time-consuming, laborious, and dangerous. Moreover,
terrace damage is a complex problem because it is influenced by slope gradients and heights of
terrace steps, vegetation cover, and time of abandonment [9,40,41]. The efficient and accurate
(semi-)automatic exploration of micro-topographical features and corresponding spatial
distributions of loess terrace damages is an essential task in understanding the dynamics and
trend of terrace degradation and the protection of terraced lands for sustainable ecological
services. Therefore, large-scale terrace failure research is necessary to reveal the occurrence
mechanism and spatial distribution law of terrace damages.
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Figure 1. Terrace damages found by our field investigation. The damages generally include (a) collapse; (b) terrace sinkhole;
and (c) ridge sinkhole.

Due to the small size of the micro-landform-scale terrace damages, high-resolution
imagery is necessary for terrace damage extraction. The development of unmanned aerial
vehicle (UAV) photogrammetry and light detection and ranging (LiDAR) remote sensing
can guarantee the data accessibility of high-resolution images. Unlike satellite-based
sensors, both aforementioned approaches can create high-resolution topographical data and
orthophoto images [42] and simultaneously realise field survey and remote sensing [43,44].
Amongst both approaches, UAV photogrammetry is more flexible and entails a lower
cost compared with LiDAR [45]. The recent studies about terraces degradation have
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also shown that UAV photogrammetry is effective for damage identification and erosion
evaluation [46]. The monitoring of terrace damages in these previous studies was achieved
via accurate terrain modelling. Since the terraces are always covered by dense vegetation,
the terrain model task should firstly remove all the vegetation points from the digital
surface model (DSM) generated by UAV photogrammetry. This could be achieved by
some proposed automatic filtering algorithm, which is mainly based on local surface
filtering [47,48]. However, the recurrent filtering algorithm for generating DEM is mainly
suitable for flat areas but not for the Loess Plateau with broken terrain [49]. Therefore, it is
necessary to explore the method of extracting terrace damages directly from DSMs and
images generated by UAV photogrammetry.

Object-based image analysis (OBIA) is a relatively new remote sensing image process-
ing approach with respect to the traditional pixel-based one. OBIA performs segmentation
via a clustering method to determine the pixel groups belonging to a single meaningful
object and then classifies the segmented objects [50]. Compared with pixel-based methods
that do not use spatial concepts [51], the object-based method is more advanced, as it
exploits the spatial information of target features, such as spectral, shape, and textural
features [52–56]. Moreover, owing to the use of high-resolution data with high spectral
variety between pixels, which often results in oversampling, the approach of OBIA of
clustering pixels into objects is more effective than that of the pixel-based method [57] in
processing high-resolution images requiring terrace damage extraction. The recent studies
have also proven that OBIA and UAV data can be successfully applied in many fields,
such as building safety [58–61], crop production [62,63], landslide movement [64,65], and
artificial terrace mapping [52,66].

Inspired by the above considerations, the present work focuses on the extraction of
terrace damages. The objective of this study is to propose an OBIA workflow for the
automatic extraction of terrace damages in the Loess Plateau of China. The proposed
workflow is based on high-resolution imagery and digital surface model (DSM) from
UAV photogrammetry.

2. Materials and Methods
2.1. Study Area

A terraced slope called Pujiawa (110◦21′21” E–110◦21′32” E, 37◦34′18” N–36◦34′32”
N) was selected as the study area (Figure 2a,b). It is located in the Jiuyuangou catchment,
Suide County, Shaanxi Province, China. The Jiuyuangou catchment is in a loess hilly and
gully area of the Loess Plateau, where terracing is widespread as an important measure for
soil and water conservation since the 1950s [52]. The climate is semi-humid with an average
annual temperature of 8 ◦C and an average precipitation of 475.1 mm. Most of the annual
precipitation is concentrated between June to September in the form of high-intensive
precipitation that can cause severe soil erosion [67]. The study area has an elevation range
of 1034.6–1143.9 m and an area of 8.102 ha. There are narrow man-made terraces in the
north with a field width of about 3–6 m and wide machine-made terraces in other areas
with a field width of about 10–30 m. The ‘Grain for Green’ program here was started in
1999. Most terraced farmlands had been converted into grasslands. The vegetation cover
was first planted with artificial alfalfa in response to the ‘Grain for Green’ program and
then was naturally restored due to no manual management. Moreover, the lack of manual
maintenance had led to the frequent occurrence of terrace damages. At present, Pujiawa
terraces have been abandoned for more than 20 years, and the terraces are obviously
damaged, which is manifested in multiple collapses and sinkholes.

2.2. Data Acquisition

High-resolution orthophoto imagery and the corresponding DSMs were used to
extract the terrace damages. Images with a ground sample distance of 3 cm was generated
using UAV photogrammetry in August 2020 (Figure 2c,d). Two main phases, namely,
outdoor field survey and subsequent indoor image processing, were included in the data
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generation. For the outdoor survey, a DJI Phantom 4 RTK drone was firstly used to capture
the optical aerial photographs of the study area with WGS-84 coordinates. This drone
system equipped RGB camera (5472 × 3648 resolution and 24 mm focal length) and Real-
Time Kinematic (RTK) receivers with 1.5 cm vertical and 1 cm horizontal measurement
accuracy. A total of 218 images were generated with a 70% flight overlapping rate and a 50%
side overlapping rate. Secondly, the horizontal and vertical accuracies were maintained
on the basis of 15 check points (CPs) obtained via Post-Processed Kinematic (PPK) GNSS
measurements. The indoor image processing was mainly implemented in two steps,
namely, data generation and ground truth generation. The Pix4D Mapper software was
used for data generation. Aerial triangulation was initially performed on the basis of the
bundle block adjustment. A total of 2,697,507 3D key points were eventually matched
with the overlapped images. Subsequently, the dense point cloud was generated from
the 3D triangulation network and then rasterised into an image and a DSM. According to
the accuracy assessment with CPs, the root square mean error (RSME) of the final DSM
was 0.075 m. Then, ground truth generation was performed by manually interpreting the
generated image. Reference polygons (Figure 2d) were manually delineated from both the
field investigation and the details of the terrace based on the generated data.
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2.3. OBIA-Based Terrace Damage Extraction

