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Abstract: Automatic floor plan analysis has gained increased attention in recent research. However,
numerous studies related to this area are mainly experiments conducted with a simplified floor plan
dataset with low resolution and a small housing scale due to the suitability for a data-driven model.
For practical use, it is necessary to focus more on large-scale complex buildings to utilize indoor
structures, such as reconstructing multi-use buildings for indoor navigation. This study aimed to
build a framework using CNN (Convolution Neural Networks) for analyzing a floor plan with
various scales of complex buildings. By dividing a floor plan into a set of normalized patches, the
framework enables the proposed CNN model to process varied scale or high-resolution inputs, which
is a barrier for existing methods. The model detected building objects per patch and assembled them
into one result by multiplying the corresponding translation matrix. Finally, the detected building
objects were vectorized, considering their compatibility in 3D modeling. As a result, our framework
exhibited similar performance in detection rate (87.77%) and recognition accuracy (85.53%) to that of
existing studies, despite the complexity of the data used. Through our study, the practical aspects of
automatic floor plan analysis can be expanded.

Keywords: automatic floor plan analysis; indoor spatial information; IndoorGML; convolutional
neural networks

1. Introduction

With the recent developments in technology, including Internet of Things, location
tracking and location-based services such as networks and navigation are expanding
indoors. To meet the high demand for vectorized indoor spatial information, studies on
automatic floor plan analysis (i.e., automatically extracting indoor spatial information
from floor plan images) have been recently proposed. Floor plans are a good source of
indoor spatial information because they are easy to acquire and the automatic techniques
based on floor plans are relatively affordable compared to other methods such as light
detection and ranging (LiDAR) or manual digitalization [1–3]. In fact, a recent study by
Kim [3] demonstrated that automatic floor plan analysis technology is more effective in
terms of substitutability, completeness, supply, and demand than manual digitalization.
Furthermore, there is a great demand for digitalized indoor information to obtain digital
twins; however, there is a considerable portion of missing digitalized blueprints (e.g., CAD,
BIM) in old buildings. Therefore, automatic floorplan analysis is attracting increased
attention [3].

Most existing studies on automatic floor plan analysis have focused on a simple
format, which is appropriate for deep learning [4]. The floor plans mostly used in previous
studies are CVC (Computer Vision Center), Rakuten, and Rent 3D, whose floor plans are
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in a simplified format favorable for deep learning [3,4]. Some studies have investigated
complicated floor plans, containing diverse fuzzy architectural drawings using EAIS
(Electronic Architectural Information System) floor plans [2,4]; however, existing studies
have mainly been conducted on house-scale buildings. Nevertheless, there is a high
demand and expectation for indoor spatial information on large buildings, with a high
probability and need for indoor navigation. For example, digital twins are required for
smarter energy management across large-scale buildings [5]. In addition, floor plan images
in practice are not usually simplified for deep learning; they are complicated architectural
drawings with various features. Therefore, considering the primary and practical purposes,
it is necessary to consider large-scale and complicated floor plan images to extract indoor
spatial information. This study aims to develop a deep learning-based automatic floor plan
analysis framework suitable for large-scale and complex floor plans.

To be specific, this study utilizes a Convolution Neural Network (CNN). A CNN model
has been mostly used in recent automatic floor plan analysis because it is a data-driven
model having been shown to outperform other traditional models in image segmentation
tasks. Instead, a CNN model requires uniform size of images as input data, causing
a difficulty for varied size or high-resolution inputs, which are common in large-scale
building floorplans. As our goal was to interpret floor plans of large-scale buildings, we
needed to make the input image uniform, regardless of each floor plan scale. Therefore, we
proposed dividing floor plans into several patches of regular size so that the framework
could use the strength of CNN models while minimizing the weakness.

2. Related Work
2.1. Methodology in Existing Studies on Floor Plan Analysis

Floor plan analysis is a field of research that better represents indoor space by re-
producing geometric, topological, and semantic information that is not present in raster
drawing images [1]. The general process of floor plan analysis involves pre-processing
by removing unnecessary information in raster drawings, pattern recognition of object
candidate extraction based on geometric properties, and structural recognition of object
candidate and reconstruction of the indoor structure [6]. Existing studies on floor plan
analysis can be summarized into two approaches: (1) a rule-based process [6–8] and (2) a
learning-based process [2,4,9–12].

