
 International Journal of

Geo-Information

Article

Spatial Data Sequence Selection Based on a User-Defined
Condition Using GPGPU

Driss En-Nejjary 1,2,*, François Pinet 2 and Myoung-Ah Kang 1

����������
�������

Citation: En-Nejjary, D.; Pinet, F.;

Kang, M.-A. Spatial Data Sequence

Selection Based on a User-Defined

Condition Using GPGPU. ISPRS Int.

J. Geo-Inf. 2021, 10, 816. https://

doi.org/10.3390/ijgi10120816

Academic Editors: José R.R. Viqueira,

José M. Cotos, Aurora Cuartero and

Wolfgang Kainz

Received: 29 September 2021

Accepted: 27 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire d’Informatique (LIMOS, UMR CNRS 6158), ISIMA, Université Clermont Auvergne,
63000 Clermont-Ferrand, France; kang@isima.fr

2 INRAE, UR TSCF, Centre Clermont-Auvergne-Rhône-Alpes, Université Clermont Auvergne,
63178 Aubière, France; francois.pinet@inrae.fr

* Correspondence: driss.en-nejjary@etu.uca.fr

Abstract: The size of spatial data is growing intensively due to the emergence of and the tremendous
advances in technology such as sensors and the internet of things. Supporting high-performance
queries on this large volume of data becomes essential in several data- and compute-intensive
applications. Unfortunately, most of the existing methods and approaches are based on a traditional
computing framework (uniprocessors) which makes them not scalable and not adequate to deal with
large-scale data. In this work, we present a high-performance query for massive spatio–temporal
data. The query consists of selecting fixed size raster subsequences, based on the average of their
region of interest, from a spatio–temporal raster sequence satisfying a user threshold condition. In
our paper, for the purpose of simplification, we consider that the region of interest is the entire raster
and not only a subregion. Our aim is to speed up the execution using parallel primitives and pure
CUDA. Furthermore, we propose a new method based on a sorting step to save computations and
boost the speed of the query execution. The test results show that the proposed methods are faster
and good performance is achieved even with large-scale rasters and data.

Keywords: spatial data science; geographic information system; general purpose GPU; geocomputa-
tion; raster data; geographic data mining; spatial big data

1. Introduction

With the emergence and the production of a large volume of spatial data, supporting
large-scale and high-performance queries becomes crucial and essential in several fields.
The tremendous advances in technology such as smartphones, the internet of things, web,
navigation systems and sensors, have led to the production of large size spatial datasets.
For instance, data related to climate and precision agriculture sectors is produced in high
precision and large temporal sequences [1,2].

Processing this large volume of data is both a challenge and a real opportunity. In fact,
querying large-scale data allows for extracting more valuable and meaningful information
that is vital for decision making, scientific advancement and scenario predictions. The
major requirements for the data-intensive spatial applications are the processing time and
scalability. Spatial query processing must be fast and able to handle more large spatial data
efficiently which is the goal of our work using raster data.

One of the traditional forms for spatial data is the georeferenced 2-D matrix of cells
(grid) called a raster [3,4]. Each cell in this matrix has (x, y) coordinates and value measure-
ments which can be, for instance, a temperature, air pressure, humidity, CO2 emissions,
etc. [5]. Map algebra is a set of conventions and techniques for raster processing [6]. Hence,
several kinds of functions are proposed having as an input one or many rasters and as
an output one raster or one indicator [7]. For example, the authors in [8] use the average
and the addition operations in order to select rasters based on a user-defined condition. In
addition, map algebra can also be used to produce raster data summaries [9].

ISPRS Int. J. Geo-Inf. 2021, 10, 816. https://doi.org/10.3390/ijgi10120816 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi10120816
https://doi.org/10.3390/ijgi10120816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10120816
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10120816?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2021, 10, 816 2 of 18

Unfortunately, most existing spatial data processing methods are based on CPU
uniprocessors which are no longer suitable since spatial queries have become increasingly
data- and compute-intensive. Hence, processing based on the GPGPU can be a good
alternative to deal with the large-scale raster data and especially since it is based on the
SIMD paradigm (single instruction multiple data) which is a suitable approach for speeding
up data-parallel computation-intensive applications.

Driven by the challenges related to large-scale raster data processing and motivated
by the power provided by the GPGPUs, we propose and test, in this paper, a GPGPU-
based method to implement the following traditional raster query: the selection of spatio–
temporal raster subsequences (a sequence of rasters for the same region and for a defined
period of time) from a large spatio–temporal raster set, based on a user-defined condition.
In our case the average of the raster cells must be less than a certain threshold, since we
consider, for the purpose of simplicity, that the interest region is the entire raster and not
only a sub-region.

The motivation behind this work is to provide fast, efficient and scalable techniques
for processing such a query over big spatial data. Our method is used for the selection
of rasters in a large raster set representing the evolution of a pheromone over time. Take
the example of rasters representing temperature in the same region. The query selects the
rasters that satisfy a given user-defined constraint, e.g., the average temperature of the
rasters is greater than a given threshold. In this scenario with temperature data, this type
of query can be used to select the rasters which correspond to a heat wave, for example.
The query calculates the average of the temperature stored in the rasters and provide as
a result the sequence of rasters corresponding to the desired environmental phenomena
(e.g., period of intense rain). With another application such as rasters representing soil
humidity, it is possible to select the rasters that correspond to a period of intense rain
(or of drought). These analyses are very important in many environmental fields and
in very large datasets, it is therefore essential to be able to select these rasters of interest
very quickly.

The results presented in the paper show that GPGPU-based methods reduce the
execution time and enable us to obtain the query response three times faster than the
sequential methods. Moreover, we propose a sorting step using a GPGPU to boost the
response time of the query by rejecting the unwanted results in the early stages and, hence,
saving computations. For example, it is useless to continue to calculate a temperature
average for the rest of the rasters in a data set, if whatever the remaining temperature
values, the user-defined temperature threshold can never be reached. A sorting data step
was introduced in the method in order to improve the performance for rasters having a
high variation of values. This result is presented and discussed in the experiment section.

Unlike our previous work in [9] which is based on overlapping aggregation raster
subsequences and limited to providing a data summary for simulated datasets, the actual
work deals with a specific selection spatial data query based on the user condition. Hence,
besides the aggregation of disjoint raster subsequences, the query resolution requires a test-
ing step which rejects the subsequences not satisfying the condition. Therefore, compared
to the previous work, first, we have designed and implemented both a straightforward
CPU and GPU version methods for that query. Second, we propose a sophisticated rejection
heuristic in order to reject the unwanted subsequences in the early stages and as a result,
the useless, heavy computations are avoided. We have introduced the idea of early data
rejection in a single raster in [8]. Finally, the proposed methods are tested on a real dataset
and can be used for other types of data that have the same characteristics and can be
extended to other operations.

The rest of the paper is organized as follows. Section 2 reviews, firstly, the main
related works and secondly, introduces some basics of spatial data, presents a description
of our query and provides the main principles of the heterogeneous computing, the GPU
architecture, and the main Nvidia libraries: CUB [10] and Thrust [11]. In Section 3, we
provide the query formulation and the different proposed sequential and GPGPU-based



ISPRS Int. J. Geo-Inf. 2021, 10, 816 3 of 18

methods. The experiments and the used dataset are presented in Section 4. In this section,
we also provide a comparison between the parallel (GPGPU) and the sequential (CPU)
version. Finally, Section 5 gives an outline of our proposal and suggests new research
tracks to extend our work.

2. State of the Art and Background
2.1. State of the Art

In the last decade, many researchers have tried to use the GPGPU for speeding up
many fields, for instance: simulation, image processing, machine learning, and GIS. For
example, the research presented in [12], tackled the problem of various non-linear filters
for volume smoothing with edge preservation in image processing using the GPGPU. The
authors of [13] propose the implementation of several image processing algorithms like
histogram equalization, edge detection and others, based on the GPGPU using CUDA.
In [14], implementation using the GPGPU is proposed for image and video processing to
tackle real-time issues and optimization. Another relevant work presented in [15], tried
to optimize the use of the GPU in deep learning, more specifically in the inference phase,
where the power of the GPU is not fully leveraged due to the small batch sizes. Thus,
the authors propose a new approach called “dynamic space-time scheduling” based on a
trade-off of space and time multiplexing inference strategies.