The mapping task was started with image segmentation, which is an essential step
that can affect the final mapping accuracy. Multiple resolution segmentation (MRS) [51,68]
was utilised in this study. The spectra and topographies and their corresponding textures
were used as the features for segmentation as a means of achieving the best result. Optical
feature selection was conducted via correlation analysis, and the Estimation of Scale
Parameter (ESP) Tool [69] was used to optimise the segmentation parameters. Subsequently,
a supervised classification strategy based on the k-nearest neighbour (kNN) was performed
to identify the terrace damages, including the collapse and sinkholes. The spectrum and
topography and their corresponding textures and the geometry of each segment were
calculated as the features for classification. Then, the sinkholes were classified into two
types, namely, ridge sinkhole and terrace sinkhole, by using a local terrain feature derived
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from the DSM. Finally, the mapping results were validated and compared via an accuracy
assessment analysis. Figure 3 illustrates the entire workflow of this study.
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2.3.1. Image Segmentation

The commonly used MRS for images integrated in the eCognition software was
implemented in this study. In MRS, an appropriate feature combination and optimal seg-
mentation parameters should be selected. Then, segments are used as the basic processing
units for terrace mapping.

(1) Feature selection

Twenty-three features, including the spectra and topographies and their corresponding
textures, were considered for object segmentation in this study. An overview of these
features and the detailed description for each feature are listed in Table 1. As spectral
and topographic features are widely used in the OBIA community [56,66,70,71], this
information was firstly considered. For the spectral features, the R, G, and B bands from
the images and a vegetation index based on the above-mentioned three features called EXG
were considered. Three basic topographic factors, namely, elevation, hill shade, and slope,
were utilised. The spectral and topographic textures, which are beneficial for extracting
landform entities [72,73], were also adopted. Four terrain texture measures derived from
the grey-level co-occurrence matrix (GLCM) [74] were calculated on the basis of all seven
spectral and topographic features.

Pre-selected features can express characteristic and spatial features from different
perspectives. However, each pair of factors may also have high correlation, and it can
introduce overlapping and redundant information. Thus, the pre-selected features should
be optimised to reduce the time complexity of the segmentation process. Correlation
analysis was used in cases in which a subset of lower-correlation features (coefficients less
than 0.5) needed to be selected from 23 preselected features.

(2) Segmentation parametric optimisation

MRS is a bottom–up region-based approach that begins with one pixel and merges
the neighbouring pixels with minimum heterogeneity increment until the heterogeneity of
the object exceeds a certain user-defined threshold. Recent studies have emphasised that
certain segmentation parameters, particularly scale, shape, and compactness, will strongly
affect the segmentation. Given that optimising the segmentation parameters typically
rely on subjective trial-and-error methods, many studies have focused on automatic scale
optimisation methods. ESP version 2.0 [69] is widely adopted for exploring the scale
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parameter [77–79]. Subsequently, the optimal shape and compactness parameters based on
the heterogeneity criterion have been utilised [42,55], as shown in the literature review.

Table 1. Overview of the features used for segmentation.

Type Features Abbreviation Description

Spectrum

Red R
The intensity value of the pixel within red, green, and blue
bands, respectively.Green G

Blue B

EXG EXG

Excess green index by Woebbecke (1995) [75] provided a
near-binary intensity image outlining a plant region of interest,
which has been widely cited and used in recent UAV
photogrammetry based studies:
EXG = 2G − R − B,
where R, G, and B stand for the intensity value of the pixel
within red, green, and blue bands, respectively.

Topography

Elevation Ele Original height from the DSM.

Hillshade HSh The simulation of a light source in a certain direction and a
certain height of the sun [76].

Slope Slp The tangent of the angle of that surface to the horizontal
terrain [76].

GLCM Texture

Homogeneity Homo The GLCM measures how often different combinations of pixel
grey levels occur in a scene. In this study, the terrain texture
features were derived from GLCM based on five topographic
layers. The detail for calculating GLCM was taken from the
study by Haralick et al. (1973) [74].

Entropy Ent

Mean Mean

Correlation Cor

2.3.2. Terrace Damage Classification

After achieving the optimal segmentation, the segment is classified via supervised
classification. K nearest neighborhood (kNN) classification, a powerful tool used in many
object-based procedures [80,81] because of its flexibility and simplicity, can be used for terrace
damage mapping. However, certain features need to be determined to train the classifiers.
As the generated segments require additional geometry information compared with the
pixel-level image, all features to be used in classification require object-level calculation. Then,
the combined features can be optimised via importance ranking. In this study, kNN was
adopted using the eCognition software (Trimble Geospatial, Munich, Germany).

After performing kNN classification, the original segments are classified into three
types: namely, collapse, sinkholes, and others. As a means of differentiating the sinkholes
into subtypes (i.e., ridge and terrace) of terrain features, the terrain relief is introduced
to the next-level classification. Terrain relief can be defined as the difference between the
maximum and minimum elevations within a given area [82]. Considering that there would
be a huge difference near the ridges for terrain relief, the sinkholes could be classified by
a threshold. Field investigation indicates that terrace ridges in study area are normally
higher than 0.5 m, therefore, it can be used for this threshold. The average terrain relief
of terrain sinkhole classification result by kNN will be firstly calculated based on original
DSM and then classified into two sub-types.

2.3.3. Accuracy Assessment

After completing the extraction of terrace damages, the predicted results can be
validated on the basis of the reference data. In this study, the F1-score (F1) and Kappa
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coefficient (k) were adopted in the accuracy assessment. These metrics can be calculated
as follows:

F1 =
2× Pr× Re

Pr + Re
, where Pr =

TP
TP + FP

and Re =
TP

TP + FN
(1)

k =
P0 − Pe

1− Pe
, where P0 =

TP + TN
TP + FP + TN + FN

and Pe =
(TP + FP)(TP + FN) + (FN + TN)(TN + FP)

(TP + FP + TN + FN)2 (2)

where TP, FP, TN, and FN denote the true positive, false positive, true negative, and false
negative amount with respect to the reference, respectively.