The rule-based approach improves the performance of the floor plan analysis process
by leveraging the characteristics of the drawing format. At each stage of the process, a
specific drawing format-dependent rule was determined, and the information was refined
based on it. Macé et al. [7] performed structural detection of a room on the BlackSet of the
CVC floor plan dataset. After separating the floor plan image into character and graphic
elements based on the thickness of the line, they combined the Hough transformation and
image vectorization to detect the preceding objects present in the floor plan. However,
their methodology is difficult to apply in other formats because the walls in BlackSet are
represented by black-filled forms, which might not be the way other formats represent
walls; moreover, they utilized the distinctive properties of objects such as text and furniture.
Ahmed et al. [8] also used CVC BlackSet data for room detection and reconstruction.
After separating the floor plan images into text and graphic elements, they reclassified
the graphic elements into thick, medium, and thin lines. Thick and medium thick lines
were extracted as walls, whereas thin lines were used to detect openings. Their detection
rate and recognition accuracy showed better performance than the framework proposed
by Macé et al. [7]; however, there are limitations in that more data-dependent methods
were used on the CVC BlackSet format. Gimenez et al. [6] conducted 3D modeling of
buildings using floor plan images. Their framework is also difficult to apply to other floor
plans because they also apply CVC BlackSet-dependent rule-based code. In summary, a
rule-based process is based on the specific characteristics of a certain data format; it is
difficult to apply to other formats and cannot respond to changes in format.
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To overcome the limitations of the format-dependent rule-based process, recent floor
plan analysis has implemented a learning-based process. De las Heras et al. [9] conducted
a learning-based process, which was shown to work through each learning in four different
formats of the CVC dataset. Although, they exhibited general availability within different
formats of CVC datasets, there is a limitation that many pre-processing and post-processing
methods are required. Dodge et al. [10] utilized a deep learning network using the Rakuten
floor plan dataset, and reconstructed walls and openings into a three-dimensional (3D) form.
Liu et al. [11] also used the Rakuten dataset for automatic floor plan analysis using a deep
learning network. They utilized deep learning for the extraction of intermediates for the
vectorization of objects, whereas Dodge et al. utilized deep learning for the segmentation
of objects. In addition, they extracted corners to reconstruct vectorized indoor models.
However, this approach is applicable only to simple indoor structures with a standardized
wall thickness. Zeng et al. [12] designed a deep multi-task neural network and extracted
diverse floor plan elements, such as doors, windows, and different types of rooms, using
the Rakuten dataset. They showed good performance in recognition; however, there are
still limitations in that their dataset consists of organized and labeled data in housing
scale. Various computer vision techniques have been applied based on the researcher’s
individual purpose to extract informative objects from a floor plan in a 2D image. Above
all, the dominant approach in floor plan analysis or floor plan recognition is known as
Convolutional Neural Networks [13]. A CNN model shows an outweighing performance
in image segmentation tasks, enabling end-to-end implementation, and securing robust
results given sufficient training data sets. Generally, in the overall framework, by directly
segmenting the object of interest or extracting the feature maps, CNNs detect target building
objects from a floor plan image. Then, the detected outputs will process concrete objects
with semantic information to be plugged into the final indoor model.

Although a learning-based process has been introduced in automatic floor plan analy-
sis to enhance the application to other formats, there is still a limitation in that floor plans in
a learning-based approach use a simplified and standardized format favorable for learning.
In this situation, in order to expand the practical aspects of automatic floor plan analysis,
Jang et al. [2] and Kim et al. [4] used a complicated floor plan EAIS with fuzzy drawing and
various formats using a deep learning process. However, even these studies used housing-
scale floor plans. It is necessary to expand the application to larger scale and diversified
formats to ensure its practical use, such as indoor navigation or building energy modeling.
Therefore, in this study, a framework for automatic floor plan analysis of complex and
large-scale floor plan images is developed using a patch-based deep learning framework.

2.2. Dataset Used in Existing Studies on Floor Plan Analysis

The CVC floor plan dataset is an architectural drawing classified into four types ac-
cording to the representation of walls [9]. BlackSet comprises 90 datasets of high-resolution
drawing images of pixel size 2480× 350. TexturedSet consists of 10 datasets with pixel sizes
ranging from 1098 × 905 to 2218 × 227. Textured2Set has 18 high-resolution architectural
drawings with a pixel size of 7383 × 5671 that represent walls similar to TexturedSet;
however, the thickness of the lines differs according to whether they represent the inner
or outer walls. Finally, ParrelSet is a house drawing with a total size of four datasets of
2500 × 3300 pixels, which represent walls with two parallel lines. The CVC datasets have
both low- and high-resolution images, and the pixel area of the objects is large compared to
the total pixel area in the floor plan image. There are not many different types of objects in
the drawing; moreover, the number of objects in the drawing is also small. There are more
types of objects in Textured2Set; however, there are only 18 datasets that are not sufficient
for training for learning-based processes.

The Rakuten dataset is provided by the Rakuten Institute of Technology, a Japanese
research institute; it consists of 500 real estate floor plans [14]. The floor plans are low-
resolution images of approximately 1000 × 1000 pixels and are composed of objects and
spaces of various colors and shades, which have the advantage of being informative. In
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addition, the walls contain labeled data for deep learning network training, which many
researchers have used in learning-based floor plan analysis. However, the structure of
the walls is simple, and the number of rooms and objects contained is small. In addition,
similar to CVC datasets, objects occupy a large proportion of the area relative to the entire
space of the floor plans.

The EAIS is a floor plan dataset provided by the architectural administrative system
operated by the Ministry of Land, Infrastructure, and Transport of Korea [15]. It comprises
400 low-resolution drawings mainly containing drawings of small buildings, including
houses, apartments, and stores. The EAIS floor plan represents walls in various marking
methods; there are several types of walls, including columns and insulation. In addition,
it contains furniture information, facilities, and construction-related information in the
drawing, comprising various formats of architectural drawings. However, diagonal walls
are not represented in the drawing, and, like the Rakuten dataset, many of the small
residential buildings have a large proportion of objects relative to the drawing area and the
number of objects that comprise the indoor space.