In recent years, different works have been proposed to speed up the processing and
the analysis of spatial data. In the work described in [16], the addition operator of two large
rasters was accelerated using the GPGPU. In [17], the authors propose GPU-based parallel
designs of spatial indexing, spatial joins, and several other spatial operations. The authors
of [18] show the speedup of the batch processing of rasters by implementing algorithms
on a GPU. The work presented in [19], aims to design and implement a data management
framework for large-scale Ubiquitous Urban Sensing Origin-Destination (U2 SOD) data,
while also proposing the parallel processing of spatio–temporal aggregations and data
management platforms on multi-core CPUs and many-core graphics processing units
(GPUs) in an OLAP setting. In [20], the quadtree construction is implemented based on
the GPU parallel primitive approach. Motivated by the power of the GPU and the need to
perform interactive exploration over large-scale spatial data, the authors of [21] propose
to use GPU-specific native operations instead of the traditional approach based on CPU
designs in order to maximally leverage the power of the GPU, hence achieving a significant
performance gain and avoiding an ineffective use of GPU capabilities. Thus, the authors
propose new spatial algebra based on five fundamental operators, based on common
computer graphics operations, e.g., Mask. Moreover, in their work they propose a new
data model by introducing a new and unique geometric data model called a “geometric
object” that encapsulates different geometric objects in one type and hence uniforming
the representation of different geometric objects in order to propose generic solutions. In
an effort to raise the challenge of providing interactive queries over large spatial data
sets and efficient support for visualization, the work presented in [22] proposes a new
GPU-based index to speed up interactive spatio–temporal queries over large historical data.
The proposed method, STIG (spatio-temporal indexing using GPUs), was implemented
in MongoDB [23] and tested using two large data sets: NYC taxi trips and Twitter data.
The results of the experiments have shown the efficiency of STIG which was capable of
obtaining interactive, sub-second response times for queries over the two large datasets
and has overcome the existing solutions.

Other works have been proposed to use the GPGPUs for GIS and spatial data. For
instance, in [24], the researchers proposed to use the GPGPU so as to speed up the inter-
polation of massive point clouds, using the natural neighbor interpolation method (NNI).
The work presented in [25] proposes to use the GPGPU to speed up some spatial database
queries, and in particular, distance queries. The authors of [26], suggest an implementation
of seismic wave, rock magnetism propagation and computational fluid dynamics based



ISPRS Int. J. Geo-Inf. 2021, 10, 816 4 of 18

on the GPU. Finally, the work proposed in [27], implements basic operations for raster
analysis based on the GPGPU.

Recently, in [9], we proposed a parallel approach to speed up the overlapping aggrega-
tion process of raster sequences used for generating data summaries. The method is based
on the use of prefix sum and reduction algorithms implemented on a GPU using the CUB
and Thrust libraries. The results highlight more than 40 examples of speedups. In [28], we
proposed an algorithm based on a GPGPU implementation to accelerate the large-scale
raster selection queries based on a threshold fixed by the user. This work has been only
applied for the individual raster selection and not for the selection of raster subsequences.

As far as we know, no previous research has been proposed to deal with large-scale
disjoint raster subsequences selection satisfying the user’s threshold using the power of
the GPGPU, hence the interest for this work. We note that the proposal presented in the
paper is the continuation of the works proposed in [9,28].

2.2. Background
2.2.1. Spatio–Temporal Raster Data

Raster data (also known as grid data) is a georeferenced 2-D matrix of cells [5]. Each
cell in this matrix has two coordinates (x, y) and is associated with a measurement value
which can be temperature, pressure, humidity, CO2 emissions, etc. (Figure 1).

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 4 of 18 
 

 

queries, and in particular, distance queries. The authors of [26], suggest an implementa-
tion of seismic wave, rock magnetism propagation and computational fluid dynamics 
based on the GPU. Finally, the work proposed in [27], implements basic operations for 
raster analysis based on the GPGPU. 

Recently, in [9], we proposed a parallel approach to speed up the overlapping aggre-
gation process of raster sequences used for generating data summaries. The method is 
based on the use of prefix sum and reduction algorithms implemented on a GPU using 
the CUB and Thrust libraries. The results highlight more than 40 examples of speedups. 
In [28], we proposed an algorithm based on a GPGPU implementation to accelerate the 
large-scale raster selection queries based on a threshold fixed by the user. This work has 
been only applied for the individual raster selection and not for the selection of raster 
subsequences. 

As far as we know, no previous research has been proposed to deal with large-scale 
disjoint raster subsequences selection satisfying the user’s threshold using the power of 
the GPGPU, hence the interest for this work. We note that the proposal presented in the 
paper is the continuation of the works proposed in [9,28]. 

2.2. Background 
2.2.1. Spatio–Temporal Raster Data 

Raster data (also known as grid data) is a georeferenced 2-D matrix of cells [5]. Each 
cell in this matrix has two coordinates (x, y) and is associated with a measurement value 
which can be temperature, pressure, humidity, CO2 emissions, etc. (Figure 1). 

 
Figure 1. A raster is composed of rows and columns of cells. 

Spatio–temporal rasters can be viewed as a sequence of rasters for the same region 
and for a defined period of time. Each raster represents information related to the studied 
region at regular intervals of time (e.g., every second, minute, hour, etc.)—see Figure 2. 
Spatio–temporal rasters allow the analysis of the gradual evolution of temporal phenom-
ena such as the detection of abnormal phenomenon evolution over time in the studied 
region. 

Figure 1. A raster is composed of rows and columns of cells.

Spatio–temporal rasters can be viewed as a sequence of rasters for the same region
and for a defined period of time. Each raster represents information related to the studied
region at regular intervals of time (e.g., every second, minute, hour, etc.)—see Figure 2.
Spatio–temporal rasters allow the analysis of the gradual evolution of temporal phenomena
such as the detection of abnormal phenomenon evolution over time in the studied region.

Spatio–temporal rasters are used in many applications such as climate science to
analyze data related to atmospheric and oceanic conditions, which allow us to better under-
stand the Earth’s system. Precision agriculture analyses the different factors impacting the
crop yields in order to optimize the production cycle. As mentioned above, in the most real
cases, the region of interest can be a sub-region of the raster and not the entire raster, but for
the sake of simplification, in this paper, we consider that the sub-region is the entire raster.

2.2.2. Query Spatio–Temporal Raster Data

The objective of our query is to provide users with a tool to analyze spatio–temporal
rasters measuring a characteristic C (e.g., temperature) collected in a regular time interval
(e.g., every hour). More precisely, the query consists of selecting periods of time (subse-
quences of rasters) where the average of C, over the raster subsequences, is lower than a
threshold fixed by the user. For instance, suppose that a scientist wants to know the weeks
where the temperature is less than 20 ◦C. She/he can analyze such a case on an object of
study (e.g., a crop in agriculture).



ISPRS Int. J. Geo-Inf. 2021, 10, 816 5 of 18ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. Spatio–temporal rasters representing the evolution of the temperature during N days for a studied region. 

Spatio–temporal rasters are used in many applications such as climate science to an-
alyze data related to atmospheric and oceanic conditions, which allow us to better under-
stand the Earth’s system. Precision agriculture analyses the different factors impacting the 
crop yields in order to optimize the production cycle. As mentioned above, in the most 
real cases, the region of interest can be a sub-region of the raster and not the entire raster, 
but for the sake of simplification, in this paper, we consider that the sub-region is the 
entire raster. 

2.2.2. Query Spatio–Temporal Raster Data 
The objective of our query is to provide users with a tool to analyze spatio–temporal 

rasters measuring a characteristic C (e.g., temperature) collected in a regular time interval 
(e.g., every hour). More precisely, the query consists of selecting periods of time (subse-
quences of rasters) where the average of C, over the raster subsequences, is lower than a 
threshold fixed by the user. For instance, suppose that a scientist wants to know the weeks 
where the temperature is less than 20 °C. She/he can analyze such a case on an object of 
study (e.g., a crop in agriculture). 

The workflow of the query is presented in Figure 3. It consists of computing a spatio–
temporal average of raster cells. A single numerical indicator is returned, i.e., the average 
of the cells in all the rasters in the studied temporal subsequence (a week). 

Figure 2. Spatio–temporal rasters representing the evolution of the temperature during N days for a studied region.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 3. Overall framework for the query process. 

2.2.3. Heterogenous Computing 
In the last decade, HPC (high-performance computing) has seen a significant evolu-

tion, because of the emergence of GPU–CPU heterogeneous architectures, which has led 
to a great revolution in parallel programming. The previous generations of computers 
contained only central processing units (CPUs) that were dedicated to performing general 
programming tasks; however, in the last decades, several computers with different archi-
tectures have emerged including other processing elements, for instance, GPUs (Graphics 
Processing Units). 