3. Results
3.1. Segmentation Results
3.1.1. Feature Selection Result from Correlation Analysis

The correlation of the pre-selected features for segmentation was calculated firstly.
The results are presented in Appendix A. Then, the high-correlation features were removed
to reduce the time complexity during segmentation. From the table, we can see that EXG
has a strong correlation with R and B; thus, it was removed, and we kept R, G, and B. A
similar situation also occurs for GLCM textures of R and B; therefore, they are all removed.
As for GLCM textures of G, we kept G_Mean and G_Cor for segmentation due to their
lower correlation to other features. For terrain texture features, we kept Ele_Cor for the
same reason. Finally, eight remaining features, namely, R, G, B, G_Mean, G_Cor, Ele, HSh,
and Ele_Cor were selected for the next step of MRS.

3.1.2. Segmentation Parametric Optimisation Result by ESP

A preliminary experiment shows that range scale of 20 to 100 was close to the actual
boundaries of the terrace damage. Hence, this range was considered to be a reasonable
scale. Then, ESP was performed to obtain the best scale factor (Figure 4). On the basis of
the optimal shape and compactness values and the range of a reasonable segmentation
scale, the optimal segmentation scale was estimated using the ESP tools. Figure 4 shows
that the four best scale parameters are 66, 79, 92, and 98 because their rates of changes
achieve a local peak.
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𝑘 = బିଵି , where 𝑃 = ்ା்ே்ାிା்ேାிே and 𝑃 = (்ାி)(்ାிே)ା(ிேା்ே)(்ேାி)(்ାிା்ேାிே)మ  (2)

where TP, FP, TN, and FN denote the true positive, false positive, true negative, and false 
negative amount with respect to the reference, respectively. 

3. Results 
3.1. Segmentation Results 
3.1.1. Feature Selection Result from Correlation Analysis 

The correlation of the pre-selected features for segmentation was calculated firstly. 
The results are presented in Appendix A. Then, the high-correlation features were re-
moved to reduce the time complexity during segmentation. From the table, we can see 
that EXG has a strong correlation with R and B; thus, it was removed, and we kept R, G, 
and B. A similar situation also occurs for GLCM textures of R and B; therefore, they are 
all removed. As for GLCM textures of G, we kept G_Mean and G_Cor for segmentation 
due to their lower correlation to other features. For terrain texture features, we kept 
Ele_Cor for the same reason. Finally, eight remaining features, namely, R, G, B, G_Mean, 
G_Cor, Ele, HSh, and Ele_Cor were selected for the next step of MRS.  

3.1.2. Segmentation Parametric Optimisation Result by ESP 
A preliminary experiment shows that range scale of 20 to 100 was close to the actual 

boundaries of the terrace damage. Hence, this range was considered to be a reasonable 
scale. Then, ESP was performed to obtain the best scale factor (Figure 4). On the basis of 
the optimal shape and compactness values and the range of a reasonable segmentation 
scale, the optimal segmentation scale was estimated using the ESP tools. Figure 4 shows 
that the four best scale parameters are 66, 79, 92, and 98 because their rates of changes 
achieve a local peak.  

 
Figure 4. ESP result. Figure 4. ESP result.

Then, four candidate scales were used for segmentation (Figure 5). Then, the scale
of 98 was considered to be the optimal scale as a means of overcoming the problem of
over-segmentation. Given a fixed scale of 98, different shape and compactness values were
tested. The optimal shape and compactness values were 0.1 and 0.5, respectively.
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3.1.3. Final Segmentation Results by MRS

The original image was finally segmented into objects by MRS using the selected
feature combination and the optimal parameters. A total of 16,838 objects were generated
in the segmentation process.

3.2. Classification Results
3.2.1. Feature Selection Result via Importance Ranking

An overview of the features for classification and the detailed descriptions of each
feature are shown in Table 2.

Table 2. Overview of the features used for terrace damages classification.

Type Features (Abb.) Description

Spectrum (4)

EXG

The mean intensity (_Mean) and standard deviation (_Std) of all pixels
forming an image object within each band calculated by Table 1,

C = 1
n

n
∑

i=1
Ci

where Ci denotes the intensity value at the pixel in an image object; and n
is the total number of an object.

MaxDiff

Spectrum difference of all layers,

MaxDi f f =
|Ci(k)−Cj(k)|

B(k)

where i, j are image layers; B(v) is the brightness of the image object k; Ci(k)
is the mean intensity of image layer i of image object k; and Cj(k) is the
mean intensity of image layer j of image object k.

Brg

The mean value of the C of all layers,

B = 1
nL

nl

∑
i=1

Ci

where Ci denotes the mean intensity value of layer i; and nL is the total
number of layers.

Topography (6)
Ele The mean intensity (_Mean) and standard deviation (_Std) of all pixels

forming an image object within elevation and hillshade.HSh

Slp

GLCM Texture (6)
G_Mean The mean intensity (_Mean) and standard deviation (_Std) of all pixels

forming an image object within each feature calculated by the Table 1.G_Cor

Ele_Cor
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Table 2. Cont.

Type Features (Abb.) Description

Geometry (3)

PA The number of pixels forming an image object.

LW

A length-to-width ratio of an image object,

r =
a2+[(1− f )b2]

2

Pk

where f = Pk
ab ; a and b are the length and width of the bounding box of the

image object k. Pk is the total number of pixels contained in object k.

Shp

Shape index is the smoothness of an image object border,
SI = bk

4
√

Pk

where bk is the border length of an image object k, which is defined as the
sum of the edges of the object k. Pk is the total number of pixels contained
in object k. The smoother the border of an image object, the lower its
shape index.

The variable importance was assessed on the basis of the separation distance of the
standard nearest neighbour feature space. An optimal feature subset for classification
could be selected when feature combination achieves the maximum average distance in the
feature space. Then, this feature combination will be used to generate the kNN classification
model. As shown in Figure 6, the first 12 features amongst the total 19 features have a strong
influence on accurate classification, namely G_Mean_Mean, G_Mean_Std, G_Cor_Mean,
Ele_Cor_Std, EXG_Std, Maxdiff, Brg, G_Cor_Std, Hsh_Mean, Ele_Cor_Mean, EXG_Mean,
and Shp. Therefore, the top 12 features were used to construct the kNN classifier.
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3.2.2. Classification Result by kNN

Some samples from the segments were randomly and manually chosen as the training
samples based on the images. The same number of training samples for each terrace
damage type was ensured. Then, the remaining objects were used for kNN classification,
after which twelve features (see Section 3.2.1) were selected for classification by considering
the variable importance ranks. Then, the obtained sinkholes from the kNN classification
results were classified into two subtypes by using the train relief. The final classification
result is illustrated in Figure 7.