3. Materials and Methods
3.1. Materials: Data

The data used in this study are scanned floor plan images of Seoul National University
(SNU) buildings. The dataset was acquired from the Division of Facilities Management,
SNU [16]. The floor plans are diverse, complicated, and large. They have been drawn
by various architectural designers/offices; the buildings were built over a long period,
from the 1970s to the 2010s. In addition, the university complex contains various types
of buildings; buildings with diagonal lines, curves, rectangular shapes, and pinwheels.
The drawing style and symbols are varied, based on each architectural design office, and
the floor plan contains numerical lines and symbols. In addition, it contains large public
facilities, such as auditoriums, dormitories, libraries, and cafeteria buildings; at the same
time, it includes drawings of large buildings and complex interior spaces compared to
those used in previous research. In addition, it contains curved and diagonal walls. As
the floor plan contains each floor of the building, there are many objects such as elevators
and stairs that can represent interlayer connections. The images have a high resolution of
more than 3000 pixels, and the proportion of the objects’ area relative to the total area in
the drawing is expressed as much smaller than the existing drawings. In addition, as of
April 2020, the number of SNU members is 41,426 [17]. Library buildings have many users,
including noncollege passengers. On average, four million people use the SNU library
buildings in a year [18]. The buildings covered in this study are more diverse and larger in
scale than those used in previous studies, i.e., housing scale buildings. The datasets used
for existing floor plan analysis and our SNU dataset can be seen in Figure 1.

In this study, 230 SNU building floor plan image data were obtained, 200 of which
were used for learning and 30 for testing. Additionally, to validate the capacity of the
developed methodology for generalization to other datasets, we applied the University
of Seoul (UOS) floor plan dataset to develop a patch-based deep learning framework.
The indoor spatial information that is automatically extracted from the floor plan in this
study has five classes: wall, door, window, stair room, and elevator. Walls and openings
(doors and windows) are the fundamental indoor elements that can reconstruct indoor
structures; hence, many previous studies used extracted walls and openings. In this study,
we expanded the indoor elements to those that can connect floors, such as stair rooms
and elevators, considering the shape of the completed building, rather than just a single
floor. We manually annotated the floor plan dataset using LabelMe, which is a web-based
annotation tool [19]. All five classes are labeled as polygon-shaped, precisely portraying
each building element, even if it contains a curved boundary.
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3.2. Methodology

The overall framework can be divided into three phases: (1) normalized patch ex-
traction, (2) patch-based floor plan recognition via deep networks, and (3) generation of
indoor models. Conventional studies on automatic floor plan analysis rely on handcrafted
features based on geometry. This methodology is useful for the extraction of simple objects,
such as walls of a certain thickness with straight lines, and does not overlap with other
graphics. However, this approach is limited in that it tends to specify a particular format
of floor plan that cannot be generalized to other formats. In particular, when applied to
large-scale complicated floor plans, this limitation is emphasized because the divergence in
drawing scale is greater for large buildings than houses.

Theoretically, data-driven models with sufficient capacity to analyze complex geomet-
ric features can overcome the aforementioned limitations. However, training a model using
a floor plan dataset to automatically extract indoor spatial information (e.g., walls and
openings) is fundamentally challenging because the floor plan itself makes the learning pro-
cess difficult. The majority of the space of floor plans is empty, but the gathering of sparse
and simple geometric features such as lines and curves involves high-level information.
This is challenging because of the principles of deep-learning methodology that extract
and interpret images sequentially from low-level to high-level features. In particular, the
scale range of floor plans for large spaces is varied, and it is computationally burdensome
because the resolution is too high to apply commonly used algorithms in image processing.
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Furthermore, owing to the high complexity of the format, training and learning become
more difficult. In particular, existing convolutional neural network (CNN) models are
applicable to fixed square-sized images and have limitations in that they are unable to
utilize high-resolution images owing to restrictions in computation. Because significant
information is lost in the process of resizing a floor plan to a uniform size and an image of
low resolution, deep learning models have been primarily developed for a particular type
of drawing dataset with low resolution and a similar aspect ratio.

To address this limitation, we proposed a CNN-based framework designed for large-
scale complex floor plans through patch-based learning, which uses varying scale floor
plans divided into normalized patches (Figure 2). By applying the normalized patch-to-
floor plan analysis, it is possible to manage computational burden, diverse scale issues,
and poor convergence on training deep networks.
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3.2.1. Normalized Patch Extraction

To efficiently utilize the CNN model, high-quality learning data (i.e., data that are
repeated in uniform patterns) are required. The goal of normalized patch extraction is to
unify the actual distance expressed per pixel by unifying the floor plan scale. This enables
consistent input delivery to the learning-based model, even with datasets containing
diverse floor plan image sizes and diverse building scales. This process has a similar effect
to that of normalizing data for training.

The total number of the patches can be calculated as in Equation (1). It is affected by a
patch overlapping factor and the scale of the drawings as well as the total building area
and the patch size.

|P| =
[

BuildingAres(1 + α)

(κ·Ps)2

]
(1)

where P is a set of patches, Ps is a patch size in the real world, α is an overlapping factor ranging
from 0 to 1, κ is the scale of drawing.

The first step of normalized patch extraction is to resize the image to match the scale
of the floor plan and then to split it into appropriately sized patches. The appropriate size
is determined to be as large as possible within the interpretable capacity, with sufficient
performance for each patch with the model used for floor plan recognition. The patch size
can be decided in a way of optimizing the segmentation performance. In general, a patch
size shows a trade-off relationship with the segmentation performance; for example, a small
patch size increases input image resolution, which is good, but decreases the field of view
in the deep learning models, which results in a loss of capacity to look over neighboring
objects. Considering this, we determined the appropriate patch size to the extent that the
server’s memory for learning permits. In this study, a patch was set to be about the size
of a square office (i.e., approximately 15 × 15 m2) which shows the best performance on
SNU datasets and validates that this size works well in other datasets, such as UOS. Within
our CPU (intel i5-4690, 8GB memory) and GPU (gtx 1080) specs, our proposed framework
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takes under 5 min even for the largest building in our dataset, which requires more than
225 patches.