In its beginning, the GPU was a simple device dedicated to graphical processing tasks 
(i.e., rendering); however, in the last decade, thanks to the industrial success of computer 
games development, GPUs become powerful tools capable of solving more complicated 
problems since they are provided with massively parallel programmable processors. A 
typical heterogeneous architecture is composed of one CPU called the host and one or 
more GPUs called the device. The communication between the Host and the Device is 
achieved through the PCI-express bus. The cooperation of the CPU and the GPU led to 
high-performances and powerful computing capabilities which make the heterogeneous 
architectures suitable tools for HPC (High Performance Computing). The host code is run 
on the CPU while the device code is run on the GPU. An application executing on a het-
erogeneous platform is firstly initialized by the CPU which is responsible for managing 
the environment, code, and data for the device. In the end, parallel tasks are loaded on the 
device. 

2.2.4. GPU Architecture 

Figure 3. Overall framework for the query process.



ISPRS Int. J. Geo-Inf. 2021, 10, 816 6 of 18

The workflow of the query is presented in Figure 3. It consists of computing a spatio–
temporal average of raster cells. A single numerical indicator is returned, i.e., the average
of the cells in all the rasters in the studied temporal subsequence (a week).

2.2.3. Heterogenous Computing

In the last decade, HPC (high-performance computing) has seen a significant evolu-
tion, because of the emergence of GPU–CPU heterogeneous architectures, which has led
to a great revolution in parallel programming. The previous generations of computers
contained only central processing units (CPUs) that were dedicated to performing general
programming tasks; however, in the last decades, several computers with different archi-
tectures have emerged including other processing elements, for instance, GPUs (Graphics
Processing Units).

In its beginning, the GPU was a simple device dedicated to graphical processing tasks
(i.e., rendering); however, in the last decade, thanks to the industrial success of computer
games development, GPUs become powerful tools capable of solving more complicated
problems since they are provided with massively parallel programmable processors. A
typical heterogeneous architecture is composed of one CPU called the host and one or
more GPUs called the device. The communication between the Host and the Device is
achieved through the PCI-express bus. The cooperation of the CPU and the GPU led to
high-performances and powerful computing capabilities which make the heterogeneous
architectures suitable tools for HPC (High Performance Computing). The host code is
run on the CPU while the device code is run on the GPU. An application executing on a
heterogeneous platform is firstly initialized by the CPU which is responsible for managing
the environment, code, and data for the device. In the end, parallel tasks are loaded
on the device.

2.2.4. GPU Architecture

The GPGPUs are suitable for data parallelism since they are based on the SIMD
paradigm (single instruction multiple data). Therefore, multiple cores perform the same
instructions on different parts of the data. Thus, many works have used the GPGPU
for several problems, for instance: simulations, image processing, optimizations, etc.
The GPGPU device is composed of several SMs (streaming multiprocessor) which are
responsible for running the parallel functions called kernels. Each SM contains a set of
elements among which include:

• Registers,
• Memory caches,
• Warp schedulers,
• Execution pipelines.

There are many APIs proposed to exploit the power of the GPGPUs such as OpenCL
and CUDA (Compute Unified Device Architecture). This later is a parallel platform and
programming model created by NVIDIA to use the GPGPU computing in an efficient and
easy way since its syntax is quite similar to C programming. Indeed, NVIDIA uses C with
additional specifications expressing the parallelism related to CUDA; however, there are
other features which must be mastered and be familiarized, in order to use CUDA properly,
such as the programming and memory model.

To execute the CUDA program, three steps are required:

1. Initializing and transferring the data from the Host (CPU) to the Device (GPU),
2. Calling the kernel (parallel function executed on the device by many threads),
3. At the end of the data processing, transferring the results from the Device to the Host.

CUDA provides a specific thread organization which offers the programmer a flexible
thread organization. Threads are grouped in blocks which are then grouped in grids [29].
To launch the kernels, we need to specify the size of the grids and the blocks.



ISPRS Int. J. Geo-Inf. 2021, 10, 816 7 of 18

2.2.5. GPU-Accelerated Libraries for Computing

NVIDIA GPU-accelerated libraries provide highly optimized functions that can help
users to write and optimally scale applications. Using them allows for highly efficient
implementations of algorithms that are widely used as building blocks for many appli-
cations in several fields and many kinds of libraries are available. There are libraries for
linear algebra (cuBLAS and CUDA Math library). For deep learning, there are libraries
for parallel algorithms such as Thrust (used for parallel algorithms and data structures).
The libraries that interest us in this work are Thrust and CUB since they provide a set of
fundamental parallel algorithms that are implemented in an optimized and efficient way,
such as reduction and sort, which are used in this work.

Thrust

Developed by NVIDIA, Thrust is a high-level CUDA library that enables the program-
mers to obtain a high performance and improve their productivity since it is based on
the STL (Standard Template Library). The power of Thrust relies on its interoperability
with other technologies, for example, C++, Open MP, etc. Additionally, it is a part of the
CUDA toolkit.

CUB

CUB is a very fast library founded using the CUDA programming model. It provides state-
of-the-art, reusable software components for every layer of the CUDA programming model.

For instance:

• Device-wide primitives,
• Block-wide “collective” primitives;
• Warp-wide “collective” primitives.

Like Thrust, it allows the programmer to obtain a very high performance and efficiency.

3. Query Definition and the Proposed Methods
3.1. Query Formulation

Here, we provide a description of our query.
Let D be the data set (R1, . . . , RN) of N rasters, where each Ri is a 2D grid that has the

size of p × q. All the rasters have the same size and correspond to the same geographical
region. Let cellx,y(Ri) be the cell in the raster Ri, and (x, y) be the coordinates of the cell
in the raster. The query relies on: Finding all the disjoint (i.e., non-overlapping) raster
subsequences Sj in D of length L, such that the mean over Sj is less than T. (T is a threshold
defined by the user).

3.2. Sequential Method for Query Processing

The serial straightforward method is as follows:
D = list of rasters
N = the number of rasters in D
{L = the size of subsequences
T = the threshold chosen by the user
Result = { }
for every Sj in D {

sum_subseq = 0
for every raster Ri in Sj

{
avg_raster = the cell average for Ri
sum_subseq = (sum _subseq +avg_raster)

}
avg_subseq = (sum_ subseq)/L
if (avg < T)

then Result = Result ∪∪∪{ Sj }.



ISPRS Int. J. Geo-Inf. 2021, 10, 816 8 of 18

}

3.3. Parallel Methods for Query Processing

In this subsection, we present the different approaches to implement the query based
on the GPGPU.

3.3.1. Straightforward Parallel Approach

This approach consists, as the first step, computing the average of each subsequence
in D and then verifying if it satisfies the user condition. Concerning this step, we have
used the segmented reduction technique with the sum operator. This later is a building
block for many algorithms. In general, it relies on reducing data over many irregular-
length segments. In our case, the segments have the same length which is the size of the
subsequences L.

In our method, the rasters are aligned and stored in one array. The segments are
composed of the cells of all the rasters belonging to them. To perform the segmented
reduction, one unique key is assigned to each segment and therefore to each subsequence
in our array. If there are N subsequences of size L, there will be N fixed-size segments.

This approach allows for performing the reduction on all the subsequences only once
(based on their keys). Hence the function (kernel) responsible for the reduction is called
just once on the array containing the data. The output will be a single 1D array containing
the means of all the subsequences Sj. An illustrative example is presented below with six
rasters:

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 9 of 18 
 

 

 
Rasters are aligned and stored in one array as follow: 

 
Our query allows for selecting subsequences of size L such that the average over 

these subsequences satisfies the user’s condition. In our example L = 3 (3 rasters): 

 
Now, the same key is assigned to each cell in the same subsequence. Hence, we obtain 

two segments and the sum of each subsequence is computed based on their keys. 

 
Concerning the second step which consists of testing if the average of each subse-

quence Sj is satisfying the user’s condition, we assign one thread to each result in the out-
put array which will be responsible for checking the condition. 

The straightforward parallel approach is quite simple since the segmented reduction 
function is called only once. After that, threads are launched to check the user’s threshold 
condition; however, the main limitation of this straightforward approach is that the re-
duction operation is very expensive in time and computation. 

3.3.2. Improved Parallel Approach 
Based on a Sort 

In this subsection, we overcome the limitation of the straightforward parallel ap-
proach by introducing a sorting step in the process. We have introduced the main princi-
ple for the individual selection of rasters in [8,28]. The idea behind the sorting is to try to 
reject the subsequences not satisfying the query condition in the early stages to avoid use-
less computations, since the goal of the query is not to compute the average of all subse-
quences. We do not have to complete the average computation for a subsequence that 
does not satisfy the condition. A subsequence average computation can be stopped as 
soon as we are sure that the user-defined condition will not be satisfied. As a first step, we 
propose to sort the cells of each raster in descending order. In that case, the threshold is 
reached faster for the subsequence Sj that does not satisfy the user-defined threshold. 