ISPRS Int. J. Geo-Inf. 2021, 10, 805 10 of 17ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. Classification result. The left figure is the classification map of terrace damages, and the 
three figures on the right show the images without overlapping classification results within the box 
area of the left figure. The red arrow shows the terrace damages are continuously distributed along 
the slope. 

3.3. Accuracy Assessment Result 
Table 3 summarises the per-pixel confusion matrix and accuracy assessment statistics 

with respect to the reference. The F-measure values of the three extracted terrace damages 
were 92.07% (terrace sinkhole), 81.95% (ridge sinkhole), and 85.17% (collapse), and the 
Kappa coefficient was 85.34%. The results indicate that most of the damages of the total 
areas had been correctly classified. 

  

Figure 7. Classification result. The left figure is the classification map of terrace damages, and the
three figures on the right show the images without overlapping classification results within the box
area of the left figure. The red arrow shows the terrace damages are continuously distributed along
the slope.

3.3. Accuracy Assessment Result

Table 3 summarises the per-pixel confusion matrix and accuracy assessment statistics
with respect to the reference. The F-measure values of the three extracted terrace damages
were 92.07% (terrace sinkhole), 81.95% (ridge sinkhole), and 85.17% (collapse), and the
Kappa coefficient was 85.34%. The results indicate that most of the damages of the total
areas had been correctly classified.

Table 3. Confusion matrix between classification result and ground truth (area: m2).

Actual Terrace
Sinkhole

Actual Ridge
Sinkhole Actual Collapse Actual Other Total

Predicted Terrace Sinkhole 227.29 0 5.46 18.24 250.99
Predicted Ridge Sinkhole 1.99 118.25 1.25 7.52 129.01

Predicted Collapse 14.9 1.53 472.12 100.45 589
Predicted Other 38.56 8.09 84.39 79,921.47 80,052.51

Total 282.74 127.87 563.22 80,047.68 81,021.51
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4. Discussion
4.1. Rationality of the Proposed Method

The automatic classification method based on the high-resolution imagery and topo-
graphic data, which can reflect the characteristics of the surface material, coverage, and
terrain, is a promising approach for monitoring various surface changes in ecology [83],
mountain disaster [84], and geomorphology [85]. OBIA, an automatic classification method,
has been proven to be efficient in mining image information and terrain data [86]. The
surface coverage of terrace area is characterised by regular stepped distribution due to its
stepped terrain, but terrace damages characterised as irregular micro-landforms (such as
collapse and sinkhole) break this regularity. On the basis of our understanding of the actual
characteristics of degraded terraces, we proposed a hypothesis that the damaged and the
non-damaged parts can be distinguished using topographic, spectral, and textural features.
Based on the hypothesis, our method was implemented using terrain indexes, GLCM
textures, and spectral response during terrace damages extraction. The results of our study
confirmed that the object-oriented method can effectively extract terrace damages with a
Kappa coefficient of 85.34%. Not only the spatial distribution of the terrace damages but
also the different types of damages can be classified with high accuracy.

The research on monitoring terrace degradation has shown that DEM via UAV pho-
togrammetry can effectively map terrace damages, contributing to flow simulation and
calculation of erosion amount [46]. Unlike DEM, DSM includes vegetation elevation in-
formation. However, the production of DEMs by removing the vegetation point from
DSM is time-consuming and not suitable for the Loess Plateau with broken terrain [47–49].
In addition, the study area is mainly covered by grassland. Therefore, the selection of
experimental data is reasonable, and this study realised the extraction of terrace damages
based on DSMs and images without DEMs.

4.2. Spatial Distribution of Terrace Damages

The research on the spatial distribution of terrace damages needs high-precision
surface data or field investigation to obtain the micro-geomorphic change on terraced
slope [46]. Therefore, the literature regarding terrace damages was mostly conducted
at the slope scale [41,46]. Factors that could affect the damage distribution of terraces
include the abandonment age, vegetation cover, and topography of slopes where terraces
are located [9,40,41].

Our research was implemented on a horizontal terrace in a slope-scale area. The results
depict two obvious characteristics for the spatial distribution of terrace damages on the
studied slope. Firstly, the number and area of the terrace damages on the terraces with low
ridges and narrow fields in the north are significantly less than those with high ridges and
wide fields (Figure 7). Terracing could reduce the outflow volume by intercepting runoff,
altering the path of runoff and decreasing the hydrological connectivity, thus encouraging
infiltration [86,87]. Compared with narrow terraces, wide terraces have more infiltration
water and can more easily form sinkholes. Consequently, more water volume increases the
gravity of the terrace, hence the high likelihood of collapse. Our finding is consistent with the
research on rice terrace research, which showed that too much water by irrigation would cause
a collapse [88]. Secondly, the damage of terraces tends to be continuously distributed along
the slope indicated by the red arrow in Figure 7, reflecting the influence of the water output
of the upper step on the downer step. In the slope-scale area, the climate, soil, vegetation
cover, and abandoned time conditions are consistent. Our study indicated that the occurrence
of terrace damages is related to the morphological characteristics of terraces, including the
height of the steps, the width of the field surface, and the number of steps.

4.3. Potential Application

Terrace damage extraction is the basis for knowing the spatial distribution and tem-
poral evolution of terrace damages. Targeted measures for terrace management and
construction can also be determined on the basis of the type, degree, and impact mech-
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anism of the terrace damages. This study is a meaningful work for finding the precise
location, size, shape, and spatial patterns of terrace damages.

The proposed method has been implemented via experiment on horizontal terraces
whose area accounts for 54% of the terraces on the Loess Plateau of China [89]. Firstly,
although this study area is small, the terraces have different field widths and ridge heights.
It indicated the effectiveness of this method is not affected by the shape and size of
terraces. Secondly, the method can extract collapse and sinkhole damages, which are two
typical manifestations of terrace failure in the Loess Plateau of China [90]. Thirdly, good
extraction results can be obtained based on DSMs and images. It is related to the fact
that the study area is basically covered with grass. If there are many trees in the study
area, the use of DEMs is recommended to eliminate the impact of vegetation on a real
terrain [49]. Therefore, the proposed method has application potential in the damage
extraction of horizontal terraces covered grasslands or bare lands. When the study area
includes terracing area and non-terracing area, a two-step scheme can be adopted: firstly,
extracting the terrace area via the terrace extraction method [52,66], and secondly, using
the proposed method for extracting damages in the terrace area.