Regarding auto detection of scale, we used two different methods: (1) utilizing infor-
mation from dimension lines in floor plans, and (2) extracting and utilizing the pixel size
of the thinnest wall if there is no dimension line (Figure 3). If rich information exists in
the floor plan itself, it is reasonable to use it. The floor plan is drawn proportional to the
actual building, and its magnification is plotted using dimension lines. Through optical
character recognition (OCR), the number of labels and corresponding pixel distance can be
extracted, and, as a result, the distance per pixel (i.e., scale) can be calculated. The accuracy
was improved by utilizing the median value of the scales measured in several numerical
lines existing within a one-floor plan. Many floor plans have missing dimension lines for
various reasons, for example, when the floor plan is not an architectural drawing (e.g.,
real estate floor plans and evacuation guide maps). It is important to be able to respond
in this case (i.e., missing dimension lines) by generalizing our methodology. Buildings
are generally geometrically structured; hence, it is not necessary to specify the thinnest
walls in the floor plan. Histograms with data that count the consecutive pixel distances for
each x- and y-axis were drawn; then, the pixel distance to be used as a scale criterion was
specified by calculating the mode. To achieve robust results, non-maximum suppression
was applied to the histogram prior to mode calculation. This process allows matching the
scale on the input image of various floor plan sizes, even without dimension lines.
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3.2.2. Patch-Based Floor Plan Recognition via Deep Networks

The normalized patch derived from Section 3.2.1 is used as the input in the patch-
based training of the data-driven model. Each floor plan handles a different number of
patches for learning because the image pixel size of the matching floor plan is disparate.
In general, the floor plan has an imbalanced distribution between object classes; a white
background occupies most of the space, which adversely affects the training of the CNN
model. The focal loss is used to reflect a larger value when updating the weight of the
model inversely proportional to the area of each class included in the training dataset. For
example, in the case of elevators which are fewer in number compared to other objects, the
weight of the model changes significantly once it compensates for the small proportion.
In addition, because walls directly affect the closure of indoor spaces if lost in the deep
network model’s output, we gave more weight to the wall than to other object classes.
We set the weighted loss for the wall class to increase the accuracy of the wall, which has
the greatest influence on the intact indoor model generation among various objects. In
addition, to prevent redundant learning and bias in the model, certain patches that account
for more than 80% of the background are excluded from learning. In the inference phase,
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the normalized patches are generated from the test floor plan in the same manner, and the
trained model yields the segmented patches, where each class is detected based on the
pixel unit.

The segmented result of the floor plan is generated by stitching the results onto each
patch, while reflecting the ensembled outputs in the overlapped areas. In Equation (2),
a segmentation prediction of each patch is multiplied to a translation matrix that moves
images with a relative coordinate of the corresponding patch. As a result, each predicted
patch makes up the entire prediction of the floor plan. Each segmented patch from the
learning is combined into one, and floor plan recognition can ultimately be completed.
To mitigate discrepancies and adjust the boundary of the patches, a normalized patch is
generated with more than 70% overlap. The inference outputs are ensembled and averaged
when combining all the segmented patches.

SegPred∗f p = argmaxclass∑
i

TPi ·SegPredPi (2)

where Tpi is a tranlation matrix for ith patch.
Deep learning is used as a data-driven model for floor plan recognition. ResNET-

50 [20] was used as the skeleton network. It was modified to improve the performance of
segmentation, increase the resolution of outputs, and sharpen boundaries between objects.
A 512 × 512 input pixel size was also utilized instead of 224 × 224 in a direction that
increases the resolution of the output. Compared to the previous model [20], the stride
was lowered, and the L1 error was used instead of the L2 error to obtain a high-resolution
output with clear boundaries. The architecture of the generator and its modifications from
the original ResNet-50 are shown in Figure 4.
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3.2.3. Generation of Indoor Models

The result of floorplan recognition is a raster data type with pixel-wise classification.
It contains only approximate geometric information, which does not contain topology and
semantic information as indoor spatial information. Therefore, processing is required to
convert the floorplan recognition results into indoor models. As the first step in the conver-
sion process, we converted the extracted raster data into vectorized objects represented by
relative coordinates. Raster-to-vector conversion did not require complex algorithms, be-
cause complicated formats in the floor plan had already been analyzed/simplified through
the deep learning model, and only simple forms of the geometry features remained. A sim-
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ple algorithm based on the Hough transformation [21] enabled us to generate vectorized
objects with curves and straight lines. Objects that could be used as boundaries of rooms
(e.g., walls, doors, windows) were represented by one-layer polylines, whereas objects that
needed volume (e.g., stair room, elevators) were represented by polygons. For non-curved
linear objects, post-processing was performed to comply with the Manhattan-rule, which
averages the coordinates of the connected objects. Consequently, topology information for
the indoor models was generated. In addition, a model that detects closed space (i.e., walls,
windows, and doors) and creates space to separate buildings by space was developed. Stair
rooms and elevators were stored as linked objects in each space, in addition to geometric
information. To prevent the deep learning models from losing topology information due to
missing objects, postprocessing, which connects the close gaps between walls and objects
and adds virtual wall objects, was performed; the room space was subsequently divided.
There was a possibility that the door may have not been detected or combined (e.g., when
the door does not exist); however, the topology information retains minimum information
loss because the space is divided into open boundaries (penetrating space) by virtual walls.