As we can see in Figure 4, the first step consists in sorting all the rasters in parallel 
and descending order. To do that efficiently and optimally we have adopted the seg-
mented-sort parallel technique to ensure all rasters are sorted in one shot. To achieve this 

Rasters are aligned and stored in one array as follow:

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 9 of 18 
 

 

 
Rasters are aligned and stored in one array as follow: 

 
Our query allows for selecting subsequences of size L such that the average over 

these subsequences satisfies the user’s condition. In our example L = 3 (3 rasters): 

 
Now, the same key is assigned to each cell in the same subsequence. Hence, we obtain 

two segments and the sum of each subsequence is computed based on their keys. 

 
Concerning the second step which consists of testing if the average of each subse-

quence Sj is satisfying the user’s condition, we assign one thread to each result in the out-
put array which will be responsible for checking the condition. 

The straightforward parallel approach is quite simple since the segmented reduction 
function is called only once. After that, threads are launched to check the user’s threshold 
condition; however, the main limitation of this straightforward approach is that the re-
duction operation is very expensive in time and computation. 

3.3.2. Improved Parallel Approach 
Based on a Sort 

In this subsection, we overcome the limitation of the straightforward parallel ap-
proach by introducing a sorting step in the process. We have introduced the main princi-
ple for the individual selection of rasters in [8,28]. The idea behind the sorting is to try to 
reject the subsequences not satisfying the query condition in the early stages to avoid use-
less computations, since the goal of the query is not to compute the average of all subse-
quences. We do not have to complete the average computation for a subsequence that 
does not satisfy the condition. A subsequence average computation can be stopped as 
soon as we are sure that the user-defined condition will not be satisfied. As a first step, we 
propose to sort the cells of each raster in descending order. In that case, the threshold is 
reached faster for the subsequence Sj that does not satisfy the user-defined threshold. 

As we can see in Figure 4, the first step consists in sorting all the rasters in parallel 
and descending order. To do that efficiently and optimally we have adopted the seg-
mented-sort parallel technique to ensure all rasters are sorted in one shot. To achieve this 

Our query allows for selecting subsequences of size L such that the average over these
subsequences satisfies the user’s condition. In our example L = 3 (3 rasters):

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 9 of 18 
 

 

 
Rasters are aligned and stored in one array as follow: 

 
Our query allows for selecting subsequences of size L such that the average over 

these subsequences satisfies the user’s condition. In our example L = 3 (3 rasters): 

 
Now, the same key is assigned to each cell in the same subsequence. Hence, we obtain 

two segments and the sum of each subsequence is computed based on their keys. 

 
Concerning the second step which consists of testing if the average of each subse-

quence Sj is satisfying the user’s condition, we assign one thread to each result in the out-
put array which will be responsible for checking the condition. 

The straightforward parallel approach is quite simple since the segmented reduction 
function is called only once. After that, threads are launched to check the user’s threshold 
condition; however, the main limitation of this straightforward approach is that the re-
duction operation is very expensive in time and computation. 

3.3.2. Improved Parallel Approach 
Based on a Sort 

In this subsection, we overcome the limitation of the straightforward parallel ap-
proach by introducing a sorting step in the process. We have introduced the main princi-
ple for the individual selection of rasters in [8,28]. The idea behind the sorting is to try to 
reject the subsequences not satisfying the query condition in the early stages to avoid use-
less computations, since the goal of the query is not to compute the average of all subse-
quences. We do not have to complete the average computation for a subsequence that 
does not satisfy the condition. A subsequence average computation can be stopped as 
soon as we are sure that the user-defined condition will not be satisfied. As a first step, we 
propose to sort the cells of each raster in descending order. In that case, the threshold is 
reached faster for the subsequence Sj that does not satisfy the user-defined threshold. 

As we can see in Figure 4, the first step consists in sorting all the rasters in parallel 
and descending order. To do that efficiently and optimally we have adopted the seg-
mented-sort parallel technique to ensure all rasters are sorted in one shot. To achieve this 

Now, the same key is assigned to each cell in the same subsequence. Hence, we obtain
two segments and the sum of each subsequence is computed based on their keys.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 9 of 18 
 

 

 
Rasters are aligned and stored in one array as follow: 

 
Our query allows for selecting subsequences of size L such that the average over 

these subsequences satisfies the user’s condition. In our example L = 3 (3 rasters): 

 
Now, the same key is assigned to each cell in the same subsequence. Hence, we obtain 

two segments and the sum of each subsequence is computed based on their keys. 

 
Concerning the second step which consists of testing if the average of each subse-

quence Sj is satisfying the user’s condition, we assign one thread to each result in the out-
put array which will be responsible for checking the condition. 

The straightforward parallel approach is quite simple since the segmented reduction 
function is called only once. After that, threads are launched to check the user’s threshold 
condition; however, the main limitation of this straightforward approach is that the re-
duction operation is very expensive in time and computation. 

3.3.2. Improved Parallel Approach 
Based on a Sort 

In this subsection, we overcome the limitation of the straightforward parallel ap-
proach by introducing a sorting step in the process. We have introduced the main princi-
ple for the individual selection of rasters in [8,28]. The idea behind the sorting is to try to 
reject the subsequences not satisfying the query condition in the early stages to avoid use-
less computations, since the goal of the query is not to compute the average of all subse-
quences. We do not have to complete the average computation for a subsequence that 
does not satisfy the condition. A subsequence average computation can be stopped as 
soon as we are sure that the user-defined condition will not be satisfied. As a first step, we 
propose to sort the cells of each raster in descending order. In that case, the threshold is 
reached faster for the subsequence Sj that does not satisfy the user-defined threshold. 

As we can see in Figure 4, the first step consists in sorting all the rasters in parallel 
and descending order. To do that efficiently and optimally we have adopted the seg-
mented-sort parallel technique to ensure all rasters are sorted in one shot. To achieve this 



ISPRS Int. J. Geo-Inf. 2021, 10, 816 9 of 18

Concerning the second step which consists of testing if the average of each subse-
quence Sj is satisfying the user’s condition, we assign one thread to each result in the output
array which will be responsible for checking the condition.

The straightforward parallel approach is quite simple since the segmented reduction
function is called only once. After that, threads are launched to check the user’s thresh-
old condition; however, the main limitation of this straightforward approach is that the
reduction operation is very expensive in time and computation.

3.3.2. Improved Parallel Approach
Based on a Sort

In this subsection, we overcome the limitation of the straightforward parallel approach
by introducing a sorting step in the process. We have introduced the main principle for
the individual selection of rasters in [8,28]. The idea behind the sorting is to try to reject
the subsequences not satisfying the query condition in the early stages to avoid useless
computations, since the goal of the query is not to compute the average of all subsequences.
We do not have to complete the average computation for a subsequence that does not
satisfy the condition. A subsequence average computation can be stopped as soon as we
are sure that the user-defined condition will not be satisfied. As a first step, we propose to
sort the cells of each raster in descending order. In that case, the threshold is reached faster
for the subsequence Sj that does not satisfy the user-defined threshold.

As we can see in Figure 4, the first step consists in sorting all the rasters in parallel and
descending order. To do that efficiently and optimally we have adopted the segmented-sort
parallel technique to ensure all rasters are sorted in one shot. To achieve this objective, we have
chosen a data parallel primitive approach, for instance the cub::DeviceSegmentedRadixSort
parallel primitive function which allows the performing of a batched radix sort across
multiple, non-overlapping sequences. The reason why we decided to use these parallel
primitives was to reduce the implementation complexity and maximize the performance of
our algorithms, since these parallel primitives are highly optimized.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 18 
 

 

objective, we have chosen a data parallel primitive approach, for instance the cub::Device-
SegmentedRadixSort parallel primitive function which allows the performing of a 
batched radix sort across multiple, non-overlapping sequences. The reason why we de-
cided to use these parallel primitives was to reduce the implementation complexity and 
maximize the performance of our algorithms, since these parallel primitives are highly 
optimized. 

 
Figure 4. Illustration of our method for the first subsequence S1. 

Once the rasters are sorted, we move to the second step and it consists of splitting 
each sorted raster into equal segments (tiles). Thus, the first tile of each raster contains the 
cells of the largest numbers. We consider the positive numbers for cell values. In the case 
of negative numbers in the datasets, shifting by a large number is needed (e.g., adding 100 
to all the values). 