The specific classification features and rules of this research method are difficult to
be directly applied to terraces with different topographic features, such as slope terraces
and reverse slope terraces, which is primarily a challenging task, and thus needs further
exploration. However, the object-oriented method can flexibly change the classification
rules by changing the input classification features according to the actual terrace shape and
terrain. In addition, the object-based method is a semi-automatic method by a supervised
classifier; unsupervised classifiers may help to realise fully automatic classification. In
general, we are optimistic about applying our method in terrace damages extraction.

5. Conclusions

Artificial terraces are common around the world, and they are of great importance in
food production, water and soil conservation, and ecological protection. The problem of
terrace damages caused by the lack of manual maintenance has drawn increasing attention,
but an automatic mapping method is still lacking. Recent technological development
of UAV photogrammetry and the good performance of OBIA for high-resolution image
processing tasks have application potential in terrace damage extraction. In this study,
we explored the potential of the OBIA framework based on UAV photogrammetry for
terrace damage mapping. We conducted experiments on an area of the Loess Plateau,
China by using aerial imagery with 3 cm resolution and DSM from UAV photogrammetry.
The feature selection, segmentation parametric optimisation, and classification tasks were
optimised by considering the specific task objectives. Our results indicate that the proposed
method can obtain acceptable and accurate classification results. However, the OBIA
framework for terrace damage mapping can still be improved. Other types of data sources,
such as LiDAR data, may help to enhance the OBIA framework. Unsupervised classifiers
may be introduced to simplify the whole process. This suggested approach will require
several in-depth studies in the future.
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Appendix A

The detailed feature correlation matrix used for segmentation in this study.

Table A1. Correlation matrix of pre-selected features for segmentation.

Features R G B EXG R_Mean R_Homo R_Ent R_Cor G_Mean G_Homo G_Ent G_Cor B_Mean B_Homo B_Ent B_Cor Ele HSh Slp Ele_Mean Ele_Homo Ele_Ent Ele_Cor

R 1.0000
G 0.8751 1.0000
B 0.9550 0.8714 1.0000

EXG −0.6013 −0.2597 −0.6002 1.0000
R_Mean 0.4950 0.4307 0.4720 0.1601 1.0000
R_Homo 0.0335 0.0630 0.0511 −0.3522 −0.5707 1.0000
R_Ent −0.0370 −0.0491 −0.0498 0.4639 0.7197 −0.8379 1.0000
R_Cor 0.0586 0.0574 0.0455 −0.2558 −0.3576 0.3233 −0.4008 1.0000
G_Mean 0.2987 0.3394 0.2967 0.4081 0.9641 −0.6144 0.7824 −0.3991 1.0000
G_Homo 0.0596 0.0855 0.0626 −0.3501 −0.5455 0.8984 −0.7980 0.3468 −0.5935 1.0000
G_Ent −0.0507 −0.0610 −0.0539 0.4568 0.6992 −0.8038 0.9290 −0.4019 0.7635 −0.8404 1.0000
G_Cor 0.0471 0.0483 0.0441 −0.2659 −0.3805 0.3426 −0.4206 0.7816 −0.4209 0.3667 −0.4295 1.0000
B_Mean 0.5126 0.4644 0.5357 0.1216 0.9869 −0.5429 0.6900 −0.3507 0.9521 −0.5249 0.6745 −0.3683 1.0000
B_Homo −0.0453 −0.0135 −0.0301 −0.3072 −0.6066 0.9309 −0.8098 0.3126 −0.6370 0.8965 −0.8008 0.3385 −0.5836 1.0000
B_Ent 0.0179 0.0038 0.0068 0.4316 0.7437 −0.8122 0.9423 −0.3868 0.7970 −0.7964 0.9273 −0.4173 0.7173 −0.8379 1.0000
B_Cor 0.0889 0.0859 0.0782 −0.2775 −0.3471 0.3212 −0.3973 0.8321 −0.3943 0.3519 −0.4083 0.7861 −0.3376 0.3290 −0.4059 1.0000

Ele 0.1385 0.0850 0.1195 −0.1186 0.0697 −0.1873 0.1473 −0.0920 0.0296 −0.1938 0.1559 −0.1036 0.0653 −0.2001 0.1587 −0.0939 1.0000
HSh 0.0336 0.0590 0.0322 −0.0985 −0.1724 0.1667 −0.1915 0.1290 −0.1843 0.1518 −0.1803 0.1336 −0.1663 0.1578 −0.1836 0.1294 0.0141 1.0000
Slp −0.2371 −0.3290 −0.2297 −0.0080 −0.1187 −0.0787 0.0474 −0.1261 −0.1142 −0.0833 0.0484 −0.1184 −0.1248 −0.0437 0.0234 −0.1337 0.0230 −0.4410 1.0000

Ele_Mean 0.0063 0.0039 0.0055 0.5245 0.8701 −0.6847 0.8564 −0.4501 0.9402 −0.6711 0.8411 −0.4702 0.8450 −0.6812 0.8529 −0.4556 0.0452 −0.2171 0.0012 1.0000
Ele_Homo 0.0134 0.0212 0.0106 0.0195 0.0292 0.0670 0.0093 0.0570 0.0317 0.0711 0.0081 0.0532 0.0276 0.0653 0.0104 0.0557 0.0024 0.0347 −0.0542 0.0260 1.0000
Ele_Ent −0.0252 −0.0407 −0.0199 0.0029 0.0113 −0.0507 0.0443 −0.0480 0.0117 −0.0514 0.0452 −0.0450 0.0124 −0.0453 0.0418 −0.0473 −0.0035 −0.0706 0.1109 0.0274 −0.5416 1.0000
Ele_Cor 0.0253 0.0392 0.0202 0.0019 0.0007 0.0644 −0.0295 0.0622 0.0006 0.0663 −0.0308 0.0580 −0.0007 0.0595 −0.0273 0.0608 0.0056 0.0588 −0.1039 −0.0136 0.7102 −0.7954 1.0000