4. Results

The results of the deep learning segmentation and the generated indoor model are
shown in Table 1. As can be seen in the table, the input image of the SNU floor plan has
diverse features. It has various scales and shapes, and some of the floor plans contain
diagonal and curved walls that were not usually explored in previous studies. The result
of patch-based deep learning segmentation shows clear recognition, which is sufficient for
generating indoor models. Indoor models are vectorized indoor spatial information that
can be used to reconstruct 2D or 3D indoor structures. The results of the indoor model
(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and
completed as a supplement to the deep learning segmentation result.

The test images were newly selected in this study because no existing studies used
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data
into 200 images for training and 30 images for testing while maintaining diverse building
types. The precision and recall of the deep learning results were approximately 89% and
86%, respectively, showing a similar performance to recent related studies (see Table 2).
Notably, the performance for the window was relatively low because wall and window
objects in the SNU dataset are hardly distinguishable and missing windows are usually
detected as a wall, which means it does not significantly affect the room division when
generating the indoor model. However, stairs show an irregular and unrepeating pattern,
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan analysis,
good performance in segmentation tasks cannot guarantee good performance on vector
(indoor model) results [4]. The deep learning segmentation result is a mediated product
for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself.

Generally, the evaluation of indoor models for automatic floor plan analysis is con-
ducted through either a wall segmentation task or a room-detection task [22]. Because
our goal was to reconstruct indoor structures, we selected the room-detection task as
an evaluation process. The evaluation protocol for the room-detection task resulted in a
detection rate (DR) and recognition accuracy (RA) based on the match score table [23],
which was characterized by reflecting the exact one-to-one matches as well as the partial
one-to-many and many-to-one matches based on vector evaluation. In particular, we
utilized the same metric for evaluating the floor plan analysis from previous studies [4,9].
When calculating the match-scores of the predicted room and ground truth, the acceptance
and rejection thresholds used to determine whether each pair matched were 0.5 and 0.05,
respectively. In addition, an evaluation of the walls was replaced with an evaluation of the
closed space implemented through the walls (i.e., room) because the evaluation of a single
wall is less relevant to the reproduction performance of the entire structure. Table 3 shows
an evaluation of the room-detection task for our proposed method using the SNU_FP data.
The proposed model resulted in an 89% detection rate and 86% recognition accuracy, and
overall, it exhibited a slightly higher performance except for the door object compared to
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the pixel-based assessment shown in Table 2. This is because our framework complements
the deep learning results while generating the final indoor model. For example, the stair
room shows a relatively low score on the pixel-based evaluation, but a higher score on
the vector evaluation. This is due to the model successfully identifying most of the stairs,
despite failing to detect a precise boundary.

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan,
(b) segmented results, and (c) generated indoor model in a vector format.

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

(in Table 1, line vector) show that the floor plan’s pattern is sufficiently implemented and 
completed as a supplement to the deep learning segmentation result. 

The test images were newly selected in this study because no existing studies used 
test sets for SNU data. To train the 230 images in the datasets, we split the SNU data into 
200 images for training and 30 images for testing while maintaining diverse building 
types. The precision and recall of the deep learning results were approximately 89% and 
86%, respectively, showing a similar performance to recent related studies (see Table 2). 
Notably, the performance for the window was relatively low because wall and window 
objects in the SNU dataset are hardly distinguishable and missing windows are usually 
detected as a wall, which means it does not significantly affect the room division when 
generating the indoor model. However, stairs show an irregular and unrepeating pattern, 
thus yielding a low recall value in pixel-based evaluation. For automatic floor plan anal-
ysis, good performance in segmentation tasks cannot guarantee good performance on vec-
tor (indoor model) results [4]. The deep learning segmentation result is a mediated prod-
uct for indoor models [4]; therefore, it is necessary to evaluate the indoor model itself. 

Table 1. Results of the proposed model on SNU dataset. From left to right, (a) input floor plan, (b) 
segmented results, and (c) generated indoor model in a vector format. 

(a) SNU Floor Plan (b) Floor Plan Segmentation (c) Indoor Model  

  

   

   

   

 
  

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 16 
 

 

 
  

Table 2. Deep learning result. 

Metrics Wall Window Door Stair Room Elevator Mean 
Precision (%) 82.38 77.46 89.47 94.19 88.01 88.51 

Recall (%) 87.19 73.01 87.95 78.23 87.51 85.56 

Generally, the evaluation of indoor models for automatic floor plan analysis is con-
ducted through either a wall segmentation task or a room-detection task [22]. Because our 
goal was to reconstruct indoor structures, we selected the room-detection task as an eval-
uation process. The evaluation protocol for the room-detection task resulted in a detection 
rate (DR) and recognition accuracy (RA) based on the match score table [23], which was 
characterized by reflecting the exact one-to-one matches as well as the partial one-to-many 
and many-to-one matches based on vector evaluation. In particular, we utilized the same 
metric for evaluating the floor plan analysis from previous studies [4,9]. When calculating 
the match-scores of the predicted room and ground truth, the acceptance and rejection 
thresholds used to determine whether each pair matched were 0.5 and 0.05, respectively. 
In addition, an evaluation of the walls was replaced with an evaluation of the closed space 
implemented through the walls (i.e., room) because the evaluation of a single wall is less 
relevant to the reproduction performance of the entire structure. Table 3 shows an evalu-
ation of the room-detection task for our proposed method using the SNU_FP data. The 
proposed model resulted in an 89% detection rate and 86% recognition accuracy, and 
overall, it exhibited a slightly higher performance except for the door object compared to 
the pixel-based assessment shown in Table 2. This is because our framework complements 
the deep learning results while generating the final indoor model. For example, the stair 
room shows a relatively low score on the pixel-based evaluation, but a higher score on the 
vector evaluation. This is due to the model successfully identifying most of the stairs, de-
spite failing to detect a precise boundary. 