In the first iteration, we compute only the sum of the first tiles of each raster for a 
given subsequence Sj. If the result Res1 is not satisfying the query condition, then the sub-
sequence Sj is rejected. Otherwise, we repeat the same processing for the second tiles of 
each raster in Sj, add it to Res1(the previous results of the first segments) and check the 
results. If the Res2 is not satisfying the query condition then Sj is rejected. Otherwise, we 
repeat the process for the third segment of rasters in Sj and so on. This will be done in 
parallel at the same time for all the disjoint subsequences. 

The main drawback of this approach is that the sorting process is expensive in time 
and computations, especially in the case of large rasters. To overcome this limitation, we 
propose in the next subsection avoiding sorting all the rasters and settling for sorting only 
a few of them. The others will be somehow reordered according to the sorted rasters. This 
is the subject of the next subsection. 

In our example, we consider that the user condition is “the mean must be less than a 
threshold”. Note that if the user-defined condition would be “the mean must be greater 
than a threshold”, the operation in Figure 5 will be “if the mean > threshold then accept 
this sequence”. 

Figure 4. Illustration of our method for the first subsequence S1.



ISPRS Int. J. Geo-Inf. 2021, 10, 816 10 of 18

Once the rasters are sorted, we move to the second step and it consists of splitting
each sorted raster into equal segments (tiles). Thus, the first tile of each raster contains the
cells of the largest numbers. We consider the positive numbers for cell values. In the case
of negative numbers in the datasets, shifting by a large number is needed (e.g., adding 100
to all the values).

In the first iteration, we compute only the sum of the first tiles of each raster for a
given subsequence Sj. If the result Res1 is not satisfying the query condition, then the
subsequence Sj is rejected. Otherwise, we repeat the same processing for the second tiles
of each raster in Sj, add it to Res1(the previous results of the first segments) and check the
results. If the Res2 is not satisfying the query condition then Sj is rejected. Otherwise, we
repeat the process for the third segment of rasters in Sj and so on. This will be done in
parallel at the same time for all the disjoint subsequences.

The main drawback of this approach is that the sorting process is expensive in time
and computations, especially in the case of large rasters. To overcome this limitation, we
propose in the next subsection avoiding sorting all the rasters and settling for sorting only
a few of them. The others will be somehow reordered according to the sorted rasters. This
is the subject of the next subsection.

In our example, we consider that the user condition is “the mean must be less than a
threshold”. Note that if the user-defined condition would be “the mean must be greater
than a threshold”, the operation in Figure 5 will be “if the mean > threshold then accept
this sequence”.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 18 
 

 

Based on the Sophisticated Sort 
We consider that we do not know in advance on which datasets the query will be 

applied as the data set can change from one query to another. We take the point of view 
of a database management system (DBMS) designer and the goal is to implement generic 
DBMS operations. Our goal is not to improve the computation for a particular data set. 
Sorting is expensive, i.e., the time complexity of a sort is O(n log n) in the case of quicksort, 
and is higher than the sum computation, i.e., O(n). In practice, the sorting cannot be a pre-
processing step of all the rasters of the whole data set before the query execution, because 
this process is too time-consuming and the dataset used for a query will not necessarily 
be reused for later queries. We propose to execute the sorting at the query runtime on only 
some rasters. More precisely, we propose the following: 
1. Split the dataset of our rasters in time windows containing a fixed number of rasters. 

Thus, we propose to sort only one raster from each time window. The sorting result 
can be viewed as an array M mapping a cell position (x, y) to an order position I. 

2. The cells of rasters falling in the same time window will be reordered based on the 
sorted raster of this time window. To do this, the array M will be directly used during 
the average computation without an impact on time complexity. The time window 
can be the size of the subsequences. 
Figure 5 illustrates this approach. As we can see in this figure, the data sets are di-

vided in three-time windows of a fixed size 7. In the second step, for each segment, one 
raster is sorted and the rest are reordered accordingly. This strategy allows us to avoid the 
heavy computations of sorting all the rasters. We propose to sort only a few among them 
which gives us the possibility to reduce the processing time of the sorting step. 

 

Figure 5. Strategy to avoid sorting all the rasters. 

The idea behind this method is that in many phenomena the spatial distribution of 
values evaluates rather slowly over time. Therefore, we suppose that the rasters that are 
falling in a certain window of time have the same behavior in term of the cell values. For 

Figure 5. Strategy to avoid sorting all the rasters.

Based on the Sophisticated Sort

We consider that we do not know in advance on which datasets the query will be
applied as the data set can change from one query to another. We take the point of view
of a database management system (DBMS) designer and the goal is to implement generic
DBMS operations. Our goal is not to improve the computation for a particular data set.
Sorting is expensive, i.e., the time complexity of a sort is O(n log n) in the case of quicksort,



ISPRS Int. J. Geo-Inf. 2021, 10, 816 11 of 18

and is higher than the sum computation, i.e., O(n). In practice, the sorting cannot be a pre-
processing step of all the rasters of the whole data set before the query execution, because
this process is too time-consuming and the dataset used for a query will not necessarily be
reused for later queries. We propose to execute the sorting at the query runtime on only
some rasters. More precisely, we propose the following:

1. Split the dataset of our rasters in time windows containing a fixed number of rasters.
Thus, we propose to sort only one raster from each time window. The sorting result
can be viewed as an array M mapping a cell position (x, y) to an order position I.

2. The cells of rasters falling in the same time window will be reordered based on the
sorted raster of this time window. To do this, the array M will be directly used during
the average computation without an impact on time complexity. The time window
can be the size of the subsequences.

Figure 5 illustrates this approach. As we can see in this figure, the data sets are divided
in three-time windows of a fixed size 7. In the second step, for each segment, one raster is
sorted and the rest are reordered accordingly. This strategy allows us to avoid the heavy
computations of sorting all the rasters. We propose to sort only a few among them which
gives us the possibility to reduce the processing time of the sorting step.

The idea behind this method is that in many phenomena the spatial distribution of
values evaluates rather slowly over time. Therefore, we suppose that the rasters that are
falling in a certain window of time have the same behavior in term of the cell values. For
example, if the rasters represent the hourly temperature of a specific region, the main
spatial distribution of temperature will not change or will make only a slight change during
a certain period of time (window), so the rasters that fall in the same time window have
the same behavior. Thus, we need to sort only one raster from each window and reorder
the others accordingly.

In practice, performance improvement depends on two things:

• The size of the time window—which must not be too large and also not too small.
If it is too large, the difference between the estimated cell sorting and the real cell
sorting may increase inside the time window. Hence the performance may drop (the
sort becomes useless). If the time window size is too small, the number of the sorted
rasters will increase in the global processing and it will slow down the execution time.

• The type of data (the temperature, pressure, etc.). The less the data is evolving over
time the more the sorting is accurate. The proposed methods perform better when the
spatial locations of maximal and minimal values evolve slowly over time.

To implement that, first we sorted the indexes (keys) of the rasters that must be sorted.
We used the sorted keys to reorder the other rasters. To sort the raster and indexes, two
solutions are available: the solution based on CUB with cub::DeviceRadixSort::SortPairs,
and the solution based on Thrust with thrust::sort_by_key. The other rasters that fell in
the same time windows were reordered (sorted) according to the sorted raster using the
gather transformation that could be implemented using the primitive thrust::gather. Once
the rasters were sorted, we needed to implement the kernel responsible for computing the
average of the subsequences using our method described above. To do that, the primitives
thrust::reduce or the cub::DeviceReduce::Reduce could be used.

4. Tests and Analysis
4.1. Configuration of the Experimental Environment

Our experiments were performed on two platforms. Concerning the parallel methods,
we have used a GPU-based platform: Tesla K20 C, while the sequential approaches were
performed on Intel(R) Core(TM). To implement our methods we have used C++, CUDA
and the libraries Thrust and CUB.

Table 1 shows the details related to the used hardware and software configuration.



ISPRS Int. J. Geo-Inf. 2021, 10, 816 12 of 18

Table 1. Hardware and software configurations.

Platform Hardware Configuration Software Configuration

CPU

Intel(R) Core(TM) i7-2600K
CPU @ 3.40 GHz

Device global memory: 16 GB
Cache size: 20,480 KB

Linux Ubuntu 19.04
C/C++

CUDA 8.0
Thrust v10.1.105

CUB v1.8.0
GPU

Tesla K20C
CUDA Cores: 2496

Device global memory: 5 GB
Memory Bandwidth: 208 GB/s

In the tests, we aimed to outline the power of using the GPGPU platform to speed up
the spatio–temporal raster queries over the classical approaches based on the CPU. Besides
this, we showed that based on the type and the distribution of data in our dataset, we could
gain more performance by using the sort heuristic presented above.