ISPRS Int. J. Geo-Inf. 2021, 10, 805 14 of 17

References
1. Li, X.; Yang, J.; Zhao, C.; Wang, B. Runoff and sediment from orchard terraces in southeastern China. Land Degrad. Dev. 2014, 25,

184–192. [CrossRef]
2. Socci, P.; Errico, A.; Castelli, G.; Penna, D.; Preti, F. Terracing: From agriculture to multiple ecosystem services. In Oxford Research

Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2019.
3. Cao, Y.; Wu, Y.; Zhang, Y.; Tian, J. Landscape pattern and sustainability of a 1300-year-old agricultural landscape in subtropical

mountain areas, Southwestern China. Int. J. Sustain. Dev. World Ecol. 2013, 20, 349–357. [CrossRef]
4. Wickama, J.; Okoba, B.; Sterk, G. Effectiveness of sustainable land management measures in West Usambara highlands, Tanzania.

Catena 2014, 118, 91–102. [CrossRef]
5. Dorren, L.; Rey, F. A review of the effect of terracing on erosion. In Proceedings of the Briefing Papers of the 2nd SCAPE Workshop,

Cinque Terre, Italy, 13–15 April 2004; pp. 97–108.
6. Qiu, Y.; Xu, M.-x.; Shi, C.-d.; Zhang, Z.; Zhang, S. Dynamic accumulation of soil organic carbon of terrace changed from slope

cropland in the hilly loess plateau of eastern Gansu Province. J. Plant Nutr. Fertil. 2014, 20, 87.
7. Wang, P.; Wang, K.; Li, T.; Li, Y. Regulation effects of reverse-slope level terrace on the runoff and sediment yield in sloping

farmland. Yingyong Shengtai Xuebao 2011, 22, 1261–1267.
8. Ramos, M.C.; Cots-Folch, R.; Martínez-Casasnovas, J.A. Effects of land terracing on soil properties in the Priorat region in

Northeastern Spain: A multivariate analysis. Geoderma 2007, 142, 251–261. [CrossRef]
9. Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to

land abandonment. Anthropocene 2014, 6, 10–25. [CrossRef]
10. Arévalo, J.R.; Tejedor, M.; Jiménez, C.; Reyes-Betancort, J.A.; Díaz, F.J. Plant species composition and richness in abandoned

agricultural terraces vs. natural soils on Lanzarote (Canary Islands). J. Arid Environ. 2016, 124, 165–171. [CrossRef]
11. Gravagnuolo, A.; Varotto, M. Terraced Landscapes Regeneration in the Perspective of the Circular Economy. Sustainability 2021,

13, 4347. [CrossRef]
12. Jiao, Y.; Yang, Y.; Hu, W.; Su, S. Analysis of the landscape pattern and aesthetic characteristics of the Hani terraced fields. Geogr.

Res. 2006, 4, 624–632.
13. Varotto, M.; Bonardi, L.; Tarolli, P. World Terraced Landscapes: History, Environment, Quality of Life; Springer: Berlin/Heidelberg,

Germany, 2018; Volume 9.
14. Terkenli, T.S.; Castiglioni, B.; Cisani, M. The challenge of tourism in terraced landscapes. In World Terraced Landscapes: History,

Environment, Quality of Life; Springer: Berlin/Heidelberg, Germany, 2019; pp. 295–309.
15. Van Dijk, A.; Bruijnzeel, L.; Wiegman, S. Measurements of rain splash on bench terraces in a humid tropical steepland environment.

Hydrol. Process. 2003, 17, 513–535. [CrossRef]
16. Díaz, A.R.; Sanleandro, P.M.; Soriano, A.S.; Serrato, F.B.; Faulkner, H. The causes of piping in a set of abandoned agricultural

terraces in southeast Spain. Catena 2007, 69, 282–293. [CrossRef]
17. Lesschen, J.P.; Cammeraat, L.H.; Nieman, T. Erosion and terrace failure due to agricultural land abandonment in a semi-arid

environment. Earth Surf. Process. Landf. 2008, 33, 1574–1584. [CrossRef]
18. Stavi, I.; Gusarov, Y.; Halbac-Cotoara-Zamfir, R. Collapse and failure of ancient agricultural stone terraces: On-site geomorphic

processes, pedogenic mechanisms, and soil quality. Geoderma 2019, 344, 144–152. [CrossRef]
19. Kizos, T.; Dalaka, A.; Petanidou, T. Farmers’ attitudes and landscape change: Evidence from the abandonment of terraced

cultivations on Lesvos, Greece. Agric. Hum. Values 2010, 27, 199–212. [CrossRef]
20. Martínez-Casasnovas, J.A.; Ramos, M.C.; Cots-Folch, R. Influence of the EU CAP on terrain morphology and vineyard cultivation

in the Priorat region of NE Spain. Land Use Policy 2010, 27, 11–21. [CrossRef]
21. Moreno-de-las-Heras, M.; Lindenberger, F.; Latron, J.; Lana-Renault, N.; Llorens, P.; Arnáez, J.; Romero-Díaz, A.; Gallart, F.

Hydro-geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: Key controlling
factors and landscape stability patterns. Geomorphology 2019, 333, 73–91. [CrossRef]

22. Wen, Y.; Kasielke, T.; Li, H.; Zhang, B.; Zepp, H. May agricultural terraces induce gully erosion? A case study from the Black Soil
Region of Northeast China. Sci. Total Environ. 2021, 750, 141715. [CrossRef]

23. Paliaga, G.; Luino, F.; Turconi, L.; De Graff, J.V.; Faccini, F. Terraced landscapes on Portofino Promontory (Italy): Identification,
geo-hydrological hazard and management. Water 2020, 12, 435. [CrossRef]

24. Cicinelli, E.; Caneva, G.; Savo, V. A Review on Management Strategies of the Terraced Agricultural Systems and Conservation
Actions to Maintain Cultural Landscapes around the Mediterranean Area. Sustainability 2021, 13, 4475. [CrossRef]

25. Sabir, M. The Terraces of the Anti-Atlas: From Abandonment to the Risk of Degradation of a Landscape Heritage. Water 2021, 13,
510. [CrossRef]

26. Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic
Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [CrossRef]

27. Liu, X.; He, B.; Li, Z.; Zhang, J.; Wang, L.; Wang, Z. Influence of land terracing on agricultural and ecological environment in the
loess plateau regions of China. Environ. Earth Sci. 2011, 62, 797–807. [CrossRef]

http://doi.org/10.1002/ldr.1160
http://doi.org/10.1080/13504509.2013.773266
http://doi.org/10.1016/j.catena.2014.01.013
http://doi.org/10.1016/j.geoderma.2007.08.005
http://doi.org/10.1016/j.ancene.2014.03.002
http://doi.org/10.1016/j.jaridenv.2015.08.012
http://doi.org/10.3390/su13084347
http://doi.org/10.1002/hyp.1155
http://doi.org/10.1016/j.catena.2006.07.008
http://doi.org/10.1002/esp.1676
http://doi.org/10.1016/j.geoderma.2019.03.007
http://doi.org/10.1007/s10460-009-9206-9
http://doi.org/10.1016/j.landusepol.2008.01.009
http://doi.org/10.1016/j.geomorph.2019.02.014
http://doi.org/10.1016/j.scitotenv.2020.141715
http://doi.org/10.3390/w12020435
http://doi.org/10.3390/su13084475
http://doi.org/10.3390/w13040510
http://doi.org/10.1146/annurev-earth-063016-020552
http://doi.org/10.1007/s12665-010-0567-6


ISPRS Int. J. Geo-Inf. 2021, 10, 805 15 of 17

28. An, P.; Inoue, T.; Zheng, M.; Eneji, A.E.; Inanaga, S. Agriculture on the loess plateau. In Restoration and Development of the Degraded
Loess Plateau, China; Springer: Berlin/Heidelberg, Germany, 2014; pp. 61–74.

29. Fu, B. Soil erosion and its control in the Loess Plateau of China. Soil Use Manag. 1989, 5, 76–82. [CrossRef]
30. Gao, H.; Li, Z.; Li, P.; Jia, L.; Zhang, X. Quantitative study on influences of terraced field construction and check-dam siltation on

soil erosion. J. Geogr. Sci. 2012, 22, 946–960. [CrossRef]
31. Fu, B.; Chen, L.; Qiu, Y.; Wang, J.; Meng, Q. Land Use Structure and Ecological Processes in the Loess Hilly Area, China; Commercial

Press: Beijing, China, 2002.
32. Feng, Z.; Yang, Y.; Zhang, Y.; Zhang, P.; Li, Y. Grain-for-green policy and its impacts on grain supply in West China. Land Use

Policy 2005, 22, 301–312. [CrossRef]
33. Li, L.; Tonts, M. The impacts of temporary labour migration on farming systems of the Loess Plateau, Gansu Province, China.

Popul. Space Place 2014, 20, 316–332. [CrossRef]
34. Tsunekawa, A.; Liu, G.; Yamanaka, N.; Du, S. Restoration and Development of the Degraded Loess Plateau, China; Springer:

Berlin/Heidelberg, Germany, 2014.
35. Wei, J.-Z.; Zheng, K.; Zhang, F.; Fang, C.; Zhou, Y.-Y.; Li, X.-C.; Li, F.-M.; Ye, J.-S. Migration of rural residents to urban areas drives

grassland vegetation increase in China’s Loess Plateau. Sustainability 2019, 11, 6764. [CrossRef]
36. Cao, S.; Xu, C.; Chen, L.; Wang, X. Attitudes of farmers in China’s northern Shaanxi Province towards the land-use changes

required under the Grain for Green Project, and implications for the project’s success. Land Use Policy 2009, 26, 1182–1194.
[CrossRef]

37. Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau
of China. Ecol. Complex. 2011, 8, 284–293. [CrossRef]

38. Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying
ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [CrossRef]

39. Dong, X.; Wang, X.; Wei, H.; Fu, B.; Wang, J.; Uriarte-Ruiz, M. Trade-offs between local farmers’ demand for ecosystem services
and ecological restoration of the Loess Plateau, China. Ecosyst. Serv. 2021, 49, 101295. [CrossRef]

40. Tsermegas, I.; Ewski, M.; Biejat, K.; Szynkiewicz, A. Function of Agricultural Terraces in Mediterranean Conditions-Selected
Examples From the Island of Ikaria (The Southern Sporades, Greece). Misc. Geogr.-Reg. Stud. Dev. 2011, 15, 65–78. [CrossRef]

41. Brandolini, P.; Cevasco, A.; Capolongo, D.; Pepe, G.; Lovergine, F.; Del Monte, M. Response of terraced slopes to a very intense
rainfall event and relationships with land abandonment: A case study from Cinque Terre (Italy). Land Degrad. Dev. 2018, 29,
630–642. [CrossRef]

42. Liu, K.; Ding, H.; Tang, G.; Na, J.; Huang, X.; Xue, Z.; Yan, X.; Li, F. Detection of Catchment-Scale Gully-Affected Areas Using
Unmanned Aerial Vehicle (UAV) on the Chinese Loess Plateau. Int. J. Geo-Inf. 2016, 5, 238. [CrossRef]

43. d’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco.
Remote Sens. 2012, 4, 3390–3416. [CrossRef]

44. Xiong, L.; Tang, G.; Yang, X.; Li, F. Geomorphology-oriented digital terrain analysis: Progress and perspectives. J. Geogr. Sci. 2021,
31, 456–476. [CrossRef]

45. Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm.
Remote Sens. 2014, 92, 79–97. [CrossRef]

46. Pijl, A.; Quarella, E.; Vogel, T.A.; D’Agostino, V.; Tarolli, P. Remote sensing vs. field-based monitoring of agricultural terrace
degradation. Int. Soil Water Conserv. Res. 2021, 9, 1–10. [CrossRef]

47. Ressl, C.; Brockmann, H.; Mandlburger, G.; Pfeifer, N. Dense Image Matching vs. Airborne Laser Scanning—Comparison of two
methods for deriving terrain models. Photogramm.-Fernerkund.-Geoinf. 2016, 2016, 57–73. [CrossRef]

48. Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo,
G. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [CrossRef]