Table 3. Indoor model result. 

Metrics Room 1 Window Door Stair Room Elevator Mean 
DR (%) 81.80 83.63 75.73 97.67 97.67 87.77 
RA (%) 85.20 79.90 79.77 91.20 91.20 85.52 

1 The evaluation for the wall was replaced with an evaluation of the room. 

The main purpose of extracting indoor spatial information in vector form from floor 
plan images is to reconstruct indoor building structures. To show the application of our 
result in a compatible way, we converted our indoor models into Java OpenStreetMap 
Editor plugins [24], and IndoorGML (OGC standard for an open data model and XML 
schema for indoor spatial information) [25], which have the potential to be compatible 
with 3D modeling programs such as Sketchup, BIM, and Open Street Map (see Figure 5). 
In addition, it can be integrated adaptively with other standards such as CityGML [26], 
making the 3D indoor models compatibly expanding to the surrounded outdoor city mod-
els, beyond the building level. 

The 3D indoor models can be used for a variety of purposes, such as the creation of 
digital twins for smart cities or the development of real estate information services. Our 
findings can also be combined with existing researches regarding the indoor navigation 
supporting system in the land administration domain model [27] or the localization and 
positioning aspect considering partitioning in indoor spaces [28]. In particular, since our 

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 16 
 

 

 
  

Table 2. Deep learning result. 

Metrics Wall Window Door Stair Room Elevator Mean 
Precision (%) 82.38 77.46 89.47 94.19 88.01 88.51 

Recall (%) 87.19 73.01 87.95 78.23 87.51 85.56 

Generally, the evaluation of indoor models for automatic floor plan analysis is con-
ducted through either a wall segmentation task or a room-detection task [22]. Because our 
goal was to reconstruct indoor structures, we selected the room-detection task as an eval-
uation process. The evaluation protocol for the room-detection task resulted in a detection 
rate (DR) and recognition accuracy (RA) based on the match score table [23], which was 
characterized by reflecting the exact one-to-one matches as well as the partial one-to-many 
and many-to-one matches based on vector evaluation. In particular, we utilized the same 
metric for evaluating the floor plan analysis from previous studies [4,9]. When calculating 
the match-scores of the predicted room and ground truth, the acceptance and rejection 
thresholds used to determine whether each pair matched were 0.5 and 0.05, respectively. 
In addition, an evaluation of the walls was replaced with an evaluation of the closed space 
implemented through the walls (i.e., room) because the evaluation of a single wall is less 
relevant to the reproduction performance of the entire structure. Table 3 shows an evalu-
ation of the room-detection task for our proposed method using the SNU_FP data. The 
proposed model resulted in an 89% detection rate and 86% recognition accuracy, and 
overall, it exhibited a slightly higher performance except for the door object compared to 
the pixel-based assessment shown in Table 2. This is because our framework complements 
the deep learning results while generating the final indoor model. For example, the stair 
room shows a relatively low score on the pixel-based evaluation, but a higher score on the 
vector evaluation. This is due to the model successfully identifying most of the stairs, de-
spite failing to detect a precise boundary. 

Table 3. Indoor model result. 

Metrics Room 1 Window Door Stair Room Elevator Mean 
DR (%) 81.80 83.63 75.73 97.67 97.67 87.77 
RA (%) 85.20 79.90 79.77 91.20 91.20 85.52 

1 The evaluation for the wall was replaced with an evaluation of the room. 

The main purpose of extracting indoor spatial information in vector form from floor 
plan images is to reconstruct indoor building structures. To show the application of our 
result in a compatible way, we converted our indoor models into Java OpenStreetMap 
Editor plugins [24], and IndoorGML (OGC standard for an open data model and XML 
schema for indoor spatial information) [25], which have the potential to be compatible 
with 3D modeling programs such as Sketchup, BIM, and Open Street Map (see Figure 5). 
In addition, it can be integrated adaptively with other standards such as CityGML [26], 
making the 3D indoor models compatibly expanding to the surrounded outdoor city mod-
els, beyond the building level. 

The 3D indoor models can be used for a variety of purposes, such as the creation of 
digital twins for smart cities or the development of real estate information services. Our 
findings can also be combined with existing researches regarding the indoor navigation 
supporting system in the land administration domain model [27] or the localization and 
positioning aspect considering partitioning in indoor spaces [28]. In particular, since our 

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 16 
 

 

 
  

Table 2. Deep learning result. 