4.2. Dataset
4.2.1. INRAE Montoldre Site

In our experiments, we used a dataset provided by the INRAE Montoldre site [30,31],
which is a large experimental farm located in Montoldre. This was later dedicated to
the development and the experimentation of agri-environmental techniques. Based on a
sensor network composed by LiveNode [32] (developed by LIMOS), this platform provides
real data that are used by researchers in their work related to the environment. The
measurements used were air and soil humidity, temperature and light and they were
measured using several sensors distributed over the Montoldre site.

The Montoldre raw dataset produced by LiveNode is composed of two SQL tables,
the network table and the sensors table.

• The network table concerns information about 10 sensor nodes,
• The sensors table contains columns such as: myNodeID, battery, temperature, humid-

ity, light, etc., and 14,970,995 rows which correspond to the measurements of the differ-
ent sensors during many months with a different fine-grained frequency of acquisition.

The table below (Table 2) shows the description of some measures.

Table 2. Description of the measures.

Measure Meaning Units

Battery Battery state of node mV

Temperature Temperature measurement C degree

Humidity Air humidity measurement Percent

Light Light measurement N/A

Watermark n

Measurement value of the
n-th watermark device. Watermark is

a soil humidity sensor. The
Watermark sensors are in the soil at

different soil depth.

Watermark’s unit
(range: 0 to 200)

Note: Watermark1: this sensor is deployed at 10 cm depth in the soil; watermark 2: this sensor is deployed
at 20 cm depth in the soil; watermark3: this sensor is deployed at 30 cm depth in the soil.

The inverse distance weighted IDW [33] interpolation method was used for predicting
the missing values of the unsampled locations to produce rasters based on the raw INRAE
dataset. Hence, 3550 rasters were produced in four different resolutions (300 × 300,
350 × 350, 400 × 400, 450 × 450) for three types of measures (temperature, humidity,
watermark 2).



ISPRS Int. J. Geo-Inf. 2021, 10, 816 13 of 18

For each type of measurement and each resolution, one raster was generated per hour,
with a value between the Min. and Max. (Table 3) available sensor measures—since all the
sensors were not always active at the same time.

Table 3. Statistical description of the dataset.

Measure Min Max Mean Standard
Deviation

Mean of
Rasters Means

Mean of Rasters
Standard Deviation

Temperature (◦C) 0 45.7 11.89 8.73 12 2.73

Humidity (%) 9.9 100 78 21.97 78.15 15.20

Watermark 2
(watermark’s unit) 1 200 63.80 88.96 61.71 43.79

4.2.2. Statistical Description of the Montoldre Hourly Dataset

Hereunder is a table (Table 3) which shows the statistical description of the datasets
such that:

• Min: is the minimum value of the measure in the whole dataset,
• Max: is the maximum value of the measure in the whole dataset,
• Mean: is the mean value of the measure in the whole dataset,
• Standard deviation: is the standard deviation of the measure in the whole dataset,
• Mean of rasters means: to compute this value, first we computed the mean of each

raster used for our experiments then we computed the global mean which is the mean
over the raster means,

• Mean of rasters standard deviation: to compute this value, first we computed the
standard deviation of each raster used for our experiments then we computed the
mean over all the standard deviations of the rasters.

4.3. Experiment Results and Analysis
4.3.1. Experiment Results

In this subsection we present the results of our method. As cited before we have
used several datasets with three measures: temperature (Table 4), humidity (Table 5), and
watermark 2 (Table 6). Hence, we present the results for each measure. To do this, we have
generated four datasets and each one contains: 3550 rasters with a different raster size. We
have fixed the size of the time windows at 10 and the size of the sequences as equal to 6.

Table 4. Experiments on Temperature.

Dataset Size of
Rasters CPU (ms)

Sophisticated
CPU-Sorting

(ms)
GPU (ms)

Sophisticated
GPU-Sorting

(ms)

Dataset 1 100 × 100 25,464 34,180 21,023 29,117

Dataset 2 200 × 200 240,255 380,521 190,762 316,284

Dataset 3 1000 × 100 349,654 471,290 260,273 397,641

Dataset 4 500 × 500 587,323 697,138 418,012 631,540

As you can see, hereunder, The Table 4 represents the results on the temperature
measure, the Table 5 concerns the air humidity measure, while the Table 6 shows the results
using the watermark 2 measure.

As we can see in the results, using the temperature datasets always showed good
results for using the GPU over the CPU version; however, our improved method based
on the rejection step based on sorting, showed bad results for the CPU-sorting and the
GPU-sorting for the temperature dataset. The time of execution was worse compared to
the methods without sorting. Our improved methods are based on a sorting step that must
allow for rejecting the raster sequences earlier; however, the values of the temperature
dataset were too close to each other in the rasters. The mean of rasters standard deviation



ISPRS Int. J. Geo-Inf. 2021, 10, 816 14 of 18

of temperature was equal to 2.73, which explains the low variation of the values in the
temperature rasters data. The goal of the sorting step was to allow for summing the
highest values first. Consequently, when the values were too close in the rasters, the
sorting step was useless in reaching the threshold quickly and rejecting rasters in an earlier
stage. In this case, the sorting step became a heavy burden on the method, since sorting is
expensive in term of computations. Hence the execution time was higher than the methods
without sorting.

Table 5. Experiments on Air Humidity.

Dataset Size of Rasters CPU (ms) GPU (ms)
Sophisticated
GPU-Sorting

(ms)

Dataset 1 100 × 100 28,231 17,328 7133

Dataset 2 200 × 200 250,165 131,571 61,604

Dataset 3 1000 × 100 369,719 171,803 83,251

Dataset 4 500 × 500 608,413 372,631 127,679

Table 6. Experiments on Watermark 2.

Dataset Size of Rasters CPU (ms) GPU (ms)
Sophisticated
GPU-Sorting

(ms)

Dataset 1 100 × 100 27,647 12,981 7276

Dataset 2 200 × 200 266,499 116,730 63,452

Dataset 3 1000 × 100 382,122 162,014 84,916

Dataset 4 500 × 500 625,116 302,833 130,233

Concerning the humidity and watermark 2 datasets, the GPU-based methods were
always better than the CPU methods (Tables 5 and 6); however, unlike the previous results
based on the temperature dataset, our methods using the sorting step enhanced the results
of the parallel version. This is due to the sorting step which allowed for rejecting raster
sequences in earlier stages, because of the distribution of the humidity and watermark data
values. The mean of rasters standard deviation of the humidity dataset was equal to 15.20,
and 43.79 for the watermark 2 dataset (Table 3).

As a summary, our methods without sorting based on the GPU give good results
compared to the CPU over all the datasets and the measures however, when the dataset
has a high variation of values such as for humidity and watermark 2, using our methods
based on sorting can improve the results, since it allows us to reject data not satisfying the
user condition in the early stages. When data has a low variation of values, the method
based on sorting must be avoided.

4.3.2. The Impact of the Time Window Size on the Performance

Here we show how the time window size impacts the performance over “dataset 4”
for the watermark 2 measurement using the same fixed parameters cited above. As we
can see in Figure 6, when the time window size is too small (size = 3), the number of time
windows increases as well as the number of sorted rasters. Since the sorting is expensive,
this will increase the time execution. On the contrary, when the time window size is too
large (size = 20), it will impact the reordering precision of the rasters and hence the sorting
becomes useless which will lead to a performance drop; however, when the time window
is not too small and not too large (size = 10), we obtain a good performance.



ISPRS Int. J. Geo-Inf. 2021, 10, 816 15 of 18

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 15 of 18 
 

 

on the rejection step based on sorting, showed bad results for the CPU-sorting and the 
GPU-sorting for the temperature dataset. The time of execution was worse compared to 
the methods without sorting. Our improved methods are based on a sorting step that must 
allow for rejecting the raster sequences earlier; however, the values of the temperature 
dataset were too close to each other in the rasters. The mean of rasters standard deviation 
of temperature was equal to 2.73, which explains the low variation of the values in the 
temperature rasters data. The goal of the sorting step was to allow for summing the high-
est values first. Consequently, when the values were too close in the rasters, the sorting 
step was useless in reaching the threshold quickly and rejecting rasters in an earlier stage. 
In this case, the sorting step became a heavy burden on the method, since sorting is ex-
pensive in term of computations. Hence the execution time was higher than the methods 
without sorting. 