49. Na, J.; Xue, K.; Xiong, L.; Tang, G.; Pfeifer, N. UAV-Based Terrain Modeling under Vegetation in the Chinese Loess Plateau: A
Deep Learning and Terrain Correction Ensemble Framework. Remote Sens. 2020, 12, 3318. [CrossRef]

50. Aplin, P.; Smith, G.M. Introduction to object-based landscape analysis. Int. J. Geogr. Inf. Sci. 2011, 25, 869–875. [CrossRef]
51. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [CrossRef]
52. Zhao, H.; Fang, X.; Ding, H.; Josef, S.; Xiong, L.; Na, J.; Tang, G. Extraction of terraces on the Loess Plateau from high-resolution

DEMs and imagery utilizing object-based image analysis. ISPRS Int. J. Geo-Inf. 2017, 6, 157. [CrossRef]
53. Blaschke, T.; Strobl, J. What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. Z. Geoinf. 2015,

6, 12–17.
54. Frohn, R.C.; Autrey, B.C.; Lane, C.R.; Reif, M. Segmentation and object-oriented classification of wetlands in a karst Florida

landscape using multi-season Landsat-7 ETM+imagery. Int. J. Remote Sens. 2011, 32, 1471–1489. [CrossRef]
55. Liu, K.; Ding, H.; Tang, G.; Zhu, A.X.; Yang, X.; Sheng, J.; Cao, J. An object-based approach for two-level gully feature mapping

using high-resolution DEM and imagery: A case study on hilly loess plateau region, China. Chin. Geogr. Sci. 2017, 27, 415–430.
[CrossRef]

56. Na, J.; Ding, H.; Zhao, W.; Liu, K.; Tang, G.; Pfeifer, N. Object-based large-scale terrain classification combined with segmentation
optimization and terrain features: A case study in China. Trans. GIS 2021. [CrossRef]

http://doi.org/10.1111/j.1475-2743.1989.tb00765.x
http://doi.org/10.1007/s11442-012-0975-5
http://doi.org/10.1016/j.landusepol.2004.05.004
http://doi.org/10.1002/psp.1832
http://doi.org/10.3390/su11236764
http://doi.org/10.1016/j.landusepol.2009.02.006
http://doi.org/10.1016/j.ecocom.2011.07.003
http://doi.org/10.1371/journal.pone.0031782
http://doi.org/10.1016/j.ecoser.2021.101295
http://doi.org/10.2478/v10288-012-0003-8
http://doi.org/10.1002/ldr.2672
http://doi.org/10.3390/ijgi5120238
http://doi.org/10.3390/rs4113390
http://doi.org/10.1007/s11442-021-1853-9
http://doi.org/10.1016/j.isprsjprs.2014.02.013
http://doi.org/10.1016/j.iswcr.2020.09.001
http://doi.org/10.1127/pfg/2016/0288
http://doi.org/10.3390/rs10040641
http://doi.org/10.3390/rs12203318
http://doi.org/10.1080/13658816.2011.566570
http://doi.org/10.1016/j.isprsjprs.2009.06.004
http://doi.org/10.3390/ijgi6060157
http://doi.org/10.1080/01431160903559762
http://doi.org/10.1007/s11769-017-0874-x
http://doi.org/10.1111/tgis.12795


ISPRS Int. J. Geo-Inf. 2021, 10, 805 16 of 17

57. Malinverni, E.S.; Tassetti, A.N.; Mancini, A.; Zingaretti, P.; Frontoni, E.; Bemardini, A. Hybrid object-based approach for land
use/land cover mapping using high spatial resolution imagery. Int. J. Geogr. Inf. Ence 2011, 25, 1025–1043. [CrossRef]

58. Rau, J.Y.; Hsiao, K.W.; Jhan, J.P.; Wang, S.H.; Wang, J.L. Bridge crack detection using multi-potary UAV and object-based image
analysis. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W6, 311–318. [CrossRef]

59. Wouters, L.; Moel, H.D.; Ruiter, M.D.; Couasnon, A.; Teklesadik, A. Improving flood damage assessments in data-scarce areas by
retrieving building characteristics through automated UAV image processing. In Proceedings of the Advances in Geomatics
Research Conference (AGRC2019), Kampala, Uganda, 1–2 August 2019.

60. Boonpook, W.; Tan, Y.; Xu, B. Deep learning-based multi-feature semantic segmentation in building extraction from images of
UAV photogrammetry. Int. J. Remote Sens. 2021, 42, 1–19. [CrossRef]

61. Burdziakowski, P.; Specht, C.; Dabrowski, P.S.; Specht, M.; Lewicka, O.; Makar, A. Using UAV photogrammetry to analyse
changes in the coastal zone based on the sopot tombolo (Salient) measurement project. Sensors 2020, 20, 4000. [CrossRef]

62. Som-Ard, J.; Hossain, M.; Ninsawat, S.; Veerachitt, V. Pre-harvest Sugarcane Yield Estimation Using UAV-Based RGB Images and
Ground Observation. Sugar Tech 2018, 20, 645–657. [CrossRef]

63. Comert, R.; Avdan, U.; Gorum, T.; Nefeslioglu, H.A. Mapping of shallow landslides with object-based image analysis from
unmanned aerial vehicle data. Eng. Geol. 2019, 260, 105264. [CrossRef]

64. Karantanellis, E.; Marinos, V.; Vassilakis, E. 3D Hazard analysis and object-based characterization of landslide motion mechanism
using UAV imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42(2W/13), 425–430. [CrossRef]

65. Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Casagli, N. Multitemporal UAV surveys for landslide mapping and characterization.
Landslides 2018, 15, 1045–1052. [CrossRef]

66. Ding, H.; Na, J.; Jiang, S.; Zhu, J.; Li, F. Evaluation of Three Different Machine Learning Methods for Object-Based Artificial
Terrace Mapping—A Case Study of the Loess Plateau, China. Remote Sens. 2021, 13, 1021. [CrossRef]

67. Huang, C.; Yang, Q.; Cao, X.; Li, Y. Assessment of the Soil Erosion Response to Land Use and Slope in the Loess Plateau—A Case
Study of Jiuyuangou. Water 2020, 12, 529. [CrossRef]

68. Baatz, M.; Schape, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation.
Angew. Geogr. Inf. 2000.
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