Metrics Wall Window Door Stair Room Elevator Mean 
Precision (%) 82.38 77.46 89.47 94.19 88.01 88.51 

Recall (%) 87.19 73.01 87.95 78.23 87.51 85.56 

Generally, the evaluation of indoor models for automatic floor plan analysis is con-
ducted through either a wall segmentation task or a room-detection task [22]. Because our 
goal was to reconstruct indoor structures, we selected the room-detection task as an eval-
uation process. The evaluation protocol for the room-detection task resulted in a detection 
rate (DR) and recognition accuracy (RA) based on the match score table [23], which was 
characterized by reflecting the exact one-to-one matches as well as the partial one-to-many 
and many-to-one matches based on vector evaluation. In particular, we utilized the same 
metric for evaluating the floor plan analysis from previous studies [4,9]. When calculating 
the match-scores of the predicted room and ground truth, the acceptance and rejection 
thresholds used to determine whether each pair matched were 0.5 and 0.05, respectively. 
In addition, an evaluation of the walls was replaced with an evaluation of the closed space 
implemented through the walls (i.e., room) because the evaluation of a single wall is less 
relevant to the reproduction performance of the entire structure. Table 3 shows an evalu-
ation of the room-detection task for our proposed method using the SNU_FP data. The 
proposed model resulted in an 89% detection rate and 86% recognition accuracy, and 
overall, it exhibited a slightly higher performance except for the door object compared to 
the pixel-based assessment shown in Table 2. This is because our framework complements 
the deep learning results while generating the final indoor model. For example, the stair 
room shows a relatively low score on the pixel-based evaluation, but a higher score on the 
vector evaluation. This is due to the model successfully identifying most of the stairs, de-
spite failing to detect a precise boundary. 

Table 3. Indoor model result. 

Metrics Room 1 Window Door Stair Room Elevator Mean 
DR (%) 81.80 83.63 75.73 97.67 97.67 87.77 
RA (%) 85.20 79.90 79.77 91.20 91.20 85.52 

1 The evaluation for the wall was replaced with an evaluation of the room. 

The main purpose of extracting indoor spatial information in vector form from floor 
plan images is to reconstruct indoor building structures. To show the application of our 
result in a compatible way, we converted our indoor models into Java OpenStreetMap 
Editor plugins [24], and IndoorGML (OGC standard for an open data model and XML 
schema for indoor spatial information) [25], which have the potential to be compatible 
with 3D modeling programs such as Sketchup, BIM, and Open Street Map (see Figure 5). 
In addition, it can be integrated adaptively with other standards such as CityGML [26], 
making the 3D indoor models compatibly expanding to the surrounded outdoor city mod-
els, beyond the building level. 

The 3D indoor models can be used for a variety of purposes, such as the creation of 
digital twins for smart cities or the development of real estate information services. Our 
findings can also be combined with existing researches regarding the indoor navigation 
supporting system in the land administration domain model [27] or the localization and 
positioning aspect considering partitioning in indoor spaces [28]. In particular, since our 

The main purpose of extracting indoor spatial information in vector form from floor
plan images is to reconstruct indoor building structures. To show the application of our
result in a compatible way, we converted our indoor models into Java OpenStreetMap
Editor plugins [24], and IndoorGML (OGC standard for an open data model and XML
schema for indoor spatial information) [25], which have the potential to be compatible
with 3D modeling programs such as Sketchup, BIM, and Open Street Map (see Figure 5).
In addition, it can be integrated adaptively with other standards such as CityGML [26],
making the 3D indoor models compatibly expanding to the surrounded outdoor city
models, beyond the building level.
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Table 2. Deep learning result.

Metrics Wall Window Door Stair Room Elevator Mean

Precision (%) 82.38 77.46 89.47 94.19 88.01 88.51
Recall (%) 87.19 73.01 87.95 78.23 87.51 85.56

Table 3. Indoor model result.

Metrics Room 1 Window Door Stair Room Elevator Mean

DR (%) 81.80 83.63 75.73 97.67 97.67 87.77
RA (%) 85.20 79.90 79.77 91.20 91.20 85.52

1 The evaluation for the wall was replaced with an evaluation of the room.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 12 of 16 
 

 

framework enabled automatic extract of indoor spatial information in vector format on a 
large-scale complex building, the application aspect of indoor navigation would be more 
emphasized in cooperation with such researches such as human navigation usage in 3D 
indoor construction [29,30], the indoor navigation system for emergency evacuation [31–
33], and so on. 

  

  

  

  

  
(a) (b) 

Figure 5. Example of 3D indoor models based on (a) JOSM, and (b) IndoorGML.



ISPRS Int. J. Geo-Inf. 2021, 10, 828 12 of 15

The 3D indoor models can be used for a variety of purposes, such as the creation of
digital twins for smart cities or the development of real estate information services. Our
findings can also be combined with existing researches regarding the indoor navigation
supporting system in the land administration domain model [27] or the localization and
positioning aspect considering partitioning in indoor spaces [28]. In particular, since our
framework enabled automatic extract of indoor spatial information in vector format on a
large-scale complex building, the application aspect of indoor navigation would be more
emphasized in cooperation with such researches such as human navigation usage in 3D
indoor construction [29,30], the indoor navigation system for emergency evacuation [31–33],
and so on.

5. Discussion
5.1. Discussion on the Performance with Existing Studies

This paper proposes a framework that overcomes the limitations of existing studies on
automatic floor plan analysis, which considers relatively simple drawings favorable to deep
learning. Digitalization of indoor spaces is required in larger buildings that many people
navigate, and the actual floor plans in the real world are not always organized or simplified
for learning. As the purpose of this study was to reconstruct indoor spatial information
from a floorplan of the large-scale buildings, thereby expanding the previous approach
mostly focusing on a unit of the house in complex space or buildings with high utilization
of indoor spatial information. To achieve this purpose, compared to the previous work
using representative public datasets, such as CVC [6–9], Rakuten [10–12], and EAIS [2,4],
our target floor plan was aligned with large-scale buildings and the proposed method
was specified to the floor plan images which are difficult to process at once due to their
huge size. In addition, to extract essential topology information for use as indoor spatial
information, our target of interests expanded to topology objects such as a stair, an elevator,
beyond opening information of the room.