Concerning the humidity and watermark 2 datasets, the GPU-based methods were 
always better than the CPU methods (Tables 5 and 6); however, unlike the previous results 
based on the temperature dataset, our methods using the sorting step enhanced the results 
of the parallel version. This is due to the sorting step which allowed for rejecting raster 
sequences in earlier stages, because of the distribution of the humidity and watermark 
data values. The mean of rasters standard deviation of the humidity dataset was equal to 
15.20, and 43.79 for the watermark 2 dataset (Table 3). 

As a summary, our methods without sorting based on the GPU give good results 
compared to the CPU over all the datasets and the measures however, when the dataset 
has a high variation of values such as for humidity and watermark 2, using our methods 
based on sorting can improve the results, since it allows us to reject data not satisfying the 
user condition in the early stages. When data has a low variation of values, the method 
based on sorting must be avoided. 

4.3.2. The Impact of the Time Window Size on the Performance 
Here we show how the time window size impacts the performance over “dataset 4” 

for the watermark 2 measurement using the same fixed parameters cited above. As we 
can see in Figure 6, when the time window size is too small (size = 3), the number of time 
windows increases as well as the number of sorted rasters. Since the sorting is expensive, 
this will increase the time execution. On the contrary, when the time window size is too 
large (size = 20), it will impact the reordering precision of the rasters and hence the sorting 
becomes useless which will lead to a performance drop; however, when the time window 
is not too small and not too large (size = 10), we obtain a good performance. 

 
Figure 6. The time windows’ sizes impact on the performance over the dataset 4. Figure 6. The time windows’ sizes impact on the performance over the dataset 4.

5. Conclusions and Future Work

Processing large-scale spatio–temporal data is experiencing an increasing importance
and is required by many fields among which is included precision agriculture. Analyzing
these data, for instance, weather, soil humidity, etc., allows for extracting more valuable,
crucial and accurate information required to analyze environmental phenomena.

The main requirement for spatial data-intensive applications is the processing time
and scalability. Unfortunately, most of the existing methods are based on traditional
approaches and are not appropriate for querying massive spatial data efficiently.

In this paper, we addressed the problem of speeding up the spatio–temporal rasters
data-based query consisting of selecting only disjoint raster subsequences of a fixed size,
such that the average of the cells over these subsequences is less than a user defined threshold.

In recent years, several big raster spatio–temporal data processing infrastructures have
been developed for information mining. For instance, XArray [34], which is an efficient tool
for processing scientific datasets and widely used by the GIS community for processing
raster spatial data. Fully integrated in DASK [35], it allows the processing of big raster data.

Despite their simplicity and their efficiency, most of these solutions are based on high
level languages, e.g., Python, and provide high level pre-built functions which make them
slower and without the high flexibility to implement very bespoke algorithms.

In this paper, we are working on a very specific query which is not yet implemented
in the existing raster data processing systems. Our goal is to propose a generic and very
fast solution and this can be achieved only by using low level programming languages
(e.g., C++). Moreover, their flexibility allows us to include a heuristic based on sorting
in order to save computations, remembering that our problem belongs to massive data
computations which are very suitable for a GPU parallel, which justifies our solution.

Thus, in our work, first we have shown that we can improve the processing of the said
query by using the power of recent GPU devices. Furthermore, using parallel primitives
based on CUDA allowed us to further optimize our implementation and reduce the coding
complexity. Second, we have designed and implemented a new method based on a sort
process to avoid useless computations and hence further accelerated the processing time of
our query. The proposed approaches have been tested on the real dataset provided by the
INRAE experiment farm using three measures: temperature, humidity and watermark 2,
that are essential for agriculture.

The experimental results on temperature show that our method without sorting based
on the GPU performs better than the CPU over all the datasets; however, the methods (CPU



ISPRS Int. J. Geo-Inf. 2021, 10, 816 16 of 18

and GPU) based on sorting show poor results (The time of execution is worse compared to
the methods without sorting). As cited above, this is due to the nature of the temperature
data (mean of rasters standard deviation = 2.73).

Concerning the air humidity and watermark 2 measures, the experimental results
have shown that GPU-based methods are always better than the CPU methods over all the
datasets. Furthermore, our methods using the sorting step enhance the results, especially,
for the parallel version. Thus, a significant speed up is obtained (4,8) for the dataset 4 for
watermark 2 and humidity.

As mentioned above, our optimized method based on sorting is sensitive to data distri-
bution; it works only in the case of high variations in data (e.g., in our case humidity and wa-
termark 2) and it does not work in the case of data with low variations such as temperature.

We have to highlight that our method based on sorting is not limited to spatial data
but it can be used in other applications which use the same form and characteristics of
data. Furthermore, the query can be extended to other operations besides the average, for
example, min. or max. and the user can also change the constraint.

As future work, we would like to predict mathematically the optimal size of the time
window and the size of the tiles, as this will help to avoid the empirical method which
is a time consuming and imprecise method for choosing the best values for tile and time
window sizes. Furthermore, we want to provide more precise statical parameters for the
dataset description in order to provide a decision-making support for either using the
sorting-based method or remaining content with the GPU-based method without sorting.
Additionally, the investigation of the use of our methods (for instance, the rejection process
based on sorting) on other fields will be very useful in order to study the behavior of our
methods on other types of data from other fields and applications. The proposed GPGPU-
based sorting method to improve raster selection performance is currently not implemented
in traditional libraries such as spatial XArray [34]. The proposed improvement is generic
and can be integrated in such libraries.

A future work can include implementing the proposed method (with sorting) in
this manuscript as an XArray module and compared with an XArray-based method
(without sorting).

Finally, we would like to expand the use of the power of the GPU for more massive
computations and complex queries, and running our methods on different heterogeneous
computing solutions such as OpenCL, which will be very useful for making a complete
comparison between all the solutions.

Author Contributions: Supervision, F.P. and M.-A.K.; writing—original draft, D.E.-N.; writing—
review and editing, D.E.-N., F.P. and M.-A.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by grants from the French program “investissement d’Avenir”
managed by the Agence Nationale de la Recherche of the French government (ANR), the European
Commission (Auvergne FEDER funds) and” Région Auvergne” in the framework of LabEx IMobS 3
(ANR-10- LABX-16-01).

Acknowledgments: We acknowledge the support received from the Agence Nationale de la Recherche
of the French government through the program “Investissements d’Avenir” 16-IDEX-0001 CAP 20-25
on the general topic of this paper. Also, we would like to thank all the members of LIMOS (UCA)
and the COPAIN team (INRAE) involved in the deployment of the LiveNode network in INRAE
Montoldre and in the collection and documentation of data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sawant, S.; Durbha, S.S.; Jagarlapudi, A. Interoperable agro-meteorological observation and analysis platform for precision

agriculture: A case study in citrus crop water requirement estimation. Comput. Electron. Agric. 2017, 138, 175–187. [CrossRef]
2. Pinet, F. Entity-relationship and object-oriented formalisms for modeling spatial environmental data. Environ. Model. Softw. 2012,

30, 80–91. [CrossRef]

http://doi.org/10.1016/j.compag.2017.04.019
http://doi.org/10.1016/j.envsoft.2012.01.008


ISPRS Int. J. Geo-Inf. 2021, 10, 816 17 of 18

3. Laurini, R.; Thompson, D. 6—Tessellations: Regular and Irregular Cells, Hierarchies. In Fundamentals of Spatial Information Systems;
Laurini, R., Thompson, D., Eds.; Academic Press: Cambridge, MA, USA, 1992; pp. 217–256. ISBN 9780124383807. [CrossRef]

4. Kang, M.A.; Zaamoune, M.; Pinet, F.; Bimonte, S.; Beaune, P. Optimisation des performances des opérations d’agrégation au sein
des entrepôts de grilles spatialisées (in French). In Proceedings of the SAGEO 2013 Conférence Internationale de Géomatique et
d’analyse Spatiale, Brest, France, 26 September 2013.

5. Kang, M.-A.; Zaamoune, M.; Pinet, F.; Bimonte, S.; Beaune, P. Performance optimization of grid aggregation in spatial data
warehouses. Int. J. Digit. Earth 2015, 8, 970–988. [CrossRef]

6. Pullar, D. MapScript: A Map Algebra Programming Language Incorporating Neighborhood Analysis. GeoInformatica 2001, 5,
145–163. [CrossRef]

7. Tomlin, C.D. Map algebra: One perspective. Landsc. Urban Plan. 1994, 30, 3–12. [CrossRef]
8. En-Nejjary, D.; Pinet, F.; Kang, M.-A. A Method to Improve the Performance of Raster Selection Based on a User-Defined

Condition: An Example of Application for Agri-environmental Data. Adv. Intell. Syst. Comput. 2018, 893, 190–201.
9. En-Nejjary, D.; Pinet, F.; Kang, M. Modeling and Computing Overlapping Aggregation of Large Data Sequences in Geographic

Information Systems. Int. J. Inf. Syst. Modeling Des. 2019, 10, 20–41. [CrossRef]
10. Thrust. Available online: https://thrust.github.io (accessed on 28 November 2021).
11. CUB. Available online: https://nvlabs.github.io/cub (accessed on 28 November 2021).
12. Viola, I.; Kanitsar, A.; Groller, M.E. Hardware-based nonlinear filtering and segmentation using high-level shading languages. In

Proceedings of the the IEEE Visualization 2003, Seattle, WA, USA, 19–24 October 2003; pp. 309–316. [CrossRef]
13. Yang, Z.; Zhu, Y.; Pu, Y. Parallel Image Processing Based on CUDA. In Proceedings of the the 2008 International Conference on

Computer Science and Software Engineering, Wuhan, China, 12–14 December 2008; pp. 198–201. [CrossRef]
14. Temizel, A.; Halici, T.; Logoglu, B.; Temizel, T.T.; Omruuzun, F.; Karaman, E. Experiences on image and video processing with

CUDA and OpenCL. In GPU Computing Gems; Morgan Kaufmann: Boston, MA, USA, 2011; pp. 547–567.
15. Jain, P.; Mo, X.; Jain, A.; Subbaraj, H.; Durrani, R.S.; Tumanov, A.; Gonzalez, J.; Stoica, I. Dynamic Space-Time Scheduling for GPU

Inference. arXiv 2018, arXiv:1901.00041.
16. Jianbo, Z.; Wenxin, Y.; Jing, S.; Yonghong, L. GPU-accelerated parallel algorithms for map algebra. In Proceedings of the the 2010

The 2nd Conference on Environmental Science and Information Application Technology, Wuhan, China, 17–18 July 2010; pp.
882–885. [CrossRef]

17. Jianting, Z.; Simin, Y.; Le, G. Large-scale spatial data processing on GPUs and GPU-accelerated clusters. Sigspatial Spec. 2015, 6,
27–34. [CrossRef]

18. Steinbach, M.; Hemmerling, R. Accelerating batch processing of spatial raster analysis using GPU. Comput. Geosci. 2012, 45,
212–220. [CrossRef]

19. Zhang, J.; You, S.; Gruenwald, L. Parallel online spatial and temporal aggregations on multi-core CPUs and many-core GPUs. Inf.
Syst. 2014, 44, 134–154. [CrossRef]

20. Jianting, Z.; Simin, Y. High-performance quadtree constructions on large-scale geospatial rasters using GPGPU parallel primitives.
Int. J. Geogr. Inf. Sci. 2013, 27, 2207–2226. [CrossRef]

21. Doraiswamy, H.; Freire, J. A GPU-friendly Geometric Data Model and Algebra for Spatial Queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD ’20, Portland, OR, USA, 14–19 June 2020; pp. 1875–1885. [CrossRef]

22. Doraiswamy, H.; Vo, H.T.; Silva, C.T.; Freire, J. A GPU-based index to support interactive spatio-temporal queries over historical
data. In Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering, ICDE, Helsinki, Finland, 16–20 May
2016; pp. 1086–1097. [CrossRef]

23. MongoDB. Available online: http://www.mongodb.org (accessed on 28 November 2021).
24. Beutel, A.; Mølhave, T.; Agarwal, P.K. Natural Neighbor Interpolation Based Grid DEM Construction Using a GPU. In Proceedings

of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5
November 2010; pp. 172–181. [CrossRef]

25. Simion, B.; Ray, S.; Brown, A.D. Speeding up Spatial Database Query Execution using GPUs. Procedia Comput. Sci. 2012, 9,
1870–1879. [CrossRef]

26. Walsh, S.D.C.; Saar, M.; Bailey, P.; Lilja, D. Accelerating geoscience and engineering system simulations on graphics hardware.
Comput. Geosci. 2009, 35, 2353–2364. [CrossRef]

27. Wu, Y.; Ge, Y.; Yan, W.; Li, X. Improving the performance of spatial raster analysis in GIS using GPU. In Proceedings of the
SPIE-The International Society for Optical Engineering, Nanjing, China, 7 August 2007.

28. En-Nejjary, D.; Pinet, F.; Kang, M. Large-scale geo-spatial raster selection method based on a User-defined condition using
GPGPU. In Proceedings of the 11th International Conference on Computer Science and Information Technology, Paris, France,
21–23 December 2018; p. 8.

29. Cheng, J.; Grossman, M.; McKercher, T. Professional CUDA C Programming; John Wiley & Sons: Hoboken, NJ, USA, 2014.
30. Roussey, C.; Bernard, S.; André, G.; Boffety, D. Weather data publication on the LOD using SOSA/SSN ontology. Semant. Web

2020, 11, 581–591. [CrossRef]
31. Touseau, L.; Le Sommer, N.L. Contribution of the web of things and of the opportunistic computing to the smart agriculture: A

practical experiment. Future Internet 2019, 11, 33. [CrossRef]

http://doi.org/10.1016/B978-0-08-092420-5.50011-6
http://doi.org/10.1080/17538947.2014.962999
http://doi.org/10.1023/A:1011438215225
http://doi.org/10.1016/0169-2046(94)90063-9
http://doi.org/10.4018/IJISMD.2019010102
https://thrust.github.io
https://nvlabs.github.io/cub
http://doi.org/10.1109/VISUAL.2003.1250387
http://doi.org/10.1109/CSSE.2008.1448
http://doi.org/10.1109/ESIAT.2010.5567202
http://doi.org/10.1145/2766196.2766201
http://doi.org/10.1016/j.cageo.2011.11.012
http://doi.org/10.1016/j.is.2014.01.005
http://doi.org/10.1080/13658816.2013.828840
http://doi.org/10.1145/3318464.3389774
http://doi.org/10.1109/ICDE.2016.7498315
http://www.mongodb.org
http://doi.org/10.1145/1869790.1869817
http://doi.org/10.1016/j.procs.2012.04.205
http://doi.org/10.1016/j.cageo.2009.05.001
http://doi.org/10.3233/SW-200375
http://doi.org/10.3390/fi11020033


ISPRS Int. J. Geo-Inf. 2021, 10, 816 18 of 18

32. Hou, K.M.; de Sousa, G.; Chanet, J.P.; Zhou, H.Y.; Kara, M.; Amamra, A.; Diao, X.; de Vaulx, C.; Li, J.J.; Jacquot, A. LiveNode:
LIMOS versatile embedded wireless sensor node. In Proceedings of the Workshop International sur Les Réseaux de Capteurs
sans Fil en Conjonction avec la 7ème Conférence Internationale sur les NOuvelles TEchnologies de la REpartition (NOTERE),
Marrakech, Marrakech, 4 June 2007; p. 5.

33. Li, Z.; Wang, K.; Ma, H.; Wu, Y. An Adjusted Inverse Distance Weighted Spatial Interpolation Method. In Proceedings of the
2018 3rd International Conference on Communications, Information Management and Network Security (CIMNS 2018), Wuhan,
China, 27–28 September 2018; pp. 128–132. [CrossRef]

34. Hoyer, S.; Hamman, J. xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 10. [CrossRef]
35. Dask Development Team. Dask: Library for Dynamic Task Scheduling. 2016. Available online: https://dask.org (accessed on 25

November 2021).

http://doi.org/10.2991/cimns-18.2018.29
http://doi.org/10.5334/jors.148
https://dask.org

	Introduction 
	State of the Art and Background 
	State of the Art 
	Background 
	Spatio–Temporal Raster Data 
	Query Spatio–Temporal Raster Data 
	Heterogenous Computing 
	GPU Architecture 
	GPU-Accelerated Libraries for Computing 


	Query Definition and the Proposed Methods 
	Query Formulation 
	Sequential Method for Query Processing 
	Parallel Methods for Query Processing 
	Straightforward Parallel Approach 
	Improved Parallel Approach 


	Tests and Analysis 
	Configuration of the Experimental Environment 
	Dataset 
	INRAE Montoldre Site 
	Statistical Description of the Montoldre Hourly Dataset 

	Experiment Results and Analysis 
	Experiment Results 
	The Impact of the Time Window Size on the Performance 


	Conclusions and Future Work 
	References