Since we explored the SNU floor plan, which covers various types of complex drawing
styles as well as large-scale buildings that have never been attempted in existing studies,
a direct performance comparison with existing studies cannot be obtained. The existing
methods based on learning-based models, whether they distributed their trained models or
not, are not able to be applied to a large-scale floor plan as they do not have enough capacity
to handle high-resolution and large-scale drawings or are too specific to certain formats of
the floor plan dataset. In addition, there is no shared annotation for large-scale complex
floor plan datasets, which are fundamental barriers for the comparison of learning-based
approaches. In this situation, capacity for a large-scale drawing is our main contribution,
but at the same time, forces us to evaluate only our own dataset and to perform an indirect
comparison. Nevertheless, to verify our performance with existing studies, we refer to the
vectorized indoor model on EAIS and used it as baseline performance because this dataset
is the most complicated format in existing studies. Evaluation of the EAIS dataset is based
on a room-detection task, including openings (window, door); moreover, the model does
not extract the stair room and elevator. On comparison with the vectorized indoor model
on EAIS data [4] in Table 4, our model shows similar performance on DR (Ours: 87.77,
EAIS: 87.87), and slightly lower performance on RA (Ours: 85.52, EAIS: 89.96). Although
our dataset includes various and larger floor plan image sizes, the results show that our
framework has a similar performance to existing studies.

5.2. Discussion on Generalization Capability with Other Datasets

To verify the applicability of our proposed framework to other formats, we tested
another complex and large-scale dataset. We applied the UOS dataset to our trained
network, trained solely using the SNU dataset, without training it with the UOS dataset.
The UOS dataset is a large and complex drawing showing the exterior of the building,
including curved walls, and various symbols that are not present in the SNU dataset.
Figure 6 shows the results of applying our framework to the UOS dataset. As can be seen
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in Figure 6, our framework worked well with the UOS dataset, and could generate both 2D
line and polygon indoor models as well as the 3D JOSM indoor model and indoor GML. We
manually added some virtual walls before converting our results into 3D models. Because
of the format discrepancy between datasets, our trained model experienced difficulty in
detecting openings and certain divisions of the rooms, but overall, it still resulted in intact
indoor models despite some missing elements.

Table 4. Performance comparison of indoor models.

Dataset Metrics Room Window Door Stair Room Elevator Mean

SNU
DR (%) 81.80 83.63 75.73 97.67 97.67 87.77
RA (%) 85.20 79.90 79.77 91.20 91.20 85.52

EAIS [4]
DR (%) 87.87 - - - - 87.87
RA (%) 89.96 - - - - 89.96
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6. Conclusions

The demand for indoor spatial information is increasing, and automatic floor plan
analysis is gaining more attention as an affordable means of acquiring indoor spatial infor-
mation [2–4]. In this context, this study presents a patch-based deep learning network and
a framework for reconstructing indoor space for more complex and large-scale buildings
as compared to previous studies. We utilized a CNN to overcome its limitation on inter-
preting varied size or high-resolution inputs, commonly found in floor plans of large-scale
buildings. As input data, SNU dataset (200 for learning, 30 for testing) was used, which
contains various types of data drawn by various architectural offices from the 1970s to the
2010s, containing large-scale buildings with diagonal lines, curves, rectangular shapes, and
pinwheels. The floor plan images of the SNU dataset have a high resolution of more than
3000 pixels. To unify the actual distance expressed per pixel by unifying the floor plan scale,
we normalized the patch consistent input delivery to the learning-based model, even with
datasets containing diverse sizes and scales. The segmented result of the floor plan was
generated by stitching the results on each patch, while reflecting the ensembled outputs
in the overlapped areas. After raster to vector conversion, the indoor model of walls,
windows, rooms, stair rooms, and elevators was generated. The performance showed
detection rate (87.77%) and recognition accuracy (85.53%), similar to that of existing studies
that used a relatively unified and organized format with a regular scale.

The main implications of our work can be summarized into three aspects. First,
this study enabled the automatic extraction of indoor elements from complicated and
variously scaled floor plan images with high performance. The fundamental purpose of
reconstructing indoor structures is to interpret or navigate large-scale complex buildings



ISPRS Int. J. Geo-Inf. 2021, 10, 828 14 of 15

rather than simple housing scales. Second, this study extracted indoor elements not only
for reconstructing the interior space geometry, but also for connectivity with other floors.
Unlike existing studies, this study extracted stair rooms and elevators to connect with other
stories. This can facilitate automatic floor plan analysis to reconstruct the indoor space in a
floor as well as a whole building. Third, this study enabled the reconstruction of indoor
space and converted it to a standard format that can be utilized for other purposes. Based
on the results of our generated indoor models, it is possible to construct 3D-based indoor
models such as JOSM-based indoor models or IndoorGML. These are open-source-based
indoor formats; hence, it is possible to utilize the results depending on the subjects.

This study has limitations in that it can only train the SNU dataset as a sample for
complex and large-scale buildings due to the difficulty in securing data. However, if
large-scale and navigable buildings such as multiplex shopping malls can be included, our
proposed framework can be trained into a more reliable model. In future research, we
plan to further extract and assemble the topology information of the buildings, given that
our proposed framework includes an expandable indoor model. Nevertheless, this study
is significant in that it expands the practical aspect of automatic floor plan analysis as it
covers large-scale floor plans that have been excluded from previous research. This study
enables the recognition of floor plan datasets for large-scale buildings in complex and
diverse formats, which extends the application of automatic floor plan analysis technology.
